植物生态学报 ›› 2018, Vol. 42 ›› Issue (8): 806-817.doi: 10.17521/cjpe.2018.0053

• 综述 • 上一篇    下一篇

被子植物翅果的多样性及演化

谭珂,董书鹏,卢涛,张亚婧,徐诗涛,任明迅()   

  1. 海南大学热带农林学院, 环南海陆域生物多样性研究中心, 海口 570228
  • 收稿日期:2018-03-05 出版日期:2018-08-20 发布日期:2018-12-07
  • 通讯作者: 任明迅 E-mail:jshe@pku.edu.cn
  • 基金资助:
    国家自然科学基金(31670230);国家自然科学基金(31660229);海南省自然科学基金创新团队项目(2018CXTD334);海南省普通高等学校研究生创新科研课题(Hyb2016-06)

Diversity and evolution of samara in angiosperm

TAN Ke,DONG Shu-Peng,LU Tao,ZHANG Ya-Jing,XU Shi-Tao,REN Ming-Xun()   

  1. Center for Terrestrial Biodiversity of the South China Sea, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
  • Received:2018-03-05 Online:2018-08-20 Published:2018-12-07
  • Contact: Ming-Xun REN E-mail:jshe@pku.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(31670230);Supported by the National Natural Science Foundation of China(31660229);the Innovative Team Program of Hainan Natural Science Foundation(2018CXTD334);the Postgraduate Innovative Grant of Hainan Province(Hyb2016-06)

摘要:

翅果能够依靠风力进行传播, 可能是被子植物快速散布和物种分化的一个重要因素。狭义的翅果是指果皮延伸成翅且不开裂的干果; 广义的翅果则包括果皮、花被片或苞片形成果翅的所有果实。根据果翅形态及其生长方式的不同, 广义的翅果可分为单侧翅果、周位翅果(圆翅果与蝶翅果)、棱翅果、披针翅果、翼状萼翅果、叶状苞翅果6种类型, 其空中运动方式有自旋式(单侧翅果、翼状萼翅果)、波浪式(周位翅果、叶状苞翅果)、翻滚自旋式(周位翅果)、直升机式(披针翅果、翼状萼翅果)和滚筒式(棱翅果)。棱翅果与圆翅果在被子植物基部类群樟目就有发生, 并同时出现在单子叶植物和双子叶植物中, 可能是最早出现的翅果类型。翅果的演化过程呈现出果翅数量增加、果翅偏向单侧和果翅负荷(果实质量与果翅面积之比)降低的趋势, 以利于适应较小的风并增加传播距离。果翅除了促进果实与种子的风力传播外, 还具有物理防御、调节种子萌发和促进二次传播等作用。泛热带分布的金虎尾科有着极其丰富的翅果类型, 与其多次跨洋长距离扩散密切相关, 可以作为研究翅果适应与演化的一个模式类群。结合生态和演化-发育生物学方法, 研究不同类型翅果在适应风力传播方面的差异、萼片或苞片发育成翅的分子与遗传机制、翅果不同类型的演化历史及其对被子植物物种多样性的影响等是今后值得探讨的重要问题。

关键词: 翅果, 长距离扩散, 金虎尾路线, 适应演化

Abstract:
Samara (winged fruit) can be dispersed easily by wind and may be a crucial factor for angiosperm spread and diversification. In a narrow sense, a samara is an indehiscent dry fruit with wing(s) developed from fruit pericarp, while in a broad sense samaras also include all winged fruits with wings developed from both pericarp and perianth or bracts. According to the wing shape and growth patterns of samaras, we divided samaras into six types, i.e. single-winged, lanceolate-winged, rib-winged, sepal-winged, bract-winged, and perigynous samaras. Perigynous samaras can be further classified into two forms, i.e. round-winged and butterfly-winged samaras. Accordingly, the aerodynamic behavior of samaras can be classified into five types, autogyro, rolling autogyro, undulator, helicopter, and tumbler. The rib-winged and round-winged samaras can be found in Laurales, a basal angiosperm, and may represent the primitive type of early samaras. In the derived clades, samaras evolved enlarged but unequal wings and decreased wing loading (the ratio of fruit weight to wing size), which is likely an adaptation to gentle wind and secondary dispersal through water or ground wind. The wings of some samaras (such as sepal-winged and bract-winged samaras) may have multiple functions including wind dispersal, physical defense for the seeds, and adjust seed germination strategy. The pantropical family Malpighiaceae is extraordinarily rich in samara types, which is likely related to its multiple inter-continent dispersal in history, which is known as “Malpighiaceae Route”. Therefore, Malpighiaceae can be used as a model system for the studies on samara adaptation and evolution. We identified the following issues that deserve further examination in future studies using both ecological and evo-devo methods: 1) the adaption of different types of samaras in dispersal processes, 2) the molecular and developmental mechanism of sepal- and bract-wings, and 3) the evolution of samara types and their effects on angiosperm diversification.

Key words: samara, long-distance dispersal, Malpighiaceae Route, adaptive evolution