Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (6): 631-642.doi: 10.17521/cjpe.2015.0480

• Reviews • Previous Articles    

Optimal stomatal behavior theory for simulating stomatal conductance

Jia-Zhi FAN1, Dan WANG1,*(), Ya-Lin HU2, Pan-Pan JING1, Peng-Peng WANG1, Jiquan CHEN1,3,*()   

  1. 1International Center for Ecology, Meteorology and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China

    2Forestry College of Fujian Agriculture and Forestry University, Fuzhou 350002, China

    3CGCEO/Geography, Michigan State University, East Lansing, MI 48823, USA
  • Received:2015-12-31 Accepted:2016-03-26 Online:2016-06-15 Published:2016-06-30
  • Contact: Dan WANG,Jiquan CHEN;


Among the most critical processes in simulating terrestrial ecosystem performance is the regulatory role of stomata in carbon and water cycles. Compared with field measurements, the changes in stomatal slope caused by the biophysical environment provide a simple but effective synthetic framework for studying climate-related carbon and water cycling, due to its sensitivity to CO2, vapor pressure deficit, and photosynthesis. It is also crucial in understanding the effects of climate change on photosynthesis and water use efficiency. Endeavored by numerous scholastic efforts, stomatal conductance models have been improved based on experimental, semi-experimental, and mechanical processes. However, the underlying biological mechanisms and the dynamics of key parameters in these models remain unexplored, especially regarding the changes in stomatal slope. By improving the understanding of the stomata’s regulatory role, we reduced the uncertainty of stomatal conductance simulation. We then synthesized the recent developments and lessons in optimal stomatal behavior theory to simulate stomatal conductance and included an introduction to widely used stomatal conductance models and parameters, the main factors influencing stomatal slopes, and applications of the mechanical stomatal conductance models in different ecosystems. Based on our literature review, we proposed that future research is needed on the optimal stomatal behavior theory and its applications in simulating stomatal conductance.

Key words: stomatal slope, carbon water coupling, optimal stomatal behavior theory, stomatal conductance models, marginal water use efficiency

Fig. 1

Variation of stomatal slope among 17 tree species calculated by Medlyn et al. (2011) (mean ± SE, n = 3). ACRU, Acer rubrum; ACSA2, Acer saccharinum; BENI, Betula nigra; CADE, Castanea dentata; CASP, Catalpa speciosa; CEOC, Celtis occidentalis; COAM3, Corylus americana; COSA81, Cornus sanguinea; LIST2, Liquidambar styraciflua; LITU, Liriodendron tulipifera; MAPO, Maclura pomifera; PLOC, Platanus occidentalis; PODE3, Populus deltoides; PRSE2, Prunus serotina; QUCO2, Quercus coccinea; RHCO, Rhus copallinum; ROPS, Robinia pseudoacacia."

1 Addington RN, Donovan LA, Mitchell RJ, Vose JM, Pecot SD, Jack SB, Hacke UG, Sperry JS, Oren R (2006). Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats.Plant, Cell & Environment, 29, 535-545.
2 Addington RN, Mitchell RJ, Oren R, Donovan LA (2004). Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris.Tree Physiology, 24, 561-569.
3 Ambrose AR, Sillett SC, Koch GW, van Pelt R, Antoine ME, Dawson TE (2010). Effects of height on treetop transpiration and stomatal conductance in coast redwood (Sequoia sempervirens).Tree Physiology, 30, 1260-1272.
4 Ball JT, Woodrow IE, Berry JA (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions.Progress in Photosynthesis Research, 4(5), 221-224.
5 Beerling DJ (2007). The Emerald Planet:How Plants Changed Earth’s History.Oxford University Press, Oxford, UK.
6 Bernacchi CJ, Morgan PB, Ort DR, Long SP (2005). The growth of soybean under free air [CO2] enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco capacity.Planta, 220, 434-446.
7 Bernacchi CJ, Singsaas EL, Pimentel C, Portis Jr AR, Long SP (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis.Plant, Cell & Environment, 24, 253-259.
8 Best MJ, Pryor M, Clark DB, Rooney GG, Essery R, Ménard CB, Edwards JM, Hendry MA, Porson A, Gedney N, Mercado LM, Sitch S, Blyth E, Boucher O, Cox PM, Grimmond CSB, Harding RJ (2011). The Joint UK Land Environment Simulator (JULES), model description-Part 1: Energy and water fluxes.Geoscientific Model Development, 4, 677-699.
9 Bonan GB (1995). Land-atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model.Journal of Geophysical Research, 100, 2817-2831.
10 Buckley TN, Mott KA, Farquhar GD (2003). A hydromechanical and biochemical model of stomatal conductance.Plant, Cell & Environment, 26, 1767-1785.
11 Buckley TN, Roberts DW (2006). How should leaf area, sapwood area and stomatal conductance vary with tree height to maximize growth?Tree Physiology, 26, 145-157.
12 Bunce JA (2004). Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions.Oecologia, 140, 1-10.
13 Bunce JA (2006). How do leaf hydraulics limit stomatal conductance at high water vapour pressure deficits? Plant, Cell & Environment, 29, 1644-1650.
14 Bush SE, Pataki DE, Hultine KR, West AG, Sperry JS, Ehleringer JR (2008). Wood anatomy constrains stomatal responses to atmospheric vapor pressure deficit in irrigated, urban trees.Oecologia, 156, 13-20.
15 Cao SK, Feng Q, Si JH, Chang ZQ, Zhuo MC, Xi HY, Su YH (2009). Summary on the plant water use efficiency at leaf level.Acta Ecologica Sinica, 29, 3883-3892. (in Chinese with English abstract)[曹生奎, 冯起, 司建华, 常宗强, 卓玛错, 席海洋, 苏永红 (2009). 植物叶片水分利用效率研究综述. 生态学报, 29, 3882-3892.]
16 Collatz GJ, Ball JT, Grivet C, Berry JA (1991). Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer.Agricultural and Forest Meteorology, 54, 107-136.
17 Cowan IR, Farquhar GD (1977). Stomatal function in relation to leaf metabolism and environment.Symposia of the Society for Experimental Biology, 31, 471-505.
18 Damour G, Simonneau T, Cochard H, Urban L (2010). An overview of models of stomatal conductance at the leaf level.Plant, Cell & Environment, 33, 1419-1438.
19 Davies WJ, Wilkinson S, Loveys B (2002). Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture.New Phytologist, 153, 449-460.
20 de Kauwe MG, Kala J, Lin YS, Pitman AJ, Medlyn BE, Duursma RA, Abramowitz G, Wang YP, Miralles DG (2015). A test of an optimal stomatal conductance scheme within the CABLE land surface model.Geoscientific Model Development, 8, 431-452.
21 Dewar RC (2002). The Ball-Berry-Leuning and Tardieu-Davies stomatal models: Synthesis and extension within a spatially aggregated picture of guard cell function.Plant, Cell & Environment, 25, 1383-1398.
22 Dietze MC (2014). Gaps in knowledge and data driving uncertainty in models of photosynthesis.Photosynthesis Research, 119(1-2), 3-14.
23 Dietze MC, Serbin SP, Davidson C, Desai AR, Feng X, Kelly R, Kooper R, LeBauer D, Mantooth J, McHenry K, Wang D (2014). A quantitative assessment of a terrestrial biosphere model’s data needs across North American biomes.Journal of Geophysical Research: Biogeosciences, 119, 286-300.
24 Domec JC, Noormets A, King JS, Sun GE, McNulty SG, Gavazzi MJ, Boggs JL, Treasure EA (2009). Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation.Plant, Cell & Environment, 32, 980-991.
25 Eamus D, Taylor DT, Macinnis-Ng CM, Shanahan S, de Silva L (2008). Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: Feedback mechanisms are able to account for all observations.Plant, Cell & Environment, 31, 269-277.
26 Edwards D, Davies KL, Axe L (1992). A vascular conducting strand in the early land plant cooksonia.Nature, 357, 683-685.
27 Egea G, Verhoef A, Vidale PL (2011). Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models.Agricultural and Forest Meteorology, 151, 1370-1384.
28 Ewers BE, Gower ST, Bond-Lamberty B, Wang CK (2005). Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests.Plant, Cell & Environment, 28, 660-678.
29 Ewers BE, Mackay DS, Tang J, Bolstad PV, Samanta S (2008). Intercomparison of sugar maple (Acer saccharum Marsh.) stand transpiration responses to environmental conditions from the Western Great Lakes Region of the United States.Agricultural and Forest Meteorology, 148, 231-246.
30 Farquhar GD, Caemmerer SV, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
31 Field C, Berry JA, Mooney HA (1982). A portable system for measuring carbon dioxide and water vapour exchange of leaves.Plant, Cell & Environment, 5, 179-186.
32 Flexas J, Niinemets Ü, Gallé A, Barbour MM, Centritto M, Diaz-Espejo A, Douthe C, Galmés J, Ribas-Carbo M, Rodriguez P (2013). Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency.Photosynthesis Research, 117, 45-59.
33 Franks PJ (2004). Stomatal control and hydraulic conductance, with special reference to tall trees.Tree Physiology, 24, 865-878.
34 Fu SL, Zhou YB, He XY, Chen W (2006). Effects of drought stress on photosynthesis physiology of Populus pseudo- simonii.Journal of Applied Ecology, 17, 2016-2019. (in Chinese with English abstract)[付士磊, 周永斌, 何兴元, 陈玮 (2006). 干旱胁迫对杨树光合生理指标的影响. 应用生态学报, 17, 2016-2019.]
35 Gutschick VP, Simonneau T (2002). Modelling stomatal conductance of field-grown sunflower under varying soil water content and leaf environment: Comparison of three models of stomatal response to leaf environment and coupling with an abscisic acid-based model of stomatal response to soil drying.Plant, Cell & Environment, 25, 1423-1434.
36 Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure.Oecologia, 126, 457-461.
37 Hall AE, Schulze E (1980). Drought effects on transpiration and leaf water status of cowpea in controlled environments.Functional Plant Biology, 7, 141-147.
38 Harley PC, Thomas RB, Reynolds JF, Strain BR (1992). Modelling photosynthesis of cotton grown in elevated CO2.Plant, Cell & Environment, 15, 271-282.
39 Héroult A, Lin YS, Bourne A, Medlyn BE, Ellsworth DS (2013). Optimal stomatal conductance in relation to photosynthesis in climatically contrasting Eucalyptus species under drought.Plant, Cell & Environment, 36, 262-274.
40 Hetherington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental change.Nature, 424, 901-908.
41 IPCC (Intergovernmental Panel on Climate Change) (2013). Contribution of working group 1 to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM eds. Climate Change in 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK.
42 Jarvis PG (1976). The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field.Philosophical Transactions of the Royal Society B: Biological Sciences, 273, 593-610.
43 Jones HG (1992). Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. Cambridge University Press, Cambridge, UK. 131-162.
44 Kala J, Decker M, Exbrayat JF, Pitman AJ, Carouge C, Evans JP, Abramowitz G (2014). Influence of leaf area index prescriptions on simulations of heat, moisture, and carbon fluxes.Journal of Hydrometeorology, 15, 489-503.
45 Kattge J, Knorr W, Raddatz T, Wirth C (2009). Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models.Global Change Biology, 15, 976-991.
46 Katul GG, Palmroth S, Oren RAM (2009). Leaf stomatal responses to vapour pressure deficit under current and CO2-enriched atmosphere explained by the economics of gas exchange. Plant, Cell & Environment, 32, 968-979.
47 Keenan T, Zaehle S, García R, Sabaté S, Friend AD, Gracia C (2009). Improved understanding of drought controls on seasonal variation in mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling.Biogeosciences, 6, 1423-1444.
48 Kim SH, Lieth JH (2003). A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.).Annals of Botany, 91, 771-781.
49 Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005). A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 19, GB1015. doi: 10.1029/2003GB002199.
50 Lange OL, Lösch R, Schulze ED, Kappen L (1971). Responses of stomata to changes in humidity.Planta, 100, 76-86.
51 Leakey AD, Bernacchi CJ, Ort DR, Long SP (2006). Long-term growth of soybean at elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air conditions.Plant, Cell & Environment, 29, 1794-1800.
52 Leuning R (1990). Modelling stomatal behaviour and and photosynthesis ofEucalyptus grandis. Functional Plant Biology, 17, 159-175.
53 Leuning R (1995). A critical appraisal of a combined stomatal- photosynthesis model for C3 plants.Plant, Cell & Environment,18, 339-355.
54 Li YX, Lou YS, Zhang FC (2011). Comparison of stomatal conductance models for winter wheat.Chinese Journal of Agrometeorology, 32, 106-110. (in Chinese with English abstract)[李永秀, 娄运生, 张富存 (2011). 冬小麦气孔导度模型的比较. 中国农业气象, 32, 106-110.]
55 Lin YS, Medlyn BE, Duursma RA, Prentice IC, Wang H, Baig S, Eamus D, de Dios VR, Mitchell P, Ellsworth DS, de Beeck MO, Wallin G, Uddling J, Tarvainen L, Linderson ML, Cernusak LA, Nippert JB, Ocheltree TW, Tissue DT, Martin-StPaul NK, Rogers A, Warren JM, Angelis PD, Hikosaka K, Han Q, Onoda Y, Gimeno TE, Barton CVM, Bennie J, Bonal D, Bosc A, Low M, Macinins-Ng C, Rey A, Rowland L, Setterfield SA, Tausz-Posch S, Zaragoza-Castells J, Broadmeadow MSJ, Drake JE, Freeman M, Ghannoum O, Hutley LB, Kelly JW, Kikuzawa K, Kolari P, Koyama K, Limousin JM, Meir P, de Costa ACL, Mikkelsen TN, Salinas N, Sun W, Wingate L (2015). Optimal stomatal behaviour around the world.Nature Climate Change, 5, 459-464.
56 Litvak E, McCarthy HR, Pataki DE (2012). Transpiration sensitivity of urban trees in a semi-arid climate is constrained by xylem vulnerability to cavitation.Tree Physiology, 32, 373-388.
57 Long SP, Ainsworth EA, Rogers A, Ort DR (2004). Rising atmospheric carbon dioxide: Plants FACE the Future.Annual Review of Plant Biology, 55, 591-628.
58 Macfarlane C, White DA, Adams MA (2004). The apparent feed-forward response to vapour pressure deficit of stomata in droughted, field-grown Eucalyptus globulus Labill.Plant, Cell & Environment, 27, 1268-1280.
59 Mäkelä A, Berninger F, Hari P (1996). Optimal control of gas exchange during drought: Theoretical analysis. Annals of Botany, 77, 461-468.
60 Manzoni S, Vico G, Katul G, Fay PA, Polley W, Palmroth S, Porporato A (2011). Optimizing stomatal conductance for maximum carbon gain under water stress: A meta-analysis across plant functional types and climates.Functional Ecology, 25, 456-467.
61 McCulloh KA, Woodruff DR (2012). Linking stomatal sensitivity and whole-tree hydraulic architecture. Tree Physiology, 32, 369-372.
62 Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, de Angelis P, Forstreuter M, Freeman M, Jackson SB, Kellomaki S, Laitat E, Rey A, Roberntz P, Sigurdsson BD, Strassemeyer J, Wang K, Curtis PS, Jarvis PG (2001). Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: A synthesis. New Phytologist, 149, 247-264.
63 Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CV, Crous KY, Angelis PD, Freeman M, Wingate L (2011). Reconciling the optimal and empirical approaches to modelling stomatal conductance.Global Change Biology, 17, 2134-2144.
64 Misson L, Panek JA, Goldstein AH (2004a). A comparison of three approaches to modeling leaf gas exchange in annually drought-stressed ponderosa pine forests. Tree Physiology, 24, 529-541.
65 Misson L, Rathgeber C, Guiot J (2004b). Dendroecological analysis of climatic effects on Quercus petraea and Pinus halepensis radial growth using the process-based MAIDEN model.Canadian Journal of Forest Research, 34, 888-898.
66 Monteith JL (1995). A reinterpretation of stomatal responses to humidity.Plant, Cell & Environment, 18, 357-364.
67 Mott KA (2009). Opinion: Stomatal responses to light and CO2 depend on the mesophyll.Plant, Cell & Environment, 32, 1479-1486.
68 Niu HS, Xu R, Zhang ZC, Chen ZZ (2005). A Jarvis stomatal conductance model under considering soil moisture condition.Chinese Journal of Ecology, 11, 1287-1290. (in Chinese with English abstract)[牛海山, 旭日, 张志诚, 陈佐忠 (2005). 羊草气孔导度的Jarvis-类模型. 生态学杂志, 11, 1287-1290.]
69 Noe SM, Giersch C (2004). A simple dynamic model of photosynthesis in oak leaves: Coupling leaf conductance and photosynthetic carbon fixation by a variable intracellular CO2 pool.Functional Plant Biology, 31, 1195-1204.
70 Oleson KW, Monaghan A, Wilhelmi O, Barlage M, Brunsell N, Feddema J, Hu L, Steinhoff DF (2013). Interactions between urbanization, heat stress, and climate change.Climatic Change, 129, 525-541.
71 Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Schafer KVR (1999). Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour pressure deficit.Plant, Cell & Environment, 22, 1515-1526.
72 Palmroth S, Katul GG, Maier CA, Ward E, Manzoni S, Vico G (2013). On the complementary relationship between marginal nitrogen and water-use efficiencies among Pinus taeda leaves grown under ambient and CO2-enriched environments.Annals of Botany, 111, 467-477.
73 Pataki DE, Oren R (2003). Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest.Advances in Water Resources, 26, 1267-1278.
74 Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ (2014). Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology.Ecology Letters, 17, 82-91.
75 Quan XK, Wang CK (2015). Comparison of foliar water use efficiency among 17 provenances of Larix gmelinii in the Mao’ershan area. Chinese Journal of Plant Ecology, 39, 352-361. (in Chinese with English abstract)[全先奎, 王传宽 (2015). 帽儿山17个种源落叶松针叶的水分利用效率比较. 植物生态学报, 39, 352-361.]
76 Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R (2002). Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: Revision of current hypotheses?Global Change Biology, 8, 999-1017.
77 Ronda RJ, de Bruin HAR, Holtslag AAM (2001). Representation of the canopy conductance in modeling the surface energy budget for low vegetation.Journal of Applied Meteorology, 40, 1431-1444.
78 Sala A, Tenhunen JD (1996). Simulations of canopy net photosynthesis and transpiration in Quercus ilex L. under the influence of seasonal drought.Agricultural and Forest Meteorology, 78, 203-222.
79 Salleo S, Nardini A, Pitt F, Gullo MAL (2000). Xylem cavitation and hydraulic control of stomatal conductance in laurel (Laurus nobilis L.).Plant, Cell & Environment, 23, 71-79.
80 Scarth GW (1927). Stomatal movement: Its regulation and regulatory role: A review.Protoplasma, 2, 498-511.
81 Schäfer KVR, Oren R, Tenhunen JD (2000). The effect of tree height on crown level stomatal conductance. Plant, Cell & Environment, 23, 365-375.
82 Sellers PJ, Berry JA, Collatz GJ, Field CB, Hall FG (1992). Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme.Remote Sensing of Environment, 42, 187-216.
83 Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, Henderson-Sellers A (1997). Modeling the exchanges of energy, water, and carbon between continents and the atmosphere.Science, 275, 502-509.
84 Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L (1996). A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation.Journal of Climate, 9, 676-705.
85 Si JH, Chang ZQ, Su YH, Xi HY, Feng Q (2008). Stomatal conductance characteristics of Populus euphratica leaves and response to environmental factors in the extreme arid region.Acta Botanica Boreali-Occidentalia Sinica, 28(1), 125-130. (in Chinese with English abstract)[司建华, 常宗强, 苏永红, 席海洋, 冯起 (2008). 胡杨叶片气孔导度特征及其对环境因子的响应. 西北植物学报, 28(1), 125-130.]
86 Smith NG, Dukes JS (2013). Plant respiration and photosynthesis in global-scale models: Incorporating acclimation to temperature and CO2.Global Change Biology, 19, 45-63.
87 Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010). Feedstocks for lignocellulosic biofuels.Science, 329, 790-792.
88 Song BY, Yang J, Guo GF, Zhang P (2001). Physio-ecological use of water of artificial poplar forest land in Huangfuchuan Basin.Journal of Soil and Water Conservation, 18(6), 159-162. (in Chinese with English abstract)[宋炳煜, 杨劼, 郭广芬, 张屏 (2004). 皇甫川流域人工杨树林地的生理生态用水. 水土保持学报, 18(6), 159-162.]
89 Sperry JS, Adler FR, Campbell GS, Comstock JP (1998). Limitation of plant water use by rhizosphere and xylem conductance: Results from a model.Plant, Cell & Environment, 21, 347-359.
90 Stewart JB (1988). Modelling surface conductance of pine forest.Agricultural and Forest Meteorology, 43, 19-35.
91 Tardieu F, Davies WJ (1993). Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant, Cell & Environment, 16, 341-349.
92 Thomas DS, Eamus D, Bell D (1999). Optimization theory of stomatal behaviour I. A critical evaluation of five methods of calculation. Journal of Experimental Botany, 50, 385-392.
93 Tuzet A, Perrier A, Leuning R (2003). A coupled model of stomatal conductance, photosynthesis and transpiration.Plant, Cell & Environment, 26, 1097-1116.
94 Uddling J, Teclaw RM, Pregitzer KS, Ellsworth DS (2009). Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.Tree Physiology, 29, 1367-1380.
95 Verhoef A, Allen SJ (2000). A SVAT scheme describing energy and CO2 fluxes for multi-component vegetation: Calibration and test for a Sahelian savannah.Ecological Modelling, 127, 245-267.
96 Wang D, Fan J, Jing P, Cheng Y, Ruan H (2016). Analyzing the impact of climate and management factors on the productivity and soil carbon sequestration of poplar plantations.Environmental Research, 44, 88-95.
97 Wang D, Jaiswal D, LeBauer DS, Wertin TM, Bollero GA, Leakey AD, Long SP (2015). A physiological and biophysical model of coppice willow (Salix spp.) production yields for the contiguous USA in current and future climate scenarios.Plant, Cell & Environment, 39, 1850-1865.
98 Wang D, LeBauer DS, Dietze MC (2013a). Predicting yields of short-rotation hybrid poplar (Populus spp.) for the contiguous US through model-data synthesis.Ecological Applications, 23, 944-958.
99 Wang D, LeBauer DS, Kling G, Voigt T, Dietze MC (2013b). Ecophysiological screening of tree species for biomass production: Trade-off between production and water use. Ecosphere, 4, 8.
100 Way DA, Katul GG, Manzoni S, Vico G (2014). Increasing water use efficiency along the C3 to C4 evolutionary pathway: A stomatal optimization perspective. Journal of Experimental Botany, 65, 3683-3693.
101 White DA, Beadle CL, Sands PJ, Worledge D, Honeysett JL (1999). Quantifying the effect of cumulative water stress on stomatal conductance of Eucalyptus globulus and Eucalyptus nitens: A phenomenological approach.Functional Plant Biology, 26, 17-27.
102 Woodruff DR, Meinzer FC, McCulloh KA (2010). Height- related trends in stomatal sensitivity to leaf-to-air vapour pressure deficit in a tall conifer. Journal of Experimental Botany, 61, 203-210.
103 Wullschleger SD (1993). Biochemical limitations to carbon assimilation in C3 plants—A retrospective analysis of the A/Ci curves from 109 species.Journal of Experimental Botany, 44, 907-920.
104 Yang JW, Liang ZS, Han RL (2006). Water use efficiency characteristics of four tree species under different soil water conditions in the Loess Plateau.Acta Ecologica Sinica, 2, 558-565. (in Chinese with English abstract)[杨建伟, 梁宗锁, 韩蕊莲 (2006). 黄土高原常用造林树种水分利用特征. 生态学报, 2, 558-565.]
105 Yin CM, Sui P, Chen YQ, Liu YH, Gao WS (2008). Soil water consumption and effects of poplar in farmland of the low Hai River Plain.Chinese Agricultural Science Bulletin, 24, 435-440. (in Chinese with English abstract)[尹春梅, 隋鹏, 陈源泉, 刘月华, 高旺盛 (2008). 速生杨在海河低平原农田土壤中的水分时空消耗规律. 中国农学通报, 24, 435-440.]
106 Yu GR, Wang QF, Yu ZL (2004). Study on the coupling cycle of water-carbon and process management in terrestrial ecosystem.Advance in Earth Sciences, 19, 831-839. (in Chinese with English abstract)[于贵瑞, 王秋凤, 于振良 (2004). 陆地生态系统水-碳耦合循环与过程管理研究. 地球科学进展, 19, 831-839.]
107 Yu Q, Zhang Y, Liu Y, Shi P (2004). Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes.Annals of Botany, 93, 435-441.
108 Yu TF, Feng Q, Si JH (2012). Simulating responses of leaf stomatal conductance to environmental factors for Tamarix ramosissma in an extreme arid region of China. Chinese Journal of Plant Ecology, 36, 483-490. (in Chinese with English abstract)[鱼腾飞, 冯起, 司建华 (2012). 极端干旱区多枝柽柳叶片气孔导度的环境响应模拟. 植物生态学报, 36, 483-490.]
109 Yuan GF, Zhuang W, Luo Y (2012). Parameterization of water response functions in leaf stomatal conductance model for winter wheat.Chinese Journal of Plant Ecology, 36, 463-470. (in Chinese with English abstract)[袁国富, 庄伟, 罗毅 (2012). 冬小麦叶片气孔导度模型水分响应函数的参数化. 植物生态学报, 36, 463-470.]
110 Yue GY, Zhao HL, Zhang TH, Niu L (2009). Sap flow characteristics of growing poplar seedlings in Horqin sand land.Journal of Desert Research, 29, 674-679. (in Chinese with English abstract)[岳广阳, 赵哈林, 张铜会, 牛丽 (2009). 科尔沁沙地杨树苗木生长过程中蒸腾耗水规律研究. 中国沙漠, 29, 674-679.]
111 Zhao P, Rao XQ, Ma L, Cai XA, Zeng XP (2006). The variations of sap flux density and whole-tree transpiration across individuals ofAcacia mangium. Acta Ecologica Sinica, 12, 4050-4058. (in Chinese with English abstract)[赵平, 饶兴权, 马玲, 蔡锡安, 曾小平 (2006). 马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异. 生态学报, 12, 4050-4058.]
112 Zhou S, Duursma RA, Medlyn BE, Kelly JW, Prentice IC (2013). How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agricultural and Forest Meteorology, 182, 204-214.
No related articles found!
Full text



[1] . [J]. Chin Bull Bot, 2002, 19(01): 121 -124 .
[2] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chin Bull Bot, 1999, 16(04): 429 -432 .
[3] SHE Chao-WenSONG Yun-Chun LIU Li-Hua. Analysis on the G_banded Karyotypes and Its Fluctuation at Different Mitotic Phases and Stages in Triticum tauschii (Aegilops squarrosa)[J]. Chin Bull Bot, 2001, 18(06): 727 -734 .
[4] Guijun Yang, Wenjiang Huang, Jihua Wang, Zhurong Xing. Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote Sensing Data[J]. Chin Bull Bot, 2010, 45(05): 566 -578 .
[5] Man Chen, YishengTu, Linan Ye, Biyun Yang. Effect of Amino Acids on Thallus Growth and Huperzine-A Accumulation in Huperzia serrata[J]. Chin Bull Bot, 2017, 52(2): 218 -224 .
[6] Yefei Shang, Ming Li, Bo Ding, Hao Niu, Zhenning Yang, Xiaoqiang Chen, Gaoyi Cao, Xiaodong Xie. Advances in Auxin Regulation of Plant Stomatal Development[J]. Chin Bull Bot, 2017, 52(2): 235 -240 .
[7] CUI Xiao-Yong, Du Zhan-Chi, Wang Yan-Fen. Photosynthetic Characteristics of a Semi-arid Sandy Grassland Community in Inner Mongolia[J]. Chin J Plan Ecolo, 2000, 24(5): 541 -546 .
[8] LI Wei, ZHANG Ya-Li, HU Yuan-Yuan, YANG Mei-Sen, WU Jie, and ZHANG Wang-Feng. Research on the photoprotection and photosynthesis characteristics of young cotton leaves under field conditions[J]. Chin J Plan Ecolo, 2012, 36(7): 662 -670 .
[9] HU Bao-Zhong, LIU Di, HU Guo-Fu, ZHANG A-Ying, JIANG Shu-Jun. Random Amplified Polymorphic DNA Study of Local Breeds in Chinese lfalfa[J]. Chin J Plan Ecolo, 2000, 24(6): 697 -701 .
[10] WEI Jie, YU Hui, KUANG Ting-Yun, BEN Gui-Ying. Ultrastructure of Polygonum viviparum L. Grown at Different Elevations on Qinghai Plateau[J]. Chin J Plan Ecolo, 2000, 24(3): 304 -307 .