Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (7): 762-772.doi: 10.17521/cjpe.2015.0073

• Orginal Article • Previous Articles    

Divergent ramet ratio affects water physiological integration in Indocalamus decorus: Activity of antioxidant system and photosynthetic pigment content

HU Jun-Jing1,2, CHEN Shuang-Lin1, GUO Zi-Wu1,*(), CHEN Wei-Jun2, YANG Qing-Ping1, LI Ying-Chun1   

  1. 1Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
    2College of Forestry, Central South University of Forestry and Technology, Changsha 410000, China
  • Online:2015-07-22 Published:2015-07-01
  • Contact: Zi-Wu GUO E-mail:hunt-panther@163.com
  • About author:

    # Co-first authors

Abstract: Aims Physiological integration of clonal plants allows resources to transport and share among ramets to enhance plant adaptability to a dynamic habitat. Water physiological integration is an important part of physiological integration of clonal plants. Comprehensive understanding of the integration in bamboo is especially important because of the diverse ramet organizations. To provide scientific basis for effective management of water supply for bamboo forests, this study aims to explore the direction and the magnitude of ramet distribution in water physiological integration. Methods Our experiment was designed for clonal ramets of Indocalamus decorus with two levels of water content (high water potential at 90% ± 5% and low water potential at 30% ± 5%) and five ramet ratios (1:3, 1:2, 1:1, 2:1, 3:1). Each manipulation was replicated in 12 strains of ramets. We measured the antioxidant enzyme activity, content of soluble protein, malondialdehyde, and photosynthetic pigment. Important findings Water physiological integration existed in I. decorus clonal system under different water conditions, allowing water to transfer from high to low water potential ramets. With ramet ratio increase, integration intensity was enhanced, suggesting that the benefit of receptor ramet from the donor ramet increased. Water integration intensity between connected clonal ramets was high in early stage but decreased over time, which reflected that the consumption-benefit effect of donor and receptor ramets. These results indicated that ramet ratio of clonal system has a major impact on water physiological integration. We conclude that water gradient among the ramets is a potential driving force for water transport. The direction and the magnitude of physiological integration seemed determined by the status of water supply and demand in our intra-clonal system.

Key words: Indocalamus decorus, antioxidant system, photosynthetic pigment, ramet ratio, water physiological integration

Table 1

Statistical results of a repeated-measures ANOVA for leaf antioxidant enzyme activity of Indocalamus decorus ramets"

变异来源 Variation source 处理 Treatment 测定指标 Determined indexes df F p
分株比例
Ramet ratio (R)
高水势分株
High water potential ramet
CAT活性 CAT activity 4 76 <0.001
POD活性 POD activity 4 9 0.002
SOD活性 SOD activity 4 15 <0.001
低水势分株
Low water potential ramet
CAT活性 CAT activity 4 25 <0.001
POD活性 POD activity 4 39 <0.001
SOD活性 SOD activity 4 50 <0.001
处理时间
Treatment time (T)
高水势分株
High water potential ramet
CAT活性 CAT activity 3 217 <0.001
POD活性 POD activity 3 101 <0.001
SOD活性 SOD activity 3 743 <0.001
低水势分株
Low water potential ramet
CAT活性 CAT activity 3 2 257 <0.001
POD活性 POD activity 3 70 <0.001
SOD活性 SOD activity 3 384 <0.001
R × T 高水势分株
High water potential ramet
CAT活性 CAT activity 12 12 <0.001
POD活性 POD activity 12 3 0.007
SOD活性 SOD activity 12 39 <0.001
低水势分株
Low water potential ramet
CAT活性 CAT activity 12 18 <0.001
POD活性 POD activity 12 6 <0.001
SOD活性 SOD activity 12 5 <0.001

Fig. 1

Leaf antioxidant enzyme activity of Indocalamus decorus ramets in different experimental treatments (mean ± SD). H, high water potential ramet; L, low water potential ramet; 1, 1:3 ramet ratio; 2, 1:2 ramet ratio; 3, 1:1 ramet ratio; 4, 2:1 ramet ratio; 5, 3:1 ramet ratio. Capital letters indicated the comparison between the same treatments with same index at the different time periods; lowercase letters indicated the comparison between the different treatments with same index at the same time. Different letters indicated significance at 0.05 levels. CAT, POD, SOD see Table 1."

Table 2

ANOVA results of the repeated-measures for leaf relative electric conductivity (REC), malondialdehyde content (MDA), soluble protein content (SP) of Indocalamus decorus ramets"

变异来源 Variation source 处理 Treatment 测定指标 Determined indexes df F p
分株比例 Ramet ratio (R) 高水势分株
High water potential ramet
MDA 4 108.6 <0.001
REC 4 21.3 <0.001
SP 4 38.0 <0.001
低水势分株
Low water potential ramet
MDA 4 22.7 <0.001
REC 4 130.4 <0.001
SP 4 22.9 <0.001
处理时间 Treatment time (T) 高水势分株
High water potential ramet
MDA 3 364.2 <0.001
REC 3 152.2 <0.001
SP 3 690.0 <0.001
低水势分株
Low water potential ramet
MDA 3 165.1 <0.001
REC 3 112.6 <0.001
SP 3 1 447.3 <0.001
R × T 高水势分株
High water potential ramet
MDA 12 17.4 <0.001
REC 12 23.2 <0.001
SP 12 17.7 <0.001
低水势分株
Low water potential ramet
MDA 12 22.0 <0.001
REC 12 7.4 <0.001
SP 12 14.9 <0.001

Table 3

Leaf relative electric conductivity (REC) (%), malondialdehyde content (MDA) (μmol·L-1), soluble protein content (SP) (mg·g-1)"

分株
Ramet
分株水势
Water potential
分株比例
Ramet ratio
处理时间 Treatment time (d)
15 30 45 60
H1 高 High 1:3 MDA 0.328 ± 0.032bD 0.448 ± 0.006bB 0.571 ± 0.027cA 0.390 ± 0.010cC
REC 0.197 ± 0.027abB 0.233 ± 0.024bcA 0.185 ± 0.007aB 0.129 ± 0.008cC
SP 8.83 ± 0.56aC 12.67 ± 1.82bcB 27.80 ± 2.25aA 13.38 ± 0.46aB
H2 高 High 1:2 MDA 0.388 ± 0.006aC 0.462 ± 0.010bB 0.549 ± 0.044cA 0.433 ± 0.045cBC
REC 0.192 ± 0.023abA 0.213 ± 0.034cA 0.187 ± 0.008aA 0.135 ± 0.001bB
SP 8.07 ± 0.12aC 12.31 ± 0.65cB 26.00 ± 0.87aA 12.35 ± 0.68bB
H3 高 High 1:1 MDA 0.377 ± 0.010abC 0.544 ± 0.025aB 0.871 ± 0.047abA 0.574 ± 0.038bB
REC 0.179 ± 0.006bB 0.244 ± 0.017bcA 0.108 ± 0.008cD 0.141 ± 0.002bC
SP 6.47 ± 0.49aC 14.40 ± 0.58abB 19.70 ± 1.97bA 7.95 ± 0.61cC
H4 高 High 2:1 MDA 0.378 ± 0.023abD 0.562 ± 0.017aC 0.820 ± 0.053bA 0.645 ± 0.032aB
REC 0.171 ± 0.019bB 0.261 ± 0.008bA 0.137 ± 0.018bC 0.176 ± 0.016aB
SP 6.40 ± 0.49bD 14.74 ± 0.34aB 19.29 ± 0.54bA 7.48 ± 0.44cdC
H5 高 High 3:1 MDA 0.362 ± 0.059abD 0.552 ± 0.017aC 0.892 ± 0.006aA 0.691 ± 0.017aB
REC 0.225 ± 0.009aB 0.369 ± 0.019aA 0.113 ± 0.009cD 0.190 ± 0.012aC
SP 8.12 ± 0.99aC 16.06 ± 1.06aB 21.11 ± 0.77bA 6.54 ± 0.42dC
L1 低 Low 1:3 MDA 0.322 ± 0.017bC 0.522 ± 0.031abB 0.709 ± 0.036bA 0.740 ± 0.036aA
REC 0.219 ± 0.021aB 0.282 ± 0.016aA 0.217 ± 0.010aB 0.242 ± 0.007aB
SP 7.15 ± 0.93aD 16.11 ± 0.71abB 21.02 ± 1.16cA 10.47 ± 0.56dC
L2 低 Low 1:2 MDA 0.409 ± 0.031aB 0.470 ± 0.066bcB 0.488 ± 0.052cB 0.663 ± 0.029cB
REC 0.216 ± 0.030aB 0.297 ± 0.012aA 0.187 ± 0.008bB 0.192 ± 0.003bB
SP 5.51 ± 0.20bD 15.13 ± 0.28bB 22.93 ± 1.73bcA 11.35 ± 0.30cdC
L3 低 Low 1:1 MDA 0.429 ± 0.044aC 0.574 ± 0.046aB 0.985 ± 0.061aA 0.536 ± 0.059cB
REC 0.198 ± 0.010abB 0.228 ± 0.008bA 0.142 ± 0.006cD 0.170 ± 0.003cC
SP 5.59 ± 0.58bD 16.22 ± 0.52aB 23.80 ± 0.34bA 11.76 ± 0.11bcC
L4 低 Low 2:1 MDA 0.438 ± 0.031aB 0.439 ± 0.036cB 0.731 ± 0.064bA 0.493 ± 0.035cB
REC 0.170 ± 0.004bcA 0.179 ± 0.016cA 0.135 ± 0.019cB 0.139 ± 0.003dB
SP 7.99 ± 0.73aC 13.58 ± 0.50cB 22.74 ± 0.71bcA 12.60 ± 0.97bB
L5 低 Low 3:1 MDA 0.390 ± 0.012aB 0.427 ± 0.031cB 0.768 ± 0.061bA 0.422 ± 0.010dB
REC 0.148 ± 0.004cB 0.191 ± 0.003cA 0.149 ± 0.008cB 0.120 ± 0.006eC
SP 5.44 ± 0.39bD 16.47 ± 0.61aB 28.01 ± 0.98aA 14.70 ± 0.41aC

Table 4

ANOVA results for repeated measurements in leaf photosynthetic pigment contents content of Indocalamus decorus ramets"

变异来源
Variation source
处理
Treatment
测定指标
Determined indexes
df F p
分株比例 Ramet ratio (R) 高水势分株
High water potential ramet
Chl a 4 7.6 0.004
Chl b 4 45.9 <0.001
Car 4 12.3 0.001
低水势分株
Low water potential ramet
Chl a 4 22.9 <0.001
Chl b 4 25. <0.001
Car 4 59.4 <0.001
处理时间 Treatment time (T) 高水势分株
High water potential ramet
Chl a 3 71.5 <0.001
Chl b 3 199.5 <0.001
Car 3 34.1 <0.001
低水势分株
Low water potential ramet
Chl a 3 23.9 <0.001
Chl b 3 40.9 <0.001
Car 3 118.9 <0.001
R × T 高水势分株
High water potential ramet
Chl a 12 7.9 <0.001
Chl b 12 14.8 <0.001
Car 12 1.8 0.088
低水势分株
Low water potential ramet
Chl a 12 1.3 0.269
Chl b 12 0.9 0.553
Car 12 6.2 <0.001

Fig. 2

Leaf photosynthetic pigment contents in Indocalamus decorus ramets under different water conditions (mean ± SD). H, high water potential ramet; L, low water potential ramet; 1, 1:3 ramet ratio; 2, 1:2 ramet ratio; 3, 1:1 ramet ratio; 4, 2:1 ramet ratio; 5, 3;1 ramet ratio. Capital letters indicated the comparison between the same treatments with same index at the different times; lowercase letters indicated the comparison between the different treatment with same index at the same time. Different letters indicated significant level of p = 0.05. Chl a, Chl b, Car see Table 4."

[1] Alpert P (1999). Clonal integration in Fragaria chiloensis differs between populations: Ramets from grassland are selfish.Oecologia, 120, 69-76.
[2] de Kroons H, Hutchings MJ (1995). Morphological plasticity in clonal plants: The foraging concept reconsidered.Journal of Ecology, 83, 143-152.
[3] Dong M (2011). Clonal Plant Ecology. Science Press, Beijing.
(in Chinese) [董鸣 (2011). 克隆植物生态学. 科学出版社, 北京.]
[4] Dong WY (2002). Current situation about the research of bamboo clonal population ecology and its application prospect.Forest Research, 15, 235-241.
(in Chinese with English abstract) [董文渊 (2002). 竹类无性系种群生态学研究现状及其应用前景. 林业科学研究, 15, 235-241.]
[5] Gu DX, Chen SL (2012). Physiological adaptation of Oligostachyum lubricum under water stress.Acta Botanica Boreali-Occidentalia Sinica, 32, 751-758.
(in Chinese with English abstract) [顾大形, 陈双林 (2012). 四季竹对土壤水分胁迫的生理适应. 西北植物学报, 32, 751-758.]
[6] He Y (2014). Effects of Water Heterogenous Condition on Photosynthesis and Antioxidant Enzymes of Clonal Plant Zoysia japonica. Master degree dissertation, Liaoning University, Shenyang.
(in Chinese with English abstract) [何月 (2014). 水分异质性对克隆植物结缕草光合和抗氧化酶的影响. 硕士学位论文, 辽宁大学, 沈阳.]
[7] Hu JJ, Chen WJ, Guo ZW, Chen SL, Yang QP, Li YC (2015). Effect analysis of water physiological integration of Indocalamus decorus based on antioxidant system.Chinese Journal of Ecology, 34, 962-966.
(in Chinese with English abstract) [胡俊靖, 陈卫军, 郭子武, 陈双林, 杨清平, 李迎春 (2015). 基于抗氧化系统的美丽箬竹水分生理整合作用分析. 生态学杂志, 34, 962-966.]
[8] Jónsdóttir IS, Callaghan TV (1990). Intraclonal translocation of ammonium and nitrate nitrogen in Carex bigelowii Torr. ex Schwein. using 15N and nitrate reductase assays.New Phytologist, 114, 419-426.
[9] Li HS (2000). Principles and Techniques of Plant Physiological Biochemical Experiment. Higher Education Press, Beijing.
(in Chinese) [李合生 (2000). 植物生理生化实验原理和技术. 高等教育出版社, 北京.]
[10] Li Q, Liu X, Yue M, Tang WT, Meng QC (2011). Response of physiological integration in Trifolium repens to heterogeneity of UV-B radiation.Flora, 206, 712-719.
[11] Li Q, Liu X, Zhang XF, Zhang RC, Chai YF, Yue M (2014). Effects of UV-B radiation direction on physiological integration in Trifolium repens.Acta Ecologica Sinica, 34, 3568-3575.
(in Chinese with English abstract) [李倩, 刘晓, 张晓飞, 张瑞昌, 柴永福, 岳明 (2014). UV-B辐射方向对白三叶克隆整合的影响. 生态学报, 34, 3568-3575.]
[12] Li YH (2008). Study on Clonal Physiological Integration of Kingdonia uniflora. Master degree dissertation, Northwest University, Xi’an.
(in Chinese with English abstract) [李育花 (2008). 独叶草无性系种群生理整合研究. 硕士学位论文, 西北大学, 西安.]
[13] Liu FH, Liu J, Yu FH, Dong M (2007). Water integration patterns in two rhizomatous dune perennials of different clonal fragment size.Flora, 202, 106-110.
[14] Mao SY, Liu DH, Jiang CD, Shi L, Zhang JZ, Xing Q, Liu LA (2009). The effects of water stress on water translocation and photosynthetic characteristics between clonal ramets in Strawberry.Acta Ecologica Sinica, 29, 6446-6457.
(in Chinese with English abstract) [毛舒燕, 刘东焕, 姜闯道, 石雷, 张金政, 邢权, 刘立安 (2009). 水分胁迫条件下草莓克隆分株间水分调控及其对光合功能的影响. 生态学报, 29, 6446-6457.]
[15] Oborny B, Kum Á (2001). Fragmentation of clones: How does it influence dispersal and competitive ability?Evolutionary Ecology, 15, 319-346.
[16] Qian YQ (2008). Physiological Integration and Its Regulation between Inter-ramet of Buffalograss under Heterogeneous Water Stress. PhD dissertation, Chinese Academy of Forestry, Beijing.
(in Chinese with English abstract) [钱永强 (2008). 异质性水分胁迫下野牛草克隆分株间生理整合及其调控机理. 博士学位论文, 中国林业科学研究院, 北京.]
[17] Saitoh T, Seiwa K, Nishiwaki A (2002). Importance of physiological integration of dwarf bamboo to persistence in forest understorey: A field experiment.Journal of Ecology, 90, 78-85.
[18] Saitoh T, Seiwa K, Nishiwaki A (2006). Effects of resource heterogeneity on nitrogen translocation within clonal fragments of Sasa palmata: An isotopic (15N) assessment.Annals of Botany, 98, 657-663.
[19] Shi JM, Ye XH, Chen FS, Yang QP, Li ZY, Fang K, Yang GY (2014). Adaptation of bamboo to heterogeneous habitat: Phenotypic plasticity.Acta Ecologica Sinica, 34, 5687-5695.
(in Chinese with English abstract) [施建敏, 叶学华, 陈伏生, 杨清培, 黎祖尧, 方楷, 杨光耀 (2014). 竹类植物对异质生境的适应——表型可塑性. 生态学报, 34, 5687-5695.]
[20] Slade AJ, Hutchings MJ (1987a). The effects of nutrient availability on foraging in the clonal herb Glechoma hederacea.Journal of Ecology, 75, 95-112.
[21] Slade AJ, Hutchings MJ (1987b). The effects of light intensity on foraging in the clonal herb Glechoma hederacea. Journal of Ecology, 75, 639-650.
[22] Stuefer JF (1996). Potential and limitations of current concepts regarding the response of clonal plants to environmental heterogeneity.Vegetatio, 127, 55-70.
[23] Whitlock MC, Davis BH, Yeaman S (2007). The costs and benefits of resource sharing: Reciprocity requires resource heterogeneity.Journal of Evolutionary Biology, 20, 1772-1782.
[24] Ying YQ, Guo J, Wei JF, Jiang Q, Xie NN (2011). Effects of drought stress on physiological characteristics of Phyllostachys edulis seedlings.Chinese Journal of Ecology, 30, 262-266.
(in Chinese with English abstract) [应叶青, 郭璟, 魏建芬, 姜琴, 解楠楠 (2011). 干旱胁迫对毛竹幼苗生理特性的影响. 生态学杂志, 30, 262-266.]
[25] You WH, Yu D, Liu CH, Xie D, Xie W (2013). Clonal integration facilitates invasiveness of the alien aquatic plant Myriophyllum aquaticum L. under heterogeneous water availability.Hydrobiologia, 718, 27-39.
[26] Yu FH, Dong M, Krüsi B (2004). Clonal integration helps Psammochloa villosa survive sand burial in an inland dune.New Phytologist, 162, 697-704.
[27] Yu FH, Dong M, Zhang CY (2002). Intraclonal resource sharing and functional specialization of ramets in response to resource heterogeneity in three stoloniferous herbs.Acta Botanica Sinica, 44, 468-473.
[28] Zhang CY, Yang C, Dong M (2001). The clonal integration of photosynthates in the rhizomatous halfshrub Hedysarum laeve.Acta Ecologica Sinica, 21, 1986-1993.
(in Chinese with English abstract) [张称意, 杨持, 董鸣 (2001). 根茎半灌木羊柴对光合同化物的克隆整合. 生态学报, 21, 1986-1993.]
[29] Zhang LL, Dong M, Li RQ, Wang YH, Cui GQ, He WM (2007). Soil-nutrient patch contrast modifies intensity and direction of clonal integration in Glechoma longituba. Journal of Plant Ecology (Chinese Version), 31, 619-624.
(in Chinese with English abstract) [张丽丽, 董鸣, 李仁强, 王艳红, 崔清国, 何维明 (2007). 土壤养分斑块对比度改变活血丹克隆整合强度和方向. 植物生态学报, 31, 619-624.]
[30] Zhang XY, Fan DY, Xie ZQ, Xiong GM, Li ZJ (2010). Clonal integration enhances performance of Cynodon dactylon subjected to submergence. Chinese Journal of Plant Ecology, 34, 1075-1083.
(in Chinese with English abstract) [张想英, 樊大勇, 谢宗强, 熊高明, 李兆佳 (2010). 克隆整合有助于狗牙根抵御水淹. 植物生态学报, 34, 1075-1083.]
[31] Zhu ZL, Li DZ, Wang XP, Sheng LJ, Shi Q (2006). Water physiology integration and its ecological effect of clonal plants.Acta Botanica Boreali-Occidentalia Sinica, 26, 2602-2614.
(in Chinese with English abstract) [朱志玲, 李德志, 王绪平, 盛丽娟, 石强 (2006). 克隆植物的水分生理整合及其生态效应. 西北植物学报, 26, 2602-2614.]
[32] Zhuang MH, Li YC, Chen SL (2011). Advances in the researches of bamboo physiological integration and its ecological significance.Journal of Bamboo Research, 30(2), 5-9.
(in Chinese with English abstract) [庄明浩, 李迎春, 陈双林 (2011). 竹子生理整合作用的生态学意义及研究进展. 竹子研究汇刊, 30(2), 5-9.]
[1] XING Bing-Yu, ZHU Nan, ZHANG Hong-Pei, YANG Xi-Ling, and DONG Juan-E. Effects of methyl viologen on the antioxidant system in cultured Salvia miltiorrhiza cells [J]. Chin J Plan Ecolo, 2014, 38(5): 507-514.
[2] ZHANG Wei-Wei, ZHENG Fei-Xiang, WANG Xiao-Ke, FENG Zhao-Zhong, OUYANG Zhi-Yun. EFFECTS OF OZONE ON ROOT ACTIVITY, SOLUBLE PROTEIN CONTENT AND ANTIOXIDANT SYSTEM IN ORYZA SATIVA ROOTS [J]. Chin J Plan Ecolo, 2009, 33(3): 425-432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Cui Gao;Yuxia Chen;Ying Bao;Min Feng;Anming Lu. Studies on Sexual Organs and Embryological Development Morphology of Speirantha gardenii (Convallariaceae)[J]. Chin Bull Bot, 2010, 45(06): 705 -712 .
[2] Jiang Gao-ming. The Impact of Globae Increasing of CO2 on Plants[J]. Chin Bull Bot, 1995, 12(04): 1 -7 .
[3] Zhang Jun Han Bi-wen. Advance in the Study of Histochemical Localization for[J]. Chin Bull Bot, 1995, 12(专辑3): 131 -142 .
[4] Tang Yan-cheng. A Short Guide to the International Code of Botanical Nomenclature V.[J]. Chin Bull Bot, 1984, 2(04): 51 -57 .
[5] Xu Ji. The Protective Protein of Nitrogenase Against Oxygen Damage-Fe-S Protein[J]. Chin Bull Bot, 1986, 4(12): 1 -4 .
[6] . [J]. Chin Bull Bot, 2001, 18(05): 633 .
[7] Huang Zhao-xiang;Zheng Zhen-gui and Zhu Du. Ecological Effect of Taxodium ascendens-Oryza sativa Ecosystem(I) The Growing Characteristic of Taxodium Ascendens in the Ecosystem[J]. Chin Bull Bot, 1996, 13(02): 48 -51 .
[8] GU Rui-Sheng;LIU Qun-Lu;CHEN Xue-Mei and JIANG Xiang-Ning. Comparison and Optimization of the Methods on Protein Extraction and SDS-PAGE in Woody Plants[J]. Chin Bull Bot, 1999, 16(02): 171 -177 .
[9] Jiang Gao-ming. LI-6400 Portable Photosynthesis System: Principle, Function, Basic Operation and Main Problems and Solutions During Measurement[J]. Chin Bull Bot, 1996, 13(增刊): 72 -76 .
[10] Li Ling;Luo Yun-xiu;He Jian-hui and Pan Rui-chi. Promoting the Formation of Adventitious Roots in Cutting of Some Woody Plants by GL Reagent[J]. Chin Bull Bot, 1996, 13(增刊): 63 -65 .