Chin J Plan Ecolo ›› 2005, Vol. 29 ›› Issue (2): 304-310.doi: 10.17521/cjpe.2005.0039

• Research Articles • Previous Articles     Next Articles


SUN Geng WU Ning* and LUO Peng   

  1. (Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China)
  • Online:2005-03-10 Published:2005-03-10
  • Contact: WU Ning

Abstract: Different methods of pasture management have been adopted in individualized pastures of northwestern Sichuan, one of the most important pastoral areas in China. In this paper, common analytical chemistry and barometric process separation methods were used to determine soil N and C pools, denitrification rates, gross nitrification rates, and N2O and CO2 flux rates of pastures under different management methods, including natural pasture, fenced pasture, tilled pasture and artificial pasture. The results indicated that SOM (Soil organic matter) and total N in soils of the study area were 101.8 and 5.1 g·kg-1, respectively, which were notably lower than 181.3 and 7.4 g·kg-1 of other typical sub-alpine soils. In contrast to common belief, the content of NO3-N was three-to-eleven times higher than that of NH4+N, which was probably caused by the anthropogenic disturbance. There was a significant effect of different methods of pasture management to N and C pools, N transformation rates and soil respiration. After fence, SOM and total N increased notably. For example, fenced pasture was 61% and 58% and tilled pasture was 46% and 51% higher than natural pasture in these two respects, respectively. Accordingly, N transformation rates and soil respiration rates accelerated a lot, especially in soils of tilled pasture. For example, in soils of tilled pasture gross nitrification and N2O flux rate were 5.1 times and 2.4 times that of natural pasture. Thus, although tillage in spring might help to enhanced crop yields (or pasturage), it also runs a great ecological risk including increased emissions of CO2 and N2O to the atmosphere and leaching of NO3- to ground water. This research also found that the gross nitrification rates were 20-93 times higher than net nitrification rates, and thus net nitrification rates do not provide valuable information on the dynamic character of soil nitrification in this high-altitude region.

No related articles found!
Full text



[1] . [J]. Chin Bull Bot, 2002, 19(01): 121 -124 .
[2] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chin Bull Bot, 1999, 16(04): 429 -432 .
[3] SHE Chao-WenSONG Yun-Chun LIU Li-Hua. Analysis on the G_banded Karyotypes and Its Fluctuation at Different Mitotic Phases and Stages in Triticum tauschii (Aegilops squarrosa)[J]. Chin Bull Bot, 2001, 18(06): 727 -734 .
[4] Guijun Yang, Wenjiang Huang, Jihua Wang, Zhurong Xing. Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote Sensing Data[J]. Chin Bull Bot, 2010, 45(05): 566 -578 .
[5] Man Chen, YishengTu, Linan Ye, Biyun Yang. Effect of Amino Acids on Thallus Growth and Huperzine-A Accumulation in Huperzia serrata[J]. Chin Bull Bot, 2017, 52(2): 218 -224 .
[6] Yefei Shang, Ming Li, Bo Ding, Hao Niu, Zhenning Yang, Xiaoqiang Chen, Gaoyi Cao, Xiaodong Xie. Advances in Auxin Regulation of Plant Stomatal Development[J]. Chin Bull Bot, 2017, 52(2): 235 -240 .
[7] CUI Xiao-Yong, Du Zhan-Chi, Wang Yan-Fen. Photosynthetic Characteristics of a Semi-arid Sandy Grassland Community in Inner Mongolia[J]. Chin J Plan Ecolo, 2000, 24(5): 541 -546 .
[8] LI Wei, ZHANG Ya-Li, HU Yuan-Yuan, YANG Mei-Sen, WU Jie, and ZHANG Wang-Feng. Research on the photoprotection and photosynthesis characteristics of young cotton leaves under field conditions[J]. Chin J Plan Ecolo, 2012, 36(7): 662 -670 .
[9] WEI Jie, YU Hui, KUANG Ting-Yun, BEN Gui-Ying. Ultrastructure of Polygonum viviparum L. Grown at Different Elevations on Qinghai Plateau[J]. Chin J Plan Ecolo, 2000, 24(3): 304 -307 .
[10] CHEN Jin, LI Yang, HUANG Jian-Hui. Decomposition of mixed litter of four dominant species in an Inner Mongolia steppe[J]. Chin J Plan Ecolo, 2011, 35(1): 9 -16 .