植物生态学报 ›› 2010, Vol. 34 ›› Issue (6): 678-686.DOI: 10.3773/j.issn.1005-264x.2010.06.007
收稿日期:
2009-11-02
接受日期:
2010-01-25
出版日期:
2010-11-02
发布日期:
2010-06-01
通讯作者:
闫桂琴
作者简介:
* E-mail: gqyan@126.comReceived:
2009-11-02
Accepted:
2010-01-25
Online:
2010-11-02
Published:
2010-06-01
Contact:
YAN Gui-Qin
摘要:
以我国二级濒危保护植物翅果油(Elaeagnus mollis)为供试植物, 通过温室盆栽试验, 研究接种丛枝菌根真菌对翅果油树幼苗根际土壤微生态环境的影响。试验设计分4个组: 摩西球囊霉(Glomus mosseae)单独接种组(GM)、脆无梗囊霉(Acaulospora delicata)单独接种组(AD)、混合接种组(GM + AD)、不接种的对照组(CK)。测定了菌根侵染率、生物量、根际微生物数量、土壤pH值、土壤酶活性及其对N、P营养的影响等指标。结果显示: 菌根真菌对3个接种组均有侵染, 其中, GM + AD的侵染率最大(90.5%), 生态学效应最好; 与对照组相比, 接种组的生物量均明显提高(p < 0.05), 其中GM + AD组生物量显著增加, 是CK组的2.2倍; AM菌根对根部微生物种群数量产生一定的影响, 主要是使根面上的细菌、放线菌、固氮菌的数量显著增加(p < 0.05); AM菌根使根际pH值降低, 与菌根侵染率呈显著负相关关系(p < 0.05); 接种组根际土壤磷酸酶、脲酶、蛋白酶的活性增加, 根际土壤的磷酸酶、蛋白酶的活性增加量与菌根侵染率呈极显著相关关系(p < 0.01); 接种组的根际土壤中, 可直接被植物吸收利用的N、P元素出现富集现象, 与菌根侵染率呈显著相关关系(p < 0.05)。研究表明: 丛枝菌根的形成改善了翅果油树幼苗的微生态环境, 提高了根际土壤肥力。
袁丽环, 闫桂琴. 丛枝菌根化翅果油树幼苗根际土壤微环境. 植物生态学报, 2010, 34(6): 678-686. DOI: 10.3773/j.issn.1005-264x.2010.06.007
YUAN Li-Huan, YAN Gui-Qin. Rhizospheric soil of seedlings of Elaeagnus mollis colonized by arbuscular mycorrhizal fungi. Chinese Journal of Plant Ecology, 2010, 34(6): 678-686. DOI: 10.3773/j.issn.1005-264x.2010.06.007
处理 Treatment | 苗高 Height of seedlings (cm) | 地径 Diameter at ground (cm) | 生物量 Biomass | 菌根侵染率 Colonization rate (%) | |||
---|---|---|---|---|---|---|---|
根干重 Dry weight of roots (g) | 茎干重 Dry weight of stems (g) | 叶干重 Dry weight of leaves (g) | 全株干重 Whole plant dry weight (g) | ||||
GM | 14.85 ± 1.82a | 0.26 ± 0.04b | 1.08 ± 0.08a | 1.02 ± 0.09a | 1.04 ± 0.08a | 3.14 ± 0.75b | 72.5 ± 7.28b |
AD | 14.73 ± 1.89a | 0.25 ± 0.02b | 0.72 ± 0.09b | 0.67 ± 0.07b | 0.70 ± 0.07b | 2.09 ± 0.84c | 42.4 ± 4.41c |
GM + AD | 15.01 ± 1.54a | 0.29 ± 0.03a | 1.20 ± 0.08a | 1.11 ± 0.06a | 1.07 ± 0.09a | 3.38 ± 0.96a | 90.5 ± 9.25a |
CK | 13.17 ± 1.85b | 0.18 ± 0.02c | 0.48 ± 0.07c | 0.58 ± 0.04c | 0.49 ± 0.05c | 1.55 ± 0.63d | 0 |
表1 丛枝菌根对翅果油树幼苗生长的影响(平均值±标准误差, n = 10)
Table 1 Effects of arbuscular mycorrhiza on the seedling growth of Elaeagnus mollis (mean ± SE, n = 10)
处理 Treatment | 苗高 Height of seedlings (cm) | 地径 Diameter at ground (cm) | 生物量 Biomass | 菌根侵染率 Colonization rate (%) | |||
---|---|---|---|---|---|---|---|
根干重 Dry weight of roots (g) | 茎干重 Dry weight of stems (g) | 叶干重 Dry weight of leaves (g) | 全株干重 Whole plant dry weight (g) | ||||
GM | 14.85 ± 1.82a | 0.26 ± 0.04b | 1.08 ± 0.08a | 1.02 ± 0.09a | 1.04 ± 0.08a | 3.14 ± 0.75b | 72.5 ± 7.28b |
AD | 14.73 ± 1.89a | 0.25 ± 0.02b | 0.72 ± 0.09b | 0.67 ± 0.07b | 0.70 ± 0.07b | 2.09 ± 0.84c | 42.4 ± 4.41c |
GM + AD | 15.01 ± 1.54a | 0.29 ± 0.03a | 1.20 ± 0.08a | 1.11 ± 0.06a | 1.07 ± 0.09a | 3.38 ± 0.96a | 90.5 ± 9.25a |
CK | 13.17 ± 1.85b | 0.18 ± 0.02c | 0.48 ± 0.07c | 0.58 ± 0.04c | 0.49 ± 0.05c | 1.55 ± 0.63d | 0 |
图1 翅果油树接种丛枝菌根真菌后土壤微生物数量的变化(微生物数量单位: × 106·g-1) (n = 10)。 AD、CK、GM和GM + AD同表1。
Fig. 1 Effects of Elaeagnus mollis inoculated by arbuscular mycorrhizal fungi on soil microbial quantity (microbe quantity unit: ×106·g-1) (n = 10). AD, CK, GM and GM + AD see Table 1.
图2 不同处理的翅果油树苗木根部pH值比较(n = 10)。 AD、CK、GM和GM + AD同表1。
Fig. 2 Comparison of pH in the roots of different treated Elaeagnus mollis seedings (n = 10). AD, CK, GM and GM + AD see Table 1.
处理Treatment | 磷酸酶 Phosphatase (Phenol mg·g-1·d-1) | 蛋白酶 Protease (NH2-N mg·g-1·d-1) | 脲酶 Urease (NH3-N mg·g-1·d-1) | |||
---|---|---|---|---|---|---|
碱性磷酸酶 Alkaline phosphatase | 中性磷酸酶 Neutral phosphatase | 酸性磷酸酶 Acid phosphatase | 磷酸酶总量 Total phosphatase | |||
GM | 2.018a | 1.487b | 0.445b | 3.950a | 0.814 5ab | 1.252a |
AD | 1.998ab | 1.201b | 0.431b | 3.630b | 0.756 1b | 0.854b |
GM + AD | 2.019a | 1.521b | 0.554a | 4.094a | 1.002 8a | 1.326a |
CK | 1.667b | 1.141b | 0.235c | 3.043b | 0.605 8b | 0.523c |
表2 翅果油树接种丛枝菌根真菌后根际土壤酶活性的变化(平均值±标准误差, n = 10)
Table 2 Effects of Elaeagnus mollis inoculated by arbuscular mycorrhizal fungi on the soil enzyme activity in the rhizosphere (mean ± SE, n = 10)
处理Treatment | 磷酸酶 Phosphatase (Phenol mg·g-1·d-1) | 蛋白酶 Protease (NH2-N mg·g-1·d-1) | 脲酶 Urease (NH3-N mg·g-1·d-1) | |||
---|---|---|---|---|---|---|
碱性磷酸酶 Alkaline phosphatase | 中性磷酸酶 Neutral phosphatase | 酸性磷酸酶 Acid phosphatase | 磷酸酶总量 Total phosphatase | |||
GM | 2.018a | 1.487b | 0.445b | 3.950a | 0.814 5ab | 1.252a |
AD | 1.998ab | 1.201b | 0.431b | 3.630b | 0.756 1b | 0.854b |
GM + AD | 2.019a | 1.521b | 0.554a | 4.094a | 1.002 8a | 1.326a |
CK | 1.667b | 1.141b | 0.235c | 3.043b | 0.605 8b | 0.523c |
图3 翅果油树根部土壤全氮和水解氮比较(n = 10)。 AD、CK、GM、GM + AD, 同表1。
Fig. 3 Compaison of soil total N and hydrolysable N in the Elaeagnus mollis roots (n = 10). AD, CK, GM, GM + AD, see Table 1.
图4 翅果油树根部土壤全磷和速效磷比较(平均值±标准误差, n = 10)。 AD、CK、GM、GM + AD, 同表1。
Fig. 4 Comparison of soil total P and available P in Elaeagnus mollis roots (mean ± SE, n = 10). AD, CK, GM, GM + AD, see Table 1.
[1] | Antunes PM, Rajcan I, Goss MJ (2006). Specific flavonoids as interconnecting signals in the tripartite symbiosis formed by arbuscular mycorrhizal fungi, Bradyrhizobium japonicum (Kirchner) Jordan and soybean (Glycine max (L.) Merr.). Soil Biology and Biochemistry, 38, 533-543. |
[2] | Azcon R, Bone F, Barea JM (1982). Exocellular phosphatase activity of lavender and wheat roots as affected by phytate and mycorrhiral inoculation. In: Gianinazzi S, Gianniazzi- Pearson V, Trouvelot A eds. Les Mycormzes: Biologie et Utilisation INRA, Dijon. 83-85. |
[3] | Cai XB (蔡晓布), Feng G (冯固), Qian C (钱成), Gai JP (盖京苹) (2007). Effects of AM fungi on steppe plants and soil environment in Tibet Plateau. Acta Pedologica Sinica (土壤学报), 44, 63-72. (in Chinese with English abstract) |
[4] | Dodd JC, Dougall TA, Clapp JP (2002). The role of arbuscular mycorrhizal fungi in plant community establishment at Samphire Hoe, Kent, UK ― the reclamation platform created during the building of the Channel tunnel between France and the UK. Biodiversity and Conservation, 11, 39-58. |
[5] | Dong Z (董志), Zhang FY (张飞云), Yan GQ (闫桂琴) (2005). Advances in research on the endemic and endangered plant of Elaeagnus mollis and its exploitation prospects. Journal of Capital Normal University (Natural Sciences Edition) 首都师范大学学报(自然科学版)), 26(3), 65-67. (in Chinese with English abstract) |
[6] | Dong JC (董昌金), Zhou Y (周盈), Zhao B (赵斌) (2004). Effect of flavonoids on AM fungi and mycorrhizal plant. Mycosystema (菌物学报), 23, 294-300. (in Chinese with English abstract) |
[7] | Gahoonia TS, Melsen NE (1992). The root induced pH change on the deletion of inorganic and organic phosphorous in the rhizosphere. Plant and Soil, 143, 183-189. |
[8] |
Joner EJ, Leyval C (2003). Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza. Environmental Science & Technology, 37, 2371-2375.
URL PMID |
[9] | Koide RT, Schreiner RP (1992). Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 557-581. |
[10] | Li XL (李晓林), Feng G (冯固) (2001). Arbuscular Mycorrhizal Ecology and Physiology (丛枝菌根生态生理学). Hua wen Press, Beijing. 49-124, 204-222. (in Chinese) |
[11] | Li HS (李和生), Wang LQ (王林权), Zhao CS (赵春生) (1997). Relationship between phosphatase activity and organic phosphorus in wheat rhizosphere. Journal of Northwest Sci-Tech University of Agriculture and Forestry (西北农林科技大学学报), 25(2), 47-50. (in Chinese with English abstract) |
[12] | Liao JP (廖继佩), Lin XG (林先贵), Cao ZH (曹志洪), Luo YM (骆永明), Wu LH (吴龙华) (2002). Effect of interactions between arbuscular mycorrhizal fungi and heavy metals on microbial populations and phosphatase activities in the maize rhizosphere. Chinese Journal of Applied & Environmental Biology (应用与环境生物学报), 8, 408-413. (in Chinese with English abstract) |
[13] | Liu RJ (刘润进), Liu PQ (刘鹏起), Xu K (徐坤), Lü ZF (吕志范) (1999). Ecological distribution of AM fungi in saline soil in China. Journal of Applied Ecology (应用生态学报), 10, 721-724. (in Chinese with English abstract) |
[14] | Pan CM (潘超美), Guo QR (郭庆荣), Qiu QJ (邱桥姐), Huang XL (黄湘兰) (2000). Effect of VAM fungus on the growth of core and microecological environment of core rhizosphere. Soil and Environmental Sciences (土壤与环境), 9, 304-306. (in Chinese with English abstract) |
[15] | Petra M, Karen B (2003). Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant and Soil, 251, 279-289. |
[16] | Phillips JM, Haymen DS (1970). Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid, assessment of infection. Transactions of the British Mycological Society, 55, 158-161. |
[17] | Prikryl Z (1980). Root exudates of plant. Plant and Soil, 57, 69-83. |
[18] | Ren JH (任嘉红), Zhang XG (张晓刚), Liu RX (刘瑞祥), Jin S (金山), Ru WM (茹文明) (2005). Research on the arbuscular mycorrhizal fungi resources of Hippophae rhamnoide in Lishan Nature Reserve in Shanxi. Journal of West China Forestry Science (西部林业科学), 34(2), 85-87. (in Chinese with English abstract) |
[19] | Riley D, Barhr SA (1969). Bicarbonate accumulation and pH changes at the soybean root-soil interface. Soil Science Society of America Proceedings, 33, 905-908. |
[20] | Riley D, Barhr SA (1970). Salt accumulation at the soybean root-soil interface. Soil Science Society of America Proceedings, 34, 154-155. |
[21] |
Secilia AJ, Bagyaraj DJ (1994). Evaluation and first-year field testing of efficient vesicular-arbuscular mycorrhizal fungi for inoculation of wetland rice seedlings. World Journal of Microbiology and Biotechnology, 10, 374-384.
DOI URL PMID |
[22] |
Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003). Arbuscular mycorrhiza: biological, chemical, and molecular aspects. Journal of Chemical Ecology, 29, 1955-1979.
URL PMID |
[23] | Song FQ (宋福强), Yang GT (杨国亭), Meng FR (孟繁荣), Tian XJ (田兴军), Dong AR (董爱荣) (2004). The rhizospheric niche of seedling of Populus ussruiensis colonized by arbuscular mycorrhizal (AM) fungi. Ecology and Environment (生态环境), 13, 211-216. (in Chinese with English abstract) |
[24] | Song YC (宋勇春), Feng G (冯固), Li XL (李晓林) (2000). Effect of VAM fungi on phosphatase activity in the rhizosphere of clover. Chinese Journal of Applied and Environmental Biology (应用与环境生物学报), 6, 171-175. (in Chinese with English abstract) |
[25] | Tarafdar JC, Marchner H (1994). Effete of VAM hyphae in utilization to organic phosphorus by wheat pants. Soil Science and Plant Nutrition, 40, 593-560. |
[26] | Tsimilli-Michael M, Eggenberg P, Biro B, Koves-Pechy K, Voros I, Strasser RJ (2000). Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Applied Soil Ecology, 15, 169-182. |
[27] | Wang SH (王树和), Wang XJ (王晓娟), Wang Q (王茜), Jin L (金樑) (2007). Responses of rhizosphere microorganisms to arbuscular mycorrhizal fungi and their effects on host plants. Pratacultural Science (草业学报), 16, 108-113. (in Chinese with English abstract) |
[28] | White JA, Brown MF (1979). Ultrastructure and X-ray analysis of phosphorus granules in a vesicular-arbuscular mycorrhizal fungus. Canadian Journal of Botany, 57, 24-28. |
[29] | Yan DH (严东辉), Yao YJ (姚一建) (2003). Recent advance of research on fungi in forest ecosystem. Acta Phytoecologica Sinica (植物生态学报), 27, 143-150. (in Chinese with English abstract) |
[30] | Yang LY (杨利艳), Lu YM (卢英梅), Ji JF (吉晋芳) (2003). The effect of temperature on germination of Elaeagnus mollis. Journal of Shanxi Teachers University (Natural Science Edition) 山西师范大学学报(自然科学版)), 17(4), 72-74. (in Chinese with English abstract) |
[31] | Yu YF (于永福) (1999). The landmark of wilding protection work in China-List of national key protected wild plants (The first batch). Plants (植物杂志), (5), 38-41. (in Chinese) |
[32] | Yuan LH (袁丽环), Yan GQ (闫桂琴), Zhu ZM (朱志敏) (2009). Effects of arbuscular mycorrhizal fungi on the seedlings roots of Elaeagnus mollis Diels. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 29, 580-585. (in Chinese with English abstract) |
[33] | Zhao B (赵斌), He SJ (何绍江) (2002). Microbiology Experiment (微生物实验). Science Press, Beijing. 113-130. (in Chinese) |
[34] | Zhao LP (赵兰坡), Jiang Y (姜岩) (1986). Measure method of soil phosphatase. Chinese Journal of Soil Science (土壤通报), 17(3), 138-142. (in Chinese with English abstract) |
[35] | Zhao X (赵昕), Yan XF (阎秀峰) (2006). Effects of arbuscular mycorrhizal fungi on the growth and absorption of nitrogen and phosphorus in Camptotheca acuminata seedlings. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30, 947-953. (in Chinese with English abstract) |
[36] | Zhi GY (职桂叶), Chen X (陈欣), Tang JJ (唐建军) (2003). Mediations of arbuscular mycorrhizal fungi on plant community. Mycosystema (菌物系统), 22, 678-682. (in Chinese with English abstract) |
[37] | Zhou LK (周礼恺) (1987). Soil Enzyme (土壤酶). Science Press, Beijing. 92-100. (in Chinese) |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[4] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[5] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[6] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[7] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[8] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[9] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[10] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[11] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[12] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[13] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[14] | 朱玉荷, 肖虹, 王冰, 吴颖, 白永飞, 陈迪马. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J]. 植物生态学报, 2022, 46(3): 340-349. |
[15] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19