Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (5): 488-497.DOI: 10.3773/j.issn.1005-264x.2010.05.002
Special Issue: 青藏高原植物生态学:种群生态学
• Research Articles • Previous Articles Next Articles
SHI Fu-Sun, WU Ning*(), WU Yan
Received:
2009-09-14
Accepted:
2009-12-08
Online:
2010-09-14
Published:
2010-05-01
Contact:
WU Ning
SHI Fu-Sun, WU Ning, WU Yan. Responses of plant growth and substance allocation of three dominant plant species to experimental warming in an alpine grassland, Northwestern Sichuan, China[J]. Chin J Plant Ecol, 2010, 34(5): 488-497.
月/年 Month/Year | 温度 Temperature (℃) | 土壤相对含水量 Soil relative water content (%) | |||
---|---|---|---|---|---|
土壤 Soil | 空气 Air | 0-5 cm | 10-15 cm | ||
6/2006-9/2006 | OTC | 12.01 | 8.87 | 36.17 | 45.76 |
对照 Control | 11.48 | 7.26 | 50.34 | 48.29 | |
差值 Difference | 0.53 | 1.61 | -14.17 | -2.53 | |
6/2007-9/2007 | OTC | 12.03 | 8.73 | 42.03 | 53.58 |
对照 Control | 11.56 | 7.33 | 55.52 | 54.18 | |
差值 Difference | 0.46 | 1.40 | -13.49 | -0.60 | |
6/2008-9/2008 | OTC | 12.27 | 9.07 | 38.58 | 46.22 |
对照 Control | 11.75 | 7.48 | 51.46 | 50.34 | |
差值 Difference | 0.52 | 1.59 | -12.88 | -4.12 |
Table 1 Variation of temperature and mean soil relative water content in the open-top chamber (OTC) and in the control plot in the growing season (2006-2008)
月/年 Month/Year | 温度 Temperature (℃) | 土壤相对含水量 Soil relative water content (%) | |||
---|---|---|---|---|---|
土壤 Soil | 空气 Air | 0-5 cm | 10-15 cm | ||
6/2006-9/2006 | OTC | 12.01 | 8.87 | 36.17 | 45.76 |
对照 Control | 11.48 | 7.26 | 50.34 | 48.29 | |
差值 Difference | 0.53 | 1.61 | -14.17 | -2.53 | |
6/2007-9/2007 | OTC | 12.03 | 8.73 | 42.03 | 53.58 |
对照 Control | 11.56 | 7.33 | 55.52 | 54.18 | |
差值 Difference | 0.46 | 1.40 | -13.49 | -0.60 | |
6/2008-9/2008 | OTC | 12.27 | 9.07 | 38.58 | 46.22 |
对照 Control | 11.75 | 7.48 | 51.46 | 50.34 | |
差值 Difference | 0.52 | 1.59 | -12.88 | -4.12 |
生长参数 Growth parameter | OTC | 对照 Control |
---|---|---|
株高 Plant height (cm) | 31.18 ± 3.17a | 26.67 ± 2.36b |
比叶面积 Specific leaf area (cm2·g-1) | 82.89 ± 5.86a | 75.83 ± 3.61b |
地上生物量 Aboveground biomass (g·m-2) | 22.55 ± 4.19a | 7.49 ± 2.35b |
Table 2 Effects of temperature enhancement on plant growth and biomass accumulation of Elymus nutans (mean ± SD, n = 5)
生长参数 Growth parameter | OTC | 对照 Control |
---|---|---|
株高 Plant height (cm) | 31.18 ± 3.17a | 26.67 ± 2.36b |
比叶面积 Specific leaf area (cm2·g-1) | 82.89 ± 5.86a | 75.83 ± 3.61b |
地上生物量 Aboveground biomass (g·m-2) | 22.55 ± 4.19a | 7.49 ± 2.35b |
生长参数 Growth parameter | OTC | 对照 Control |
---|---|---|
株高 Plant height (cm) | 49.67 ± 5.76a | 49.09 ± 7.41a |
比叶面积 Specific leaf area (cm2·g-1) | 35.70 ± 3.01a | 33.76 ± 2.17a |
总生物量 Total biomass (g per unit) | 3.93 ± 0.34a | 3.08 ± 0.22b |
叶生物量 Leaf mass (g) | 0.63 ± 0.15a | 0.34 ± 0.11b |
茎生物量 Stem mass (g) | 1.37 ± 0.31a | 1.43 ± 0.06a |
根生物量 Root mass (g) | 1.93 ± 0.79a | 1.31 ± 0.13b |
Table 3 Effects of temperature enhancement on plant growth and biomass accumulation of Rumex acetosa (mean ± SD, n = 5)
生长参数 Growth parameter | OTC | 对照 Control |
---|---|---|
株高 Plant height (cm) | 49.67 ± 5.76a | 49.09 ± 7.41a |
比叶面积 Specific leaf area (cm2·g-1) | 35.70 ± 3.01a | 33.76 ± 2.17a |
总生物量 Total biomass (g per unit) | 3.93 ± 0.34a | 3.08 ± 0.22b |
叶生物量 Leaf mass (g) | 0.63 ± 0.15a | 0.34 ± 0.11b |
茎生物量 Stem mass (g) | 1.37 ± 0.31a | 1.43 ± 0.06a |
根生物量 Root mass (g) | 1.93 ± 0.79a | 1.31 ± 0.13b |
生长参数 Growth parameter | OTC | 对照 Control |
---|---|---|
株高 Plant height (cm) | 9.67±3.64a | 10.38±2.85a |
比叶面积 Specific leaf area (cm2·g-1) | 83.65±5.36a | 95.11±6.13b |
总生物量 Total biomass (g per unit) | 0.70±0.04a | 0.86±0.13b |
叶生物量 Leaf mass (g) | 0.30±0.04a | 0.42±0.07b |
茎生物量 Stem mass (g) | 0.17±0.06a | 0.26±0.04b |
根生物量 Root mass (g) | 0.23±0.04a | 0.18±0.02b |
Table 4 Effects of temperature enhancement on plant growth and biomass accumulation of Potentilla anserina (mean ± SD, n = 5)
生长参数 Growth parameter | OTC | 对照 Control |
---|---|---|
株高 Plant height (cm) | 9.67±3.64a | 10.38±2.85a |
比叶面积 Specific leaf area (cm2·g-1) | 83.65±5.36a | 95.11±6.13b |
总生物量 Total biomass (g per unit) | 0.70±0.04a | 0.86±0.13b |
叶生物量 Leaf mass (g) | 0.30±0.04a | 0.42±0.07b |
茎生物量 Stem mass (g) | 0.17±0.06a | 0.26±0.04b |
根生物量 Root mass (g) | 0.23±0.04a | 0.18±0.02b |
Fig. 1 Effects of temperature enhancement on biomass allocation of Rumex acetosa (mean ± SD, n = 5). Different letter denotes significantly different between open-top chambers (OTC) plot and the control plot at p < 0.05. LMR, leaf mass ratio; RMR, root mass ratio; R/S, root/shoot mass ratio; SMR, stem mass ratio.
Fig. 3 Effects of temperature enhancement on C and N content in Elymus nutans leaf (mean ± SD, n = 5). Different letter denotes significantly different between the open-top chamber (OTC) plot and the control plot at p < 0.05.
Fig. 4 Effects of temperature enhancement on C and N content in different parts of Rumex acetosa (mean ± SD, n = 5). Different letter denotes significantly different between the open-top chamber (OTC) plot and the control plot at p < 0.05.
Fig. 5 Effects of temperature enhancement on C and N content in different parts of Potentilla anserina (mean ± SD, n = 5). Different letter denotes significantly different between the open-top chamber (OTC) plot and the control plot at p < 0.05.
Fig. 6 Effects of temperature enhancement on C and N allocation in different parts of Rumex acetosa (mean ± SD, n = 5). Different letter denotes significantly different between the open-top chamber (OTC) plot and the control plot at p < 0.05.
Fig. 7 Effects of temperature enhancement on C and N allocation in different parts of Potentilla anserina (mean ± SD, n = 5). Different letter denotes significantly different between the open-top chamber (OTC) plot and the control plot at p < 0.05.
[1] |
Anten NPR, Schieving F, Werger MJA (1995). Patterns of light and nitrogen distribution in relation to whole canopy gain in C3 and C4 mono- and dicotyledonous species. Oecologia, 101, 504-513.
URL PMID |
[2] | Asseng S, Ritchie JT, Smucker AJ, Robertson MJ (1998). Root growth and water uptake during water deficit and recovering in wheat. Plant Soil, 201, 265-273. |
[3] | Boeck HJ, Lemmens CH, Gielen H, Malchair S, Carnol M, Merckx R, Ceulemans R, Nijs I (2006). Combined effects of climate warming and plant diversity loss on above- and below-ground grassland productivity. Environmental and Experimental Botany, 60, 95-104. |
[4] | Chapin III FS (1991). Integrated response of plants to stress. BioScience, 41, 29-36. |
[5] | Chapin ES, Shaver GR (1985). Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology, 66, 564-576. |
[6] | Chapin FS, Shaver GR, Giblin AE, Nadelhofer KJ, Laundre JA (1995). Responses of arctic tundra to experimental and observed changes in climate. Ecology, 76, 694-711. |
[7] |
Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002). How plants cope with water stress in the field? Photosynthesis and Growth. Annals of Botany, 89, 907-916.
DOI URL PMID |
[8] | Chen ZZ (陈佐忠), Wang SP (汪诗平) (2000). Typical Grassland Ecosystem in China (中国典型草原生态系统). Science Press, Beijing. (in Chinese) |
[9] | Delucia EH, Heckathorn SA, Day TA (1992). Effects of soil temperature on growth, biomass allocation and resource acquisition of Andropogon gerardii Vitman. New Phytologist, 120, 543-549. |
[10] | Domisch T, Finer L, Lehto T (2002). Effect of soil temperature on nutrient allocation and mycorrhizas in Scots pine seedlings. Plant and Soil, 239, 173-185. |
[11] | Dubrovsky JG, North GB, Nobel PS (1998). Root growth, developmental changes in the apex, and hydraulic conductivity for Opuntia ficus-indica during drought. New Phytologist, 138, 75-82. |
[12] | Eatherall A (1997). Modelling climate change impacts on ecosystems using linked models and a GIS. Climatic Change, 35, 17-34. |
[13] | Edwards EJ, Benham DG, Marland LA, Fitter AH (2004). Root production is determined by radiation flux in a temperate grassland community. Global Change Biology, 10, 209-227. |
[14] | Ericsson T (1995). Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant and Soil, 169, 205-214. |
[15] |
Gregory PJ (1986). Response to temperature in a stand of pearl millet ( Pennisetum typhoides S. & H.). VIII. Root growth. Journal of Experimental Botany, 37, 379-388.
DOI URL |
[16] | Gugerli F, Bauert MR (2001). Growth and reproduction of Polygonum viviparum show weak responses to experimentally increased temperature at a Swiss alpine site. Botanica Helvetica, 111, 169-180. |
[17] | Gunn S, Farrar JF (1999). Effects of a 4 °C increase in temperature on partitioning of leaf area and dry mass, root respiration and carbondydrates. Functional Ecology, 13(Suppl. 1), 12-20. |
[18] | Hatch DJ, Macduff JH (1991). Concurrent rates of N2 fixation, nitrate and ammonium uptake by white clover in response to growth at different root temperature. Annals of Botany, 67, 265-274. |
[19] |
Haupt-Herting S, Fock HP (2002). Oxygen exchange in relation to carbon assimilation in water-stressed leaves during photosynthesis. Annals of Botany, 89, 851-859.
DOI URL PMID |
[20] | Kimball BA (2005). Theory and performance of an infrared heater for warming ecosystem. Global Change Biology, 11, 2041-2056. |
[21] | Lambers H, der Werf A, Konings H (1991). Respiratory patterns in roots in relation to their functioning. Plant Roots. In: Waisel Y, Eshel A, Kafkafi U eds. The Hidden Half. Marcel Dekker Inc., New York. 229-263. |
[22] | Li YN (李英年) (2000). Simulation of forage yield and stocking rate on alpine grassland in response to warming trend of climate. Acta Phytoecologica Sinica (草业学报), 6, 77-82. (in Chinese with English abstract) |
[23] |
Luomala EM, Laitinen K, Sutinen S (2005). Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature. Plant, Cell and Environment, 28, 733-749.
DOI URL |
[24] | Mitchell RAC, Mitchel VJ, Driscoll SP, Franklin J, Lawlor DW (1993). Effects of increased CO2 concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application. Plant, Cell and Environment, 16, 521-529. |
[25] | Rawson HM (1992). Plant responses to temperature under conditions of elevated CO2. Australian Journal of Botany, 40, 473-490. |
[26] | Romero JM, Maranon T (1996). Allocation of biomass and mineral elements in Melilotus segetalis (annual sweetclover): effects of NaCl salinity and plant age. New Phytologist, 132, 565-573. |
[27] |
Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562.
URL PMID |
[28] | Saleska SR, Harte J, Torn MS (1999). The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow. Global Change Biology, 5, 125-141. |
[29] | Shah NH, Paulsen GM (2003). Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil, 257, 219-226. |
[30] | Shi FS (石福孙), Wu N (吴宁), Luo P (罗鹏) (2008). Effect of temperature enhancement on community structure and biomass of subalpine meadow in northwestern Sichuan. Acta Ecological Sinica (生态学报), 28, 5286-5293. (in Chinese with English abstract) |
[31] | Squire GR, Marshall B, Terry AC, Monteith JL (1984). Response to temperature in a stand of pearl millet. VI. Light interception and dry matter production. Journal of Experimental Botany, 35, 599-610. |
[32] | Szaniawski RK (1983). Adaption and functional balance between shoot and root activity of sunflower grown at different root temperature. Annals of Botany, 51, 453-459. |
[33] | Tingey DT, McVeety BD, Waschmann R, Johnson MG, Phillips DL, Rygiewicz PT, Olszyk DM (1996). A versatile sun-lit controlled-environment facility for studying plant and soil processes. Journal of Environmental Quality, 25, 615-625. |
[34] | Valpine P, Harte J (2001). Plant response to experimental warming in a montane meadow. Ecology, 82, 637-648. |
[35] | Wang M (王谋), Li Y (李勇), Bai XZ (白宪洲), Huang RQ (黄润秋) (2004). The effect of global warming on the grassland resources of inner Tibet Plateau. Journal of Natural Resources (自然资源学报), 19, 331-335. (in Chinese with English abstract) |
[36] | Wang Q, Tenhunen J, Falge E, Bemhofer CH, Granier A (2003). Simulation and scaling of temporal variation in gross primary production for coniferous and deciduous temperate forests. Global Change Biology, 10, 37-51. |
[37] | Welker JM, Briske DD (1992). Clonal biology of the temperate caespitose graminoid Schizachyrium scoparium: a synthesis with reference to climate change. Oikos, 56, 357-365. |
[38] | Zhang XS (张新时) (1993). The classified system of vegetation-climate on global change. Quaternary Research (第四纪研究), 2, 157-169. (in Chinese with English abstract) |
[39] | Zhang YQ, Welker JM (1996). Tibetan alpine tundra response to simulated changes in climate: aboveground biomass and community responses. Arctic and Alpine Research, 28, 203-209. |
[40] | Zhou HQ (周华坤), Zhou XM (周兴民), Zhao XQ (赵新全) (2000). A preliminary study of the influence of simulated greenhouse effect on a Kobresia hunilis meadow. Acta Phytoecologica Sinica (植物生态学报), 24, 547-553. (in Chinese with English abstract) |
[41] | Zobel M, Zobel K (2002). Studying plant competition: from root biomass to general aims. Journal of Ecology, 90, 578-580. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn