Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (7): 736-745.doi: 10.17521/cjpe.2015.0070

• Orginal Article • Previous Articles     Next Articles

Dust capturing capacities of twenty-six deciduous broad-leaved trees in Beijing

FAN Shu-Xin1, YAN Hai1, QI Shi-Ming-Yue1, BAI Wei-Lan2, PI Ding-Jun3, LI Xiong1, DONG Li1,*()   

  1. 1Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
    2China Urban Construction Design & Research Institute Co. Ltd., Beijing 100120, China
    3Urban Administration and Control Center of Chaoyang District, Beijing 100020, China
  • Online:2015-07-22 Published:2015-07-01
  • Contact: Li DONG
  • About author:

    # Co-first authors

Abstract: Aims Aiming at providing basic informations on dust capturing capacity of different tree species and criterions for selecting trees in landscape design, this study selected 26 deciduous broad-leaved tree species widely used in urban landscaping in Beijing to measure the dust capturing both in field and indoor experiments. Methods The dust deposition per unit leaf area of each species was quantified by determining the mass difference before and after the treatment of blades. The dust deposition per leaf and plant were further calculated for each species. Based on the dust capturing capacity measured in three different units, cluster analysis on different tree species was carried out from distinct dimensions. Important findings Results showed that the dust capturing capacity differed significantly among tree species, and the ranking changed with measurement units selected in the experiments. For different specific evaluation focuses, choosing a diverse unit combination as clustering factor, the 26 deciduous broad-leaved tree species were broadly divided into different categories representing different dust capturing capacity level. Dust capturing capacity was closely related to the surface characteristics of leaves, the dust capturing method, the plant structure, the leaf amount of whole plant, the dust content of the environment, etc. Therefore, multiple factors should be taken into account in the assessment of dust capturing capacity of different tree species.

Key words: deciduous broad-leaved trees, dust capturing capacity of leave, dust capturing capacity of plant, comprehensive dust capturing capacity, measurement unit of the dust capturing

Table 1

Tree species in the experiment"

植物生活型 Life form of plant 序号 No. 树种 Species 科 Family
Deciduous broad-leaved trees
1 银杏 Ginkgo biloba 银杏科 Ginkgoaceae
2 三球悬铃木 Platanus orientalis 悬铃木科 Platanaceae
3 杜仲 Eucommia ulmoides 杜仲科 Eucommiaceae
4 毛白杨 Populus tomentosa 杨柳科 Salicaceae
5 加杨 Populus × canadensis 杨柳科 Salicaceae
6 绦柳 Salix matsudana ‘Pendula’ 杨柳科 Salicaceae
7 红叶碧桃 Amygdalus persica ‘Atropurpurea’ 蔷薇科 Rosaceae
8 紫叶李 Prunus cerasifera 蔷薇科 Rosaceae
9 刺槐 Robinia pseudoacacia 蝶形花科 Papilionaceae
10 Sophora japonica 蝶形花科 Papilionaceae
11 石榴 Punica granatum 石榴科 Punicaceae
12 栾树 Koelreuteria paniculata 无患子科 Sapindaceae
13 臭椿 Ailanthus altissima 苦木科 Simaroubaceae
14 美国红梣 Fraxinus pennsylvanica 木犀科 Oleaceae
15 白蜡树 Fraxinus chinensis 木犀科 Oleaceae
Deciduous broad-leaved shrubs
16 紫叶小檗 Berberis thunbergii ‘Atropurpurea’ 小檗科 Berberidaceae
17 木槿 Hibiscus syriacus 锦葵科 Malvaceae
18 榆叶梅 Amygdalus triloba 蔷薇科 Rosaceae
19 棣棠花 Kerria japonica 蔷薇科 Rosaceae
20 西府海棠 Malus spectabilis ‘Riversii’ 蔷薇科 Rosaceae
21 华北珍珠梅 Sorbaria kirilowii 蔷薇科 Rosaceae
22 紫薇 Lagerstroemia indica 千屈菜科 Lythraceae
23 紫丁香 Syringa oblata 木犀科 Oleaceae
24 连翘 Forsythia suspense 木犀科 Oleaceae
25 迎春花 Jasminum nudiflorum 木犀科 Oleaceae
26 金银忍冬 Lonicera maackii 忍冬科 Caprifoliaceae

Fig. 1

The distribution of sampling area in the study."

Fig. 2

Comparison of the dust deposition per unit leaf area of 26 deciduous broad-leaved species (mean ± SD, n = 3). Aa, Ailanthus altissima; At, Amygdalus triloba; Bt, Berberis thunbergii ‘Atropurpurea’; Eu, Eucommia ulmoides; Fc, Fraxinus chinensis; Fp, Fraxinus pennsylvanica; Fs, Forsythia suspensa; Gb, Ginkgo biloba; Hs, Hibiscus syriacus; Jn, Jasminum nudiflorum; Kj, Kerria japonica; Kp, Koelreuteria paniculata; Li, Lagerstroemia indica; Lm, Lonicera maackii; Ms, Malus spectabilis ‘Riversii’; Pc, Prunus cerasifera; Pc', Populus × canadensis; Pg, Punica granatum; Po, Platanus orientalis; Pp, Amygdalus persica ‘Atropurpurea’; Pt, Populus tomentosa; Rp, Robinia pseudoacacia; Sk, Sorbaria kirilowii; Sj, Sophora japonica; Sm, Salix matsudana ‘Pendula’; So, Syringa oblata. Different lowercase letters indicate significant differences (p < 0.01)."

Fig. 3

Comparison of the dust deposition per leaf of 26 deciduous broad-leaved species. Refer caption in Fig. 2 for abbreviation of species names."

Fig. 4

Comparison of the dust deposition per plant of 26 deciduous broad-leaved species. Refer caption in Fig. 2 for abbreviation of species names."

Table 2

The cluster analysis of the dust deposition per unit leaf area and per leaf for different deciduous broad-leaved species"

聚类中心 Cluster center 距离
Dust deposition per unit leaf area (g·m-2)
Dust deposition per leaf (g·leaf-1)
1 1.459 9 0.002 37 无 None Pc
2 1.110 3 0.002 03 0.475 At, Li, Lm
3 0.665 9 0.002 26 0.788 Fs, So, Pp, Gb
4 0.402 8 0.007 79 1.084 Po, Pt, Sj, Kp, Aa, Fc, Bt, Hs, Jn
5 0.103 1 0.000 14 1.203 Pe, Eu, Sm, Rp, Pg, Fp, Kj, Mm, Sk

Table 3

The cluster analysis of the dust deposition per plant for different deciduous broad-leaved species"

聚类中心 Cluster center 距离
Dust deposition per plant (kg·plant-1)
1 0.352 2 无 None Po
2 0.152 6 0.200 Pt
3 0.117 8 0.241 Gb, Pe, Pc
4 0.055 5 0.306 Rp, Sj, Fc, At, So
5 0.000 4 0.343 Li, Lm, Pp, Fs, Kp, Jn, Bt, Hs, Aa, Kj, Mm, Sm, Fp, Eu, Sk, Pg

Table 4

The cluster analysis results among different deciduous broad-leaved species in all the dust deposition per unit leaf area, the dust deposition per leaf and the dust deposition per plant"

聚类中心 Cluster center 距离
Dust deposition per unit leaf area (g·m-2)
Dust deposition per leaf (g·leaf-1)
Dust deposition per plant (kg·plant-1)
1 1.459 9 0.002 37 0.112 0 无 None Pc
2 0.931 3 0.001 91 0.043 2 0.533 At, Li, Lm, Gb
3 0.521 0 0.001 41 0.041 5 0.942 Jn, Fs, So, Fc, Kp, Pp, Pt
4 0.402 8 0.007 79 0.352 2 1.084 Po
5 0.232 1 0.000 40 0.022 4 1.231 Eu, Pe, Sm, Rp, Sj, Pg, Aa, Fp, Bt, Hs, Kj, Mm, Sk
[26] Tallis M, Taylor G, Sinnett D, Freer-Smith P (2011). Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments.Landscape and Urban Planning, 103, 129-138.
[27] Wang HX, Shi H, Li YY (2010). Relationships between leaf surface characteristics and dust-capturing capability of urban greening plant species.Journal of Applied Ecology, 21, 3077-3082.
(in Chinese with English abstract) [王会霞, 石辉, 李秧秧 (2010). 城市绿化植物叶片表面特征对滞尘能力的影响. 应用生态学报, 21 3077-3082.]
[28] Wang L, Gao SY, Liu LY, Ha S (2006). Atmospheric particle-retaining capability of eleven garden plant species in Beijing.Chinese Journal of Applied Ecology, 17, 597-601.
(in Chinese with English abstract) [王蕾, 高尚玉, 刘连友, 哈斯 (2006). 北京市11种园林植物滞留大气颗粒物能力研究. 应用生态学报, 17, 597-601.]
[29] Wang ZH, Li JB (2006). Capacity of dust uptake by leaf surface of Euonymus japonicus Thunb. and the morphology of captured particle in air polluted city.Ecology and Environment, 15, 327-330.
[1] Badrulla A, Halik U, Aishan T, Ubul A, Zhayumu K, Jin H (2014). Patterns of dust retention by five common tree species for urban greening in Aksu City, Northwest China.Chinese Journal of Plant Ecology, 38, 970-977.
(in Chinese with English abstract) [阿丽亚·拜都热拉, 玉米提·哈力克, 塔依尔江·艾山, 艾克热木·吾布力, 喀哈尔·扎依木, 金华 (2014). 阿克苏市5种常见绿化树种滞尘规律. 植物生态学报, 38, 970-977.]
[2] Beckett KP, Freer-Smith PH, Taylor G (1998). Urban woodlands: Their role in reducing the effects of particulate pollution.Environmental Pollution, 99, 347-360.
[3] Beckett KP, Freer-Smith PH, Taylor G (2000a). The capture of particulate pollution by trees at five contrasting urban sites.Arboricultural Journal: The International Journal of Urban Forestry, 24, 209-230.
[4] Beckett KP, Freer-Smith PH, Taylor G (2000b). Particulate pollution capture by urban trees: Effect of species and windspeed.Global Change Biology, 6, 995-1003.
[5] Cavanagh J-AE, Zawar-Reza P, Wilson JG (2009). Spatial attenuation of ambient particulate matter air pollution within an urbanised native forest patch.Urban Forestry & Urban Greening, 8, 21-30.
[6] Chai YX, Zhu N, Han HJ (2002). Dust removal effect of urban tree species in Harbin.Chinese Journal of Applied Ecology, 13, 1121-1126.
(in Chinese with English abstract) [柴一新, 祝宁, 韩焕金 (2002). 城市绿化树种的滞尘效应——以哈尔滨市为例. 应用生态学报, 13, 1121-1126.]
[7] China National Environmental Monitoring Centre (2014). The air quality status report of 74 cities in first half of 2014. . Cited 22 July 2014.
(in Chinese) [中国环境监测总站(2014). 2014年上半年74个城市空气质量状况报告. . 引用时间2014年7月22日.]
[8] Fang Y, Zhang JC, Wang YH (2007). Dustfall adsorbing capacity of major species of greening trees in Nanjing and its law.Journal of Ecology and Rural Environment, 23(2), 36-40.
(in Chinese with English abstract) [方颖, 张金池, 王玉华 (2007). 南京市主要绿化树种对大气固体悬浮物净化能力及规律研究. 生态与农村环境学报, 23(2), 36-40.]
[9] Gao JH, Wang DM, Zhao L, Wang GD (2007). Airborne dust detainment by different plant leaves: Taking Beijing as an example.Journal of Beijing Forestry University, 29(2), 94-99.
(in Chinese with English abstract) [高金晖, 王冬梅, 赵亮, 王国栋 (2007). 植物叶片滞尘规律研究——以北京市为例. 北京林业大学学报, 29(2), 94-99.]
[10] Givoni B (1991). Impact of planted areas on urban environ- mental quality: A review.Atmospheric Environment. Part B. Urban Atmosphere, 25, 289-299.
[11] He KB, Jia YT, Ma YL, Lei Y, Zhao Q, Tanaka S, Okuda T (2009). Regionality of episodic aerosol pollution in Beijing.Acta Scientiae Circumstantiae, 29, 482-487.
(in Chinese with English abstract) [贺克斌, 贾英韬, 马永亮, 雷宇, 赵晴, Tanaka S, Okuda T (2009). 北京大气颗粒物污染的区域性本质. 环境科学学报, 29, 482-487.]
[12] He Y, Li L, Li JY, Li WX, Mu LQ (2010). Air purification efficiency of thirty species of landscape trees in northern China.Journal of Northeast Forestry University, 38(5), 37-39.
(in Chinese with English abstract) [贺勇, 李磊, 李俊毅, 李伟星, 穆立蔷 (2010). 北方30种景观树种净化空气效益分析. 东北林业大学学报, 38(5), 37-39.]
[13] Ji HF, Zhang LJ, Yan HX, Huang DZ, Su XY, Huang QX, Liu L (2008). Study on dust catching property of major green tree species in northern China.Journal of Anhui Agricultural Sciences, 36, 10869-10871.
(in Chinese with English abstract) [纪惠芳, 张立娟, 阎海霞, 黄大庄, 苏筱雨, 黄秋娴, 刘丽 (2008). 几种我国北方绿化树种滞尘能力的研究. 安徽农业科学, 36, 10869-10871.]
[14] Jim CY, Chen WY (2008). Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China).Journal of Environmental Management, 88, 665-676.
[15] Li HE, Wang ZY, Tan JD, Hu XC, Lu YD, Li PS (2006). Effects of main urban lanscape plants on dust blocking in Foshan.Ecologic Science, 25, 395-399.
(in Chinese with English abstract) [李寒娥, 王志云, 谭家得, 胡羡聪, 陆耀东, 李佩珊 (2006). 佛山市主要城市园林植物滞尘效益分析. 生态科学, 25, 395-399.]
[16] Li HM, Liu X (2008). Relationships between leaf epidermal morphology and dust-retaining capability of main garden trees in Chengyang District of Qingdao City.Chinese Journal of Ecology, 27, 1659-1662.
(in Chinese with English abstract) [李海梅, 刘霞 (2008). 青岛市城阳区主要园林树种叶片表皮形态与滞尘量的关系. 生态学杂志, 27, 1659-1662.]
[17] Liu L, Guan DS, Peart MR (2012). The morphological structure of leaves and the dust-retaining capability of afforested plants in urban Guangzhou, South China.Environmental Science and Pollution Research, 19, 3440-3449.
[18] Mo L, Yu XX, Zhao Y, Sun FB, Mo N, Xia HL (2014). Correlation analysis between urbanization and particle pollution in Beijing.Ecology and Environmental Sciences, 23, 806-811.
(in Chinese with English abstract) [莫莉, 余新晓, 赵阳, 孙丰宾, 莫楠, 夏洪磊 (2014). 北京市区域城市化程度与颗粒物污染的相关性分析. 生态环境学报, 23, 806-811.]
[19] Nowak DJ, Crane DE, Stevens JC (2006). Air pollution removal by urban trees and shrubs in the United States.Urban Forestry & Urban Greening, 4, 115-123.
[20] Nowak DJ, Hirabayashi S, Bodine A, Greenfield E (2014). Tree and forest effects on air quality and human health in the United States.Environmental Pollution, 193, 119-129.
[21] Paoletti E, Bardelli T, Giovannini G, Pecchioli L (2011). Air quality impact of an urban park over time.Procedia Environmental Sciences, 4, 10-16.
[22] Pal A, Kulshreshtha K, Ahmad KJ, Behl HM (2002). Do leaf surface characters play a role in plant resistance to auto-exhaust pollution?Flora-Morphology, Distribution, Functional Ecology of Plants, 197, 47-55.
[23] Qian XL, Gan HD (2005). Epidemiological research progress of the effects of atmospheric particulate pollution on the cardiovascular system.Chinese Journal of Epidemiology, 26, 999-1001.
(in Chinese) [钱孝琳, 阚海东 (2005). 大气颗粒物污染对心血管系统影响的流行病学研究进展. 中华流行病学杂志, 26, 999-1001.]
[24] Schaubroeck T, Deckmyn G, Neirynck J, Staelens J, Adriaenssens S, Dewulf J, Muys B, Verheyen K (2014). Multilayered modeling of particulate matter removal by a growing forest over time, from plant surface deposition to washoff via rainfall.Environmental Science & Technology, 48, 10785-10794.
[25] Su YX, Huang GQ, Chen XZ, Chen SS, Li ZS (2011). Research progress in the eco-environmental effects of urban green spaces.Acta Ecologica Sinica, 31, 7287-7300.
(in Chinese with English abstract) [苏泳娴, 黄光庆, 陈修治, 陈水森, 李智山 (2011). 城市绿地的生态环境效应研究进展. 生态学报, 31, 7287-7300.]
[29] (in Chinese with English abstract) [王赞红, 李纪标 (2006). 城市街道常绿灌木植物叶片滞尘能力及滞尘颗粒物形态. 生态环境, 15, 327-330.]
No related articles found!
Full text



[1] Hu Shi-yi. Fertilization in Plants IV. Fertilization Barriers Inoompalibilty[J]. Chin Bull Bot, 1984, 2(23): 93 -99 .
[2] JIANG Gao-Ming. On the Restoration and Management of Degraded Ecosystems: with Special Reference of Protected Areas in the Restoration of Degraded Lands[J]. Chin Bull Bot, 2003, 20(03): 373 -382 .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 65 .
[4] . [J]. Chin Bull Bot, 1996, 13(专辑): 103 .
[5] ZHANG Xiao-Ying;YANG Shi-Jie. Plasmodesmata and Intercellular Trafficking of Macromolecules[J]. Chin Bull Bot, 1999, 16(02): 150 -156 .
[6] Chen Zheng. Arabidopsis thaliana as a Model Species for Plant Molecular Biology Studies[J]. Chin Bull Bot, 1994, 11(01): 6 -11 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 13 -16 .
[8] LEI Xiao-Yong HUANG LeiTIAN Mei-ShengHU Xiao-SongDAI Yao-Ren. Isolation and Identification of AOX (Alternative Oxidase) in ‘Royal Gala’ Apple Fruits[J]. Chin Bull Bot, 2002, 19(06): 739 -742 .
[9] Chunpeng Yao;Na Li. Research Advances on Abscisic Acid Receptor[J]. Chin Bull Bot, 2006, 23(6): 718 -724 .
[10] Li Wang, Qinqin Wang, Youqun Wang. Cytochemical Localization of ATPase and Acid Phosphatase in Minor Veins of the Leaf of Vicia faba During Different Developmental Stages[J]. Chin Bull Bot, 2014, 49(1): 78 -86 .