Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (7): 576-584.DOI: 10.17521/cjpe.2019.0009
• Research Articles • Previous Articles Next Articles
CHEN Jin1,2,SONG Ming-Hua1,*(),LI Yi-Kang3
Received:
2019-01-10
Accepted:
2019-06-25
Online:
2019-07-20
Published:
2019-12-12
Contact:
SONG Ming-Hua
Supported by:
CHEN Jin, SONG Ming-Hua, LI Yi-Kang. 13C pulse labeling reveals the effects of grazing on partitioning of assimilated carbon in an alpine meadow[J]. Chin J Plant Ecol, 2019, 43(7): 576-584.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0009
Fig. 1 Carbon (C) stock in soil (A) and plants (B) in light winter grazed (LWG) and fence-enclosed (Encl) alpine meadows and in plant shoot (C) and root (D) (mean ± SE). * indicates significant difference between grazed and ungrazed plots (p < 0.05).
Fig. 2 Cumulative soil CO2-C efflux over 30 days following 13C labelling in light winter grazed (LWG) and fence-enclosed (Encl) alpine meadows(mean ± SE). * indicates significant difference between grazed and ungrazed plots (p < 0.05).
Fig. 3 13C dynamics in shoots and roots and 13C losses by shoot respiration during a 30 day period following 13C labelling in light winter grazed (LWG) and fence-enclosed (Encl) alpine meadows (mean ± SE). * indicates significant difference between grazed and ungrazed plots (p < 0.05).
Fig. 4 13C dynamics in roots and soil during a 30 day period following 13C labelling in light winter grazed (LWG) and fence- enclosed (Encl) alpine meadows (mean ± SE). * indicates significant difference between grazed and ungrazed plots (p < 0.05).
Fig. 5 13CO2-C efflux rate in soil of light winter grazed (LWG) and fence-enclosed (Encl) alpine meadows during a 30 day period following 13C labelling (mean ± SE). * indicates significant difference between grazed and ungrazed plots (p < 0.05).
[1] | Burenbayin ( 2012). Effect of Different Grazing Seasons on the Plant Diversity and Productivity in Kobresia Alpine Meadow. Master degree dissertation, Chinese Academy of Sciences, Beijing. |
[ 布仁巴音 ( 2012). 不同季节放牧对高寒草甸植物群落多样性和生产力的影响. 硕士学位论文, 中国科学院研究生院, 北京.] | |
[2] |
Cao GM, Tang YH, Mo WH, Wang YS, Li YN, Zhao XQ ( 2004). Grazing intensity alters soil respiration in an alpine meadow on the Tibetan Plateau. Soil Biology & Biochemistry, 36, 237-243.
DOI URL PMID |
[3] | Chinese Soil Taxonomy Research Group ( 1995). Chinese Soil Taxonomy. Science Press, Beijing. 58-147. |
[ 中国土壤分类学研究组 ( 1995). 中国土壤分类. 科学出版社, 北京. 58-147.] | |
[4] |
Cingolani AM, Noy-Meir I, Díaz S ( 2005). Grazing effects on rangeland diversity: A synthesis of contemporary models. Ecological Applications, 15, 757-773.
DOI URL |
[5] |
Doescher PS, Svejcar TJ, Jaindl RG ( 1997). Gas exchange of Idaho fescue in response to defoliation and grazing history. Journal of Range Management, 50, 285-289.
DOI URL |
[6] |
Gao YH, Zeng XY, Schumann M, Chen H ( 2011). Effectiveness of exclosures on restoration of degraded alpine meadow in the eastern Tibetan Plateau. Arid Land Research and Management, 25, 164-175.
DOI URL |
[7] |
Gao YZ, Giese M, Lin S, Sattelmacher B, Zhao Y, Brueck H ( 2008). Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant and Soil, 307, 41-50.
DOI URL |
[8] | Haferkamp MR, MacNeil MD ( 2004). Grazing effects on carbon dynamics in the northern mixed-grass prairie. Environmental Management, 3(S1), S462-S474. |
[9] |
Hafner S, Unteregelsbacher S, Seeber E, Lena B, Xu XL, Li XG, Guggenberger G, Miehe G, Kuzyakov Y ( 2012). Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling . Global Change Biology, 18, 528-538.
DOI URL |
[10] | Hamblin A, Tennant D, Perry MW ( 1990). The cost of stress: Dry matter partitioning changes with seasonal supply of water and nitrogen to dryland wheat. Plant and Soil, 122, 47-58. |
[11] |
Herzschuh U, Birks HJB, Ni J, Zhao Y, Liu H, Liu X, Grosse G ( 2010). Holocene land-cover changes on the Tibetan Plateau. The Holocene, 20(1), 91-104.
DOI URL |
[12] | IPCC ( Intergovernmental Panel on Climate Change) ( 2001). Climate Change 2001: The Scientific Basis. Cambridge University Press, New York, USA. 881. |
[13] |
Klumpp K, Soussana JF ( 2009). Using functional traits to predict grassland ecosystem change: A mathematical test of the response-and-effect trait approach. Global Change Biology, 15, 2921-2934.
DOI URL |
[14] |
Kuzyakov Y, Domanski G ( 2000). Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science, 163, 421-431.
DOI URL PMID |
[15] |
Lettens S, Orshoven J, Wesemael B, Muys B, Perrin D ( 2005). Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990. Global Change Biology, 11, 2128-2140.
DOI URL |
[16] |
McNaughton SJ ( 1979). Grazing as an optimization process: Grass-ungulate relationships in the Serengeti. The American Naturalist, 113, 691-703.
DOI URL |
[17] |
McNaughton SJ ( 1985). Ecology of a grazing ecosystem: The Serengeti. Ecological Monographs, 55, 259-294.
DOI URL PMID |
[18] |
McNaughton SJ ( 1993). Grasses and grazers, science and management. Ecological Applications, 3, 17-20.
DOI URL PMID |
[19] |
McNaughton SJ, Ruess RW, Seagle SW ( 1988). Large mammals and process dynamics in African ecosystems. BioScience, 38, 794-800.
DOI URL PMID |
[20] |
Menke J, Bradford GE ( 1992). Rangelands. Agriculture, Ecosystems & Environment, 42, 141-163.
DOI URL PMID |
[21] |
Milchunas DG, Lauenroth WK ( 1993). Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 63, 327-366.
DOI URL |
[22] |
Morris JT, Jensen A ( 1998). The carbon balance of grazed and non-grazed Spartina anglica saltmarshes at Skallingen, Denmark. Journal of Ecology, 86, 229-242.
DOI URL |
[23] |
Ni J ( 2002). Carbon storage in grasslands of China. Journal of Arid Environments, 50, 205-218.
DOI URL PMID |
[24] | Oesterheld M, Loreti J, Semmartin M, Paruelo JM ( 1999). Grazing, fire, and climate effects on primary productivity of grasslands and savannas. In: Walker LR ed. Ecosystems of Disturbed Ground. Elsevier, New York, USA. 287-306. |
[25] |
Rangel-Castro JI, Prosser JI, Scrimgeour CM, Smith P, Ostle N, Ineson P, Meharg A, Killham K ( 2004). Carbon flow in an upland grassland: Effect of liming on the flux of recently photosynthesized carbon to rhizosphere soil. Global Change Biology, 10, 2100-2108.
DOI URL |
[26] |
Rogiers N, Eugster W, Furger M, Siegwolf R ( 2005). Effect of land management on ecosystem carbon fluxes at a subalpine grassland site in the Swiss Alps. Theoretical and Applied Climatology, 80, 187-203.
DOI URL |
[27] |
Scurlock JMO, Hall DO ( 1998). The global carbon sink: A grassland perspective. Global Change Biology, 4, 229-233.
DOI URL PMID |
[28] |
Song M, Guo Y, Yu F, Zhang X, Cao G, Cornelissen JHC ( 2018). Shifts in priming partly explain impacts of long-term nitrogen input in different chemical forms on soil organic carbon storage. Global Change Biology, 24, 4160-4172.
DOI URL PMID |
[29] |
Song MH, Yu FH, Ouyang H, Cao GM, Xu XL, Cornelissen JHC ( 2012). Different inter-annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing. Global Change Biology, 18, 3100-3111.
DOI URL PMID |
[30] |
Sun Y, Xu XL, Kuzyakov Y ( 2014). Mechanisms of rhizosphere priming effects and their ecological significance . Chinese Journal of Plant Ecology, 38, 62-75.
DOI URL |
[ 孙悦, 徐兴良, KUZYAKOV Yakov ( 2014). 根际激发效应的发生机制及其生态重要性. 植物生态学报, 38, 62-75.]
DOI URL |
|
[31] |
Thomas AD ( 2012). Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO2 efflux in two semiarid grasslands in southern Botswana. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3076-3086.
DOI URL PMID |
[32] | UNEP ( 1993). Agenda 21 Rio Declaration. United Nations, New York, USA. |
[33] |
Walkley A, Black IA ( 1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.
DOI URL |
[34] |
Ward SE, Bardgett RD, McNamara NP, Adamson JK, Ostle NJ ( 2007). Long-term consequences of grazing and burning on northern peatland carbon dynamics. Ecosystems, 10, 1069-1083.
DOI URL |
[35] | White RP, Murray S, Rohweder M ( 2000). Pilot Analysis of Global Ecosystems: Grassland Ecosystems. World Resources Institute, Washington DC. |
[36] |
Wilsey BJ, Parent G, Roulet NT, Moore TR, Potvin C ( 2002). Tropical pasture carbon cycling: Relationships between C source/sink strength, above-ground biomass and grazing. Ecology Letters, 5, 367-376.
DOI URL |
[37] |
Wu GL, Liu ZH, Zhang L, Chen JM, Hu TM ( 2010). Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China. Plant and Soil, 332, 331-337.
DOI URL |
[38] | Xie XL, Sun B, Zhou HZ, Li ZP, Li AB ( 2004). Organic carbon density and storage in soils of China and spatial analysis. Acta Pedologica Sinica, 41, 35-43. |
[ 解宪丽, 孙波, 周慧珍, 李忠佩, 李安波 ( 2004). 中国土壤有机碳密度和储量的估算与空间分布分析. 土壤学报, 41, 35-43.] | |
[39] |
Yang YH, Mohammat A, Feng JM, Zhou R, Fang JY ( 2007). Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry, 84, 131-141.
DOI URL PMID |
[40] | Zheng D, Zhang QS, Wu SH ( 2000). Mountain Geoecology and Sustainable Development of the Tibetan Plateau. Springer, Dordrecht. 15-16. |
[41] | Zhou XM, Wang QJ, Zhao XQ ( 2001). Chinese Kobresia Meadows. Science Press, Beijing. |
[ 周兴民, 王启基, 赵新全 ( 2001). 中国嵩草草甸. 科学出版社, 北京.] | |
[42] |
Zibilske LM ( 1994). Carbon mineralization. In Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A eds. Methods of Soil Analysis. Part 2—Microbiological and Biochemical Properties. Soil Science Society of America, Wisconsin, USA. 835-863.
DOI URL PMID |
[1] | Yutong Wang, Kechang Niu. Effect of soil environment on functional diversity of soil nematodes in Tibetan alpine meadows [J]. Biodiv Sci, 2020, 28(6): 707-717. |
[2] | LI Ying, GONG Ji-Rui, LIU Min, HOU Xiang-Yang, DING Yong, YANG Bo, ZHANG Zi-He, WANG Biao, ZHU Chen-Chen. Defense strategies of dominant plants under different grazing intensity in the typical temperate steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2020, 44(6): 642-653. |
[3] | ZHANG Yang-Jian, ZHU Jun-Tao, SHEN Ruo-Nan, WANG Li. Research progress on the effects of grazing on grassland ecosystem [J]. Chin J Plant Ecol, 2020, 44(5): 553-564. |
[4] | Wang Xinting,Chai Jing,Jiang Chao,Tai Yang,Chi Yanyan,Zhang Weihua,Liu Fang,Li Suying. Population spatial pattern of Stipa grandis and its response to long-term overgrazing [J]. Biodiv Sci, 2020, 28(2): 128-134. |
[5] | WEN Chao,SHAN Yu-Mei,YE Ru-Han,ZHANG Pu-Jin,MU Lan,CHANG Hong,REN Ting-Ting,CHEN Shi-Ping,BAI Yong-Fei,HUANG Jian-Hui,SUN Hai-Lian. Effects of nitrogen and water addition on soil respiration in a Nei Mongol desert steppe with different intensities of grazing history [J]. Chin J Plant Ecol, 2020, 44(1): 80-92. |
[6] | Xiaoyun Shi,Xiaogang Shi,Qiang Hu,Tianpei Guan,Qiang Fu,Jian Zhang,Meng Yao,Sheng Li. Evaluating the potential habitat overlap and predation risk between snow leopards and free-range yaks in the Qionglai Mountains, Sichuan [J]. Biodiv Sci, 2019, 27(9): 951-959. |
[7] | Chen Xing,Zhao Lianjun,Hu Xixi,Luo Chunping,Liang Chunping,Jiang Shiwei,Liang Lei,Zheng Weichao,Guan Tianpei. Impact of livestock terrain utilization patterns on wildlife: A case study of Wanglang National Nature Reserve [J]. Biodiv Sci, 2019, 27(6): 630-637. |
[8] | TANG Yong-Kang, WU Yan-Tao, WU Kui, GUO Zhi-Wei, LIANG Cun-Zhu, WANG Min-Jie, CHANG Pei-Jing. Changes in trade-offs of grassland ecosystem services and functions under different grazing intensities [J]. Chin J Plant Ecol, 2019, 43(5): 408-417. |
[9] | LI Quan-Di, LIU Min-Xia, XIA Su-Juan, NAN Xiao-Ning, JIANG Xiao-Xuan. Changes in species-abundance relationships of plant communities with slopes in alpine meadows of Gannan, China [J]. Chin J Plant Ecol, 2019, 43(5): 418-426. |
[10] | WU Hong-Bao, GAO Qing-Zhu, Ganjurjav Hasbagan, LI Yu, YAN Yu-Long, HU Guo-Zheng, WANG Xue-Xia, YAN Jun, HE Shi-Cheng. Effects of grazing and simulated warming on plant community structure and productivity of alpine grassland in Northern Xizang, China [J]. Chin J Plant Ecol, 2019, 43(10): 853-862. |
[11] | Dexin Sun, Xiang Liu, Shurong Zhou. Dynamical changes of diversity and community assembly during recovery from a plant functional group removal experiment in the alpine meadow [J]. Biodiv Sci, 2018, 26(7): 655-666. |
[12] | Yuxian Wang, Zuojun Liu, Zhigang Zhao, Meng Hou, Xiaorui Zhang, Wanling Lü. Responses of floral longevity to pollination environments in 11 species from two alpine meadows [J]. Biodiv Sci, 2018, 26(5): 510-518. |
[13] | GENG Xiao-Dong, Xu Ri, LIU Yong-Wen. Responses of ecosystem carbon exchange to multi-level water addition in an alpine meadow in Namtso of Qinghai-Xizang Plateau, China [J]. Chin J Plan Ecolo, 2018, 42(3): 397-405. |
[14] | Zhonghua Zhang,Huakun Zhou,Xinquan Zhao,Buqing Yao,Zhen Ma,Quanmin Dong,Zhenhua Zhang,Wenying Wang,Yuanwu Yang. Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau [J]. Biodiv Sci, 2018, 26(2): 111-129. |
[15] | CHEN Ning, ZHANG Yang-Jian, ZHU Jun-Tao, LI Jun-Xiang, LIU Yao-Jie, ZU Jia-Xing, CONG Nan, HUANG Ke, WANG Li. Nonlinear responses of productivity and diversity of alpine meadow communities to degradation [J]. Chin J Plan Ecolo, 2018, 42(1): 50-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn