Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (7): 576-584.DOI: 10.17521/cjpe.2019.0009
Special Issue: 青藏高原植物生态学:群落生态学
• Research Articles • Previous Articles Next Articles
CHEN Jin1,2,SONG Ming-Hua1,*(),LI Yi-Kang3
Received:
2019-01-10
Accepted:
2019-06-25
Online:
2019-07-20
Published:
2019-12-12
Contact:
SONG Ming-Hua
Supported by:
CHEN Jin, SONG Ming-Hua, LI Yi-Kang. 13C pulse labeling reveals the effects of grazing on partitioning of assimilated carbon in an alpine meadow[J]. Chin J Plant Ecol, 2019, 43(7): 576-584.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0009
Fig. 1 Carbon (C) stock in soil (A) and plants (B) in light winter grazed (LWG) and fence-enclosed (Encl) alpine meadows and in plant shoot (C) and root (D) (mean ± SE). * indicates significant difference between grazed and ungrazed plots (p < 0.05).
Fig. 2 Cumulative soil CO2-C efflux over 30 days following 13C labelling in light winter grazed (LWG) and fence-enclosed (Encl) alpine meadows(mean ± SE). * indicates significant difference between grazed and ungrazed plots (p < 0.05).
Fig. 3 13C dynamics in shoots and roots and 13C losses by shoot respiration during a 30 day period following 13C labelling in light winter grazed (LWG) and fence-enclosed (Encl) alpine meadows (mean ± SE). * indicates significant difference between grazed and ungrazed plots (p < 0.05).
Fig. 4 13C dynamics in roots and soil during a 30 day period following 13C labelling in light winter grazed (LWG) and fence- enclosed (Encl) alpine meadows (mean ± SE). * indicates significant difference between grazed and ungrazed plots (p < 0.05).
Fig. 5 13CO2-C efflux rate in soil of light winter grazed (LWG) and fence-enclosed (Encl) alpine meadows during a 30 day period following 13C labelling (mean ± SE). * indicates significant difference between grazed and ungrazed plots (p < 0.05).
[1] | Burenbayin ( 2012). Effect of Different Grazing Seasons on the Plant Diversity and Productivity in Kobresia Alpine Meadow. Master degree dissertation, Chinese Academy of Sciences, Beijing. |
[ 布仁巴音 ( 2012). 不同季节放牧对高寒草甸植物群落多样性和生产力的影响. 硕士学位论文, 中国科学院研究生院, 北京.] | |
[2] |
Cao GM, Tang YH, Mo WH, Wang YS, Li YN, Zhao XQ ( 2004). Grazing intensity alters soil respiration in an alpine meadow on the Tibetan Plateau. Soil Biology & Biochemistry, 36, 237-243.
DOI URL PMID |
[3] | Chinese Soil Taxonomy Research Group ( 1995). Chinese Soil Taxonomy. Science Press, Beijing. 58-147. |
[ 中国土壤分类学研究组 ( 1995). 中国土壤分类. 科学出版社, 北京. 58-147.] | |
[4] |
Cingolani AM, Noy-Meir I, Díaz S ( 2005). Grazing effects on rangeland diversity: A synthesis of contemporary models. Ecological Applications, 15, 757-773.
DOI URL |
[5] |
Doescher PS, Svejcar TJ, Jaindl RG ( 1997). Gas exchange of Idaho fescue in response to defoliation and grazing history. Journal of Range Management, 50, 285-289.
DOI URL |
[6] |
Gao YH, Zeng XY, Schumann M, Chen H ( 2011). Effectiveness of exclosures on restoration of degraded alpine meadow in the eastern Tibetan Plateau. Arid Land Research and Management, 25, 164-175.
DOI URL |
[7] |
Gao YZ, Giese M, Lin S, Sattelmacher B, Zhao Y, Brueck H ( 2008). Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant and Soil, 307, 41-50.
DOI URL |
[8] | Haferkamp MR, MacNeil MD ( 2004). Grazing effects on carbon dynamics in the northern mixed-grass prairie. Environmental Management, 3(S1), S462-S474. |
[9] |
Hafner S, Unteregelsbacher S, Seeber E, Lena B, Xu XL, Li XG, Guggenberger G, Miehe G, Kuzyakov Y ( 2012). Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling . Global Change Biology, 18, 528-538.
DOI URL |
[10] | Hamblin A, Tennant D, Perry MW ( 1990). The cost of stress: Dry matter partitioning changes with seasonal supply of water and nitrogen to dryland wheat. Plant and Soil, 122, 47-58. |
[11] |
Herzschuh U, Birks HJB, Ni J, Zhao Y, Liu H, Liu X, Grosse G ( 2010). Holocene land-cover changes on the Tibetan Plateau. The Holocene, 20(1), 91-104.
DOI URL |
[12] | IPCC ( Intergovernmental Panel on Climate Change) ( 2001). Climate Change 2001: The Scientific Basis. Cambridge University Press, New York, USA. 881. |
[13] |
Klumpp K, Soussana JF ( 2009). Using functional traits to predict grassland ecosystem change: A mathematical test of the response-and-effect trait approach. Global Change Biology, 15, 2921-2934.
DOI URL |
[14] |
Kuzyakov Y, Domanski G ( 2000). Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science, 163, 421-431.
DOI URL PMID |
[15] |
Lettens S, Orshoven J, Wesemael B, Muys B, Perrin D ( 2005). Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990. Global Change Biology, 11, 2128-2140.
DOI URL |
[16] |
McNaughton SJ ( 1979). Grazing as an optimization process: Grass-ungulate relationships in the Serengeti. The American Naturalist, 113, 691-703.
DOI URL |
[17] |
McNaughton SJ ( 1985). Ecology of a grazing ecosystem: The Serengeti. Ecological Monographs, 55, 259-294.
DOI URL PMID |
[18] |
McNaughton SJ ( 1993). Grasses and grazers, science and management. Ecological Applications, 3, 17-20.
DOI URL PMID |
[19] |
McNaughton SJ, Ruess RW, Seagle SW ( 1988). Large mammals and process dynamics in African ecosystems. BioScience, 38, 794-800.
DOI URL PMID |
[20] |
Menke J, Bradford GE ( 1992). Rangelands. Agriculture, Ecosystems & Environment, 42, 141-163.
DOI URL PMID |
[21] |
Milchunas DG, Lauenroth WK ( 1993). Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 63, 327-366.
DOI URL |
[22] |
Morris JT, Jensen A ( 1998). The carbon balance of grazed and non-grazed Spartina anglica saltmarshes at Skallingen, Denmark. Journal of Ecology, 86, 229-242.
DOI URL |
[23] |
Ni J ( 2002). Carbon storage in grasslands of China. Journal of Arid Environments, 50, 205-218.
DOI URL PMID |
[24] | Oesterheld M, Loreti J, Semmartin M, Paruelo JM ( 1999). Grazing, fire, and climate effects on primary productivity of grasslands and savannas. In: Walker LR ed. Ecosystems of Disturbed Ground. Elsevier, New York, USA. 287-306. |
[25] |
Rangel-Castro JI, Prosser JI, Scrimgeour CM, Smith P, Ostle N, Ineson P, Meharg A, Killham K ( 2004). Carbon flow in an upland grassland: Effect of liming on the flux of recently photosynthesized carbon to rhizosphere soil. Global Change Biology, 10, 2100-2108.
DOI URL |
[26] |
Rogiers N, Eugster W, Furger M, Siegwolf R ( 2005). Effect of land management on ecosystem carbon fluxes at a subalpine grassland site in the Swiss Alps. Theoretical and Applied Climatology, 80, 187-203.
DOI URL |
[27] |
Scurlock JMO, Hall DO ( 1998). The global carbon sink: A grassland perspective. Global Change Biology, 4, 229-233.
DOI URL PMID |
[28] |
Song M, Guo Y, Yu F, Zhang X, Cao G, Cornelissen JHC ( 2018). Shifts in priming partly explain impacts of long-term nitrogen input in different chemical forms on soil organic carbon storage. Global Change Biology, 24, 4160-4172.
DOI URL PMID |
[29] |
Song MH, Yu FH, Ouyang H, Cao GM, Xu XL, Cornelissen JHC ( 2012). Different inter-annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing. Global Change Biology, 18, 3100-3111.
DOI URL PMID |
[30] |
Sun Y, Xu XL, Kuzyakov Y ( 2014). Mechanisms of rhizosphere priming effects and their ecological significance . Chinese Journal of Plant Ecology, 38, 62-75.
DOI URL |
[ 孙悦, 徐兴良, KUZYAKOV Yakov ( 2014). 根际激发效应的发生机制及其生态重要性. 植物生态学报, 38, 62-75.]
DOI URL |
|
[31] |
Thomas AD ( 2012). Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO2 efflux in two semiarid grasslands in southern Botswana. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3076-3086.
DOI URL PMID |
[32] | UNEP ( 1993). Agenda 21 Rio Declaration. United Nations, New York, USA. |
[33] |
Walkley A, Black IA ( 1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.
DOI URL |
[34] |
Ward SE, Bardgett RD, McNamara NP, Adamson JK, Ostle NJ ( 2007). Long-term consequences of grazing and burning on northern peatland carbon dynamics. Ecosystems, 10, 1069-1083.
DOI URL |
[35] | White RP, Murray S, Rohweder M ( 2000). Pilot Analysis of Global Ecosystems: Grassland Ecosystems. World Resources Institute, Washington DC. |
[36] |
Wilsey BJ, Parent G, Roulet NT, Moore TR, Potvin C ( 2002). Tropical pasture carbon cycling: Relationships between C source/sink strength, above-ground biomass and grazing. Ecology Letters, 5, 367-376.
DOI URL |
[37] |
Wu GL, Liu ZH, Zhang L, Chen JM, Hu TM ( 2010). Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China. Plant and Soil, 332, 331-337.
DOI URL |
[38] | Xie XL, Sun B, Zhou HZ, Li ZP, Li AB ( 2004). Organic carbon density and storage in soils of China and spatial analysis. Acta Pedologica Sinica, 41, 35-43. |
[ 解宪丽, 孙波, 周慧珍, 李忠佩, 李安波 ( 2004). 中国土壤有机碳密度和储量的估算与空间分布分析. 土壤学报, 41, 35-43.] | |
[39] |
Yang YH, Mohammat A, Feng JM, Zhou R, Fang JY ( 2007). Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry, 84, 131-141.
DOI URL PMID |
[40] | Zheng D, Zhang QS, Wu SH ( 2000). Mountain Geoecology and Sustainable Development of the Tibetan Plateau. Springer, Dordrecht. 15-16. |
[41] | Zhou XM, Wang QJ, Zhao XQ ( 2001). Chinese Kobresia Meadows. Science Press, Beijing. |
[ 周兴民, 王启基, 赵新全 ( 2001). 中国嵩草草甸. 科学出版社, 北京.] | |
[42] |
Zibilske LM ( 1994). Carbon mineralization. In Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A eds. Methods of Soil Analysis. Part 2—Microbiological and Biochemical Properties. Soil Science Society of America, Wisconsin, USA. 835-863.
DOI URL PMID |
[1] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | SACHURA , ZHANG Xia, ZHU Lin, KANG Saruul. Leaf anatomical changes of Cleistogenes songorica under long-term grazing with different intensities in a desert steppe [J]. Chin J Plant Ecol, 2024, 48(3): 331-340. |
[3] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[4] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[5] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[6] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[7] | LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient [J]. Chin J Plant Ecol, 2023, 47(6): 822-832. |
[8] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[9] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[10] | WANG De-Li, LIANG Cun-Zhu. Restoration state of degraded grasslands: climate climax or disturbance climax? [J]. Chin J Plant Ecol, 2023, 47(10): 1464-1470. |
[11] | DONG Quan-Min, ZHAO Xin-Quan, LIU Yu-Zhen, FENG Bin, YU Yang, YANG Xiao-Xia, ZHANG Chun-Ping, CAO Quan, LIU Wen-Ting. Effects of different herbivore assemblage on relationship between Kobresia humilis seed size and seed number in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(9): 1018-1026. |
[12] | HAO Jian-Feng, ZHOU Run-Hui, YAO Xiao-Lan, YU Jing, CHEN Cong-Lin, XIANG Lin, WANG Yao-Yao, SU Tian-Cheng, QI Jin-Qiu. Effects of the second generation wild boar grazing on species diversity and soil physicochemical properties of coniferous-broad-leaved mixed forest in Jiajin Mountain, China [J]. Chin J Plant Ecol, 2022, 46(2): 197-207. |
[13] | ZHANG Yi, CHENG Jie, SU Ji-Shuai, CHENG Ji-Min. Diversity-productivity relationship of plant communities in typical grassland during the long- term grazing exclusion succession [J]. Chin J Plant Ecol, 2022, 46(2): 176-187. |
[14] | HUANG Kuai-Kuai, HU Gang, PANG Qing-Ling, ZHANG Bei, HE Ye-Yong, HU Cong, XU Chao-Hao, ZHANG Zhong-Hua. Effects of grazing on species composition and community structure of shrub tussock in subtropical karst mountains, southwest China [J]. Chin J Plant Ecol, 2022, 46(11): 1350-1363. |
[15] | Yan-Fang LIU, Weng-Ying WANG, Nan-Ji SUO, Hua-Kun ZHOU, Xu-Feng MAO, Shi-Xiong WANG, Zhe CHEN. Relationship between plant community types and soil nematode communities in Haibei, Qinghai, China [J]. Chin J Plant Ecol, 2022, 46(1): 27-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn