Chin J Plant Ecol ›› 2016, Vol. 40 ›› Issue (10): 1028-1036.DOI: 10.17521/cjpe.2016.0068
Special Issue: 全球变化与生态系统; 生态学研究的方法和技术; 青藏高原植物生态学:种群生态学
• Research Articles • Previous Articles Next Articles
Jun-Tao ZHU*
Online:
2016-10-10
Published:
2016-11-02
Contact:
Jun-Tao ZHU
Jun-Tao ZHU. Effects of experimental warming on plant reproductive phenology in Xizang alpine meadow[J]. Chin J Plant Ecol, 2016, 40(10): 1028-1036.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0068
处理 Treatment | 氮含量 N content (%) | 碳含量 C content (%) | 磷含量 P content (mg∙g-1) | C:N |
---|---|---|---|---|
增温T4 Warming T4 | 0.22 ± 0.04 | 2.42 ± 0.52 | 0.75 ± 0.04 | 11.00 ± 0.32 |
增温T3 Warming T3 | 0.24 ± 0.06 | 2.31 ± 0.65 | 0.73 ± 0.05 | 9.63 ± 0.55 |
增温T2 Warming T2 | 0.21 ± 0.05 | 2.35 ± 0.74 | 0.74 ± 0.04 | 11.19 ± 0.74 |
增温T1 Warming T1 | 0.25 ± 0.07 | 2.40 ± 0.55 | 0.72 ± 0.03 | 9.60 ± 0.65 |
对照 Control | 0.25 ± 0.06 | 2.53 ± 0.61 | 0.75 ± 0.04 | 10.12 ± 0.44 |
Table 1 Soil C, N, P contents and C:N for each treatments (mean ± SE)
处理 Treatment | 氮含量 N content (%) | 碳含量 C content (%) | 磷含量 P content (mg∙g-1) | C:N |
---|---|---|---|---|
增温T4 Warming T4 | 0.22 ± 0.04 | 2.42 ± 0.52 | 0.75 ± 0.04 | 11.00 ± 0.32 |
增温T3 Warming T3 | 0.24 ± 0.06 | 2.31 ± 0.65 | 0.73 ± 0.05 | 9.63 ± 0.55 |
增温T2 Warming T2 | 0.21 ± 0.05 | 2.35 ± 0.74 | 0.74 ± 0.04 | 11.19 ± 0.74 |
增温T1 Warming T1 | 0.25 ± 0.07 | 2.40 ± 0.55 | 0.72 ± 0.03 | 9.60 ± 0.65 |
对照 Control | 0.25 ± 0.06 | 2.53 ± 0.61 | 0.75 ± 0.04 | 10.12 ± 0.44 |
Fig. 1 Mean air temperature (°C, A), soil temperature at 5 cm depth (°C, B), soil moisture (%, C) at 5 cm depth and precipitation (mm, D) during the growing seasons under different warming treatments.
处理 Treatment | 现蕾时间 Budding time | 开花时间 Flowering time | 结果时间 Fruiting time | 开花持续 Flowering duration | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
自由度 Degree of freedom | F | p | 自由度 Degree of freedom | F | p | 自由度 Degree of freedom | F | p | 自由度 Degree of freedom | F | p | ||||
增温 Warming | 4 | 2.92 | 0.03 | 1.84 | 0.13 | 3 | 1.13 | 0.35 | 39.46 | 0.00 | |||||
物种 Species | 5 | 1 153.39 | 0.00 | 2 567.89 | 0.00 | 5 | 2 268.60 | 0.00 | 589.42 | 0.00 | |||||
增温×物种 Warming × species | 20 | 31.54 | 0.00 | 24.97 | 0.00 | 15 | 12.74 | 0.00 | 2.30 | 0.00 |
Table 2 Results (F value) of two-way ANOVA on the effects of warming, plant species and their interactions on budding time, flowering time, fruiting time and flowering duration
处理 Treatment | 现蕾时间 Budding time | 开花时间 Flowering time | 结果时间 Fruiting time | 开花持续 Flowering duration | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
自由度 Degree of freedom | F | p | 自由度 Degree of freedom | F | p | 自由度 Degree of freedom | F | p | 自由度 Degree of freedom | F | p | ||||
增温 Warming | 4 | 2.92 | 0.03 | 1.84 | 0.13 | 3 | 1.13 | 0.35 | 39.46 | 0.00 | |||||
物种 Species | 5 | 1 153.39 | 0.00 | 2 567.89 | 0.00 | 5 | 2 268.60 | 0.00 | 589.42 | 0.00 | |||||
增温×物种 Warming × species | 20 | 31.54 | 0.00 | 24.97 | 0.00 | 15 | 12.74 | 0.00 | 2.30 | 0.00 |
Fig. 2 Changes in the onset of budding, flowering and fruiting (in days) in four experimental treatments [i.e., T1, T2, T3, T4] compared with the control in 2014 (A, B, C) (mean ± SE). A positive value indicates later budding, flowering or fruiting than the control; a negative value indicates earlier budding, flowering or fruiting than the control. Data are mean ± SE for advanced or delayed phenology, respectively. “*” indicates significant difference between treatment and the control.
物种 Species | 增温T1 Warming T1 | 增温T2 Warming T2 | 增温T3 Warming T3 | 增温T4 Warming T4 |
---|---|---|---|---|
高山嵩草 Kobresia pygmaea | 0 | 0 | 1 | 1 |
钉柱委陵菜 Potentilla saundersiana | 0 | 0 | 1 | 1 |
楔叶委陵菜 Potentilla cuneata | 0 | 1 | 1 | 1 |
紫花针茅 Stipa purpurea | 1 | 1 | 1 | 1 |
矮羊茅 Festuca coelestis | 0 | 0 | 0 | 1 |
无茎黄鹌菜 Youngia simulatrix | 0 | 1 | 1 | 1 |
Table 3 Results of Fisher test showing the differences of the flowering duration for each species among treatments (T1, T2, T3, T4)
物种 Species | 增温T1 Warming T1 | 增温T2 Warming T2 | 增温T3 Warming T3 | 增温T4 Warming T4 |
---|---|---|---|---|
高山嵩草 Kobresia pygmaea | 0 | 0 | 1 | 1 |
钉柱委陵菜 Potentilla saundersiana | 0 | 0 | 1 | 1 |
楔叶委陵菜 Potentilla cuneata | 0 | 1 | 1 | 1 |
紫花针茅 Stipa purpurea | 1 | 1 | 1 | 1 |
矮羊茅 Festuca coelestis | 0 | 0 | 0 | 1 |
无茎黄鹌菜 Youngia simulatrix | 0 | 1 | 1 | 1 |
[1] | Ashe XH (2013). Effects of Warming and Precipitation Regime on Plant Phenology and Productivity in an Alpine Meadow, Northwestern Sichuan, China. Master degree dissertation, Chengdu University of Technology, Chengdu.(in Chinese with English abstract)[阿舍小虎 (2013). 模拟增温与降水改变对川西北高寒草甸植物物候及初级生产力的影响. 硕士学位论文, 成都理工大学, 成都.] |
[2] | Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M (1999). Response patterns of tundra plant species to experimental warming: A meta-analysis of the international tundra experiment.Ecological Monographs, 69, 491-511. |
[3] | Bjorkman AD, Elmendorf SC, Beamish AL, Vellend M, Henry GHR (2015). Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.Global Change Biology, 21, 4651-4661. |
[4] | Chmielewski FM, Rötzer T (2001). Response of tree phenology to climate change across Europe.Agricultural and Forest Meteorology, 108, 101-112. |
[5] | Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006). Diverse responses of phenology to global changes in a grassland ecosystem.Proceedings of the National Academy of Sciences of the United States of America, 103, 13740. |
[6] | Cook BI, Wolkovich EM, Parmesan C (2012). Divergent responses to spring and winter warming drive community level flowering trends.Proceedings of the National Academy of Sciences of the United States of America, 109, 9000-9005. |
[7] | Dorji T, Totland Ø, Moe S, Hopping KA, Pan JB, Klein JA (2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet.Global Change Biology, 19, 459-472. |
[8] | Dunne JA, Harte J, Taylor KJ (2003). Subalpine meadow flowering phenology responses to climate change: Integrating experimental and gradient methods.Ecological Monographs, 73, 69-86. |
[9] | Fitter AH, Fitter RSR (2002). Rapid changes in flowering time in British plants. Science, 296, 1689-1691. |
[10] | Franks SJ, Sim S, Weis AE (2007). Rapid evolution of flowering time by an annual plant in response to a climate fluctuation.Proceedings of the National Academy of Sciences of the United States of America, 104, 1278-1282. |
[11] | Goldman DA, Willson MF (1986). Sex allocation in functionally hermaphroditic plants: A review and critique.Botanical Review, 52, 157-194. |
[12] | Gu S, Hui D, Bian A (1998). The contraction-expansion algorithm and its use in fitting nonlinear equations.International Journal of Biomathematics, 13, 426-434. |
[13] | Hoffmann AA, Camac JS, Williams RJ, Papst W, Jarrad FC, Wahren C-H (2010). Phenological changes in six Australian subalpine plants in response to experimental warming and year-to-year variation.Journal of Ecology, 98, 927-937. |
[14] | Hollister RD, Webber PJ, Bay C (2005). Plant response to temperature in northern Alaska: Implications for predicting vegetation change.Ecology, 86, 1562-1570. |
[15] | IPCC (Intergovernmental Panel on Climate Change) (2007). Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin DH, Manning M, Marquis M, Chen ZL, Averyt K, Tignor M, Miller HL eds. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[16] | Klein JA, Harte J, Zhao XQ (2008). Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau.Ecosystems, 11, 775-789. |
[17] | Kliber A, Eckert CG (2004). Sequential decline in allocation among flowers within Inflorescences: Proximate mechanism and adaptive significance. Ecology, 85, 1675-1687. |
[18] | Li YH, Han GD, Wang Z, Zhao ML, Wang ZW, Zhao HB (2014). Influences of warming and nitrogen addition on plant reproductive phenology in Inner Mongolia desert steppe.Chinese Journal of Ecology, 33, 849-856.(in Chinese with English abstract)[李元恒, 韩国栋, 王珍, 赵萌莉, 王正文, 赵鸿彬 (2014). 增温和氮素添加对内蒙古荒漠草原植物生殖物候的影响. 生态学杂志,33, 849-856.] |
[19] | Piao SL, Fang JY, Zhou LM, Philippe C, Zhu B (2006). Variations in satellite-derived phenology in China’s temperate vegetation.Global Change Biology, 12, 672-685. |
[20] | Porporato A, Laio F, Ridolfi L, Rodriguez-Iturbe I (2001). Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress: III. Vegetation water stress.Advances in Water Resources, 24, 725-744. |
[21] | Post ES, Pedersen C, Wilmers CC, Forchhammer MC (2008). Phenological sequences reveal aggregate life history response to climatic warming. Ecology, 89, 363-370. |
[22] | Price MV, Waser NM (1998). Effects of experimental warming on plant reproductive phenology in a subalpine meadow.Ecology, 79, 1261-1271. |
[23] | Richards FJ (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290-301. |
[24] | Rutishauser T, Stockli R, Harte J, Kueppers L (2012). Climate change: Flowering in the greenhouse.Nature, 485, 448-449. |
[25] | Sherry RA, Zhou XH, Gu SL, Arnone JA, Schimel DS, Verburg PS, Wallace LL, Luo YQ (2007). Divergence of reproductive phenology under climate warming.Proceedings of the National Academy of Sciences of the United States of America, 104, 198-202. |
[26] | Springate DA, Kover PX (2014). Plant responses to elevated temperatures: A field study on phenological sensitivity and fitness responses to simulated climate warming.Global Change Biology, 20, 456-465. |
[27] | Visser ME, Both C (2005). Shifts in phenology due to global climate change: The need for a yardstick.Proceedings of the Royal Society Biological Sciences, 272, 2561-2569. |
[28] | Wang SP, Meng FD, Duan JC, Wang YF, Cui XY, Piao SL, Niu HS, Xu GP, Luo CY, Zhang ZH, Zhu XX, Shen MG, Li YN, Du MY, Tang YH, Zhao XQ, Ciais PB, Kimball B, Peñuelas J, Janssens IA, Cui SJ, Zhao L, Zhang FW (2014). Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants.Ecology, 95, 3387-3398. |
[29] | Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012). Warming experiments underpredict plant phenological responses to climate change. Nature, 485, 494-497. |
[30] | Xia J, Wan S (2013). Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe.Annals of Botany, 111, 1207-1217. |
[31] | Yu H, Luedeling E, Xu J (2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau.Proceedings of the National Academy of Sciences of the United States of America, 107, 22151-22156. |
[1] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[2] | LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient [J]. Chin J Plant Ecol, 2023, 47(6): 822-832. |
[3] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[4] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[5] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[6] | Yan-Fang LIU, Weng-Ying WANG, Nan-Ji SUO, Hua-Kun ZHOU, Xu-Feng MAO, Shi-Xiong WANG, Zhe CHEN. Relationship between plant community types and soil nematode communities in Haibei, Qinghai, China [J]. Chin J Plant Ecol, 2022, 46(1): 27-39. |
[7] | WANG Zi-Wei, WAN Song-Ze, JIANG Hong-Mao, HU Yang, MA Shu-Qin, CHEN You-Chao, LU Xu-Yang. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 528-538. |
[8] | MA Shu-Qin, WANG Zi-Wei, CHEN You-Chao, LU Xu-Yang. Effect of soil organic matter chemical compositions on soil protease and urease activity in alpine grassland soils in Northern Xizang, China [J]. Chin J Plant Ecol, 2021, 45(5): 516-527. |
[9] | LI Jie, CHEN Ying-Ying, QIAO Fu-Yun, ZHI Di-Gang, GUO Zheng-Gang. Effects of disturbance by plateau pika on the β diversity of an alpine meadow [J]. Chin J Plant Ecol, 2021, 45(5): 476-486. |
[10] | DONG Li-Jun, LI Jin-Hua, CHEN Shan, ZHANG Rui, SUN Jian, MA Miao-Jun. Changes in soil organic carbon content and their causes during the degradation of alpine meadows in Zoigê Wetland [J]. Chin J Plant Ecol, 2021, 45(5): 507-515. |
[11] | YANG De-Chun, HU Lei, SONG Xiao-Yan, WANG Chang-Ting. Effects of changing precipitation on litter quality and decomposition of different plant functional groups in an alpine meadow [J]. Chin J Plant Ecol, 2021, 45(12): 1314-1328. |
[12] | WANG Yu-Xian, HOU Meng, XIE Yan-Yan, LIU Zuo-Jun, ZHAO Zhi-Gang, LU Ning-Na. Relationships of flower longevity with attractiveness traits and their effects on female fitness of alpine meadow plants on the Qinghai-Xizang Plateau, China [J]. Chin J Plant Ecol, 2020, 44(9): 905-915. |
[13] | LI Xue-Ying, ZHU Wen-Quan, LI Pei-Xian, XIE Zhi-Ying, ZHAO Cen-Liang. Predicting phenology shifts of herbaceous plants on the Qinghai-Xizang Plateau under climate warming with the space-for-time method [J]. Chin J Plant Ecol, 2020, 44(7): 742-751. |
[14] | ZHANG Chan, AN Yu-Meng, Yun JÄSCHKE, WANG Lin-Lin, ZHOU Zhi-Li, WANG Li-Ping, YANG Yong-Ping, DUAN Yuan-Wen. Processes on reproductive ecology of plant species in the Qinghai-Xizang Plateau and adjacent highlands [J]. Chin J Plant Ecol, 2020, 44(1): 1-21. |
[15] | CHEN Jin, SONG Ming-Hua, LI Yi-Kang. 13C pulse labeling reveals the effects of grazing on partitioning of assimilated carbon in an alpine meadow [J]. Chin J Plant Ecol, 2019, 43(7): 576-584. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn