Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (9): 1003-1019.doi: 10.17521/cjpe.2016.0388

• Reviews • Previous Articles     Next Articles

Phylogeographic breaks and the mechanisms of their formation in the Sino-Japanese floristic region

Jun-Wei YE1,2, Yang ZHANG1, Xiao-Juan WANG1,*()   

  1. 1Natural History Research Center of Shanghai Natural History Museum, Shanghai Science & Technology Museum, Shanghai 200127, China

    2Shanghai Key Laboratory of Urbanization & Ecological Restoration, School of Life Sciences, East China Normal University, Shanghai 200062, China
  • Received:2016-05-24 Revised:2017-08-26 Online:2017-10-23 Published:2017-09-10
  • Contact: Xiao-Juan WANG


Due to combinations of diverse geography and climate, and complex geo-climate histories and sea level fluctuations, the Sino-Japanese floristic region has extremely high species diversity. Phylogeography is an effective method to identify the factors triggering the formation and differentiation of species diversity. Previous studies showed that phylogeographic breaks, the genetic discontinuity between different gene genealogies, were ubiquitously present. From the west to the east, seven general phylogeographic breaks occur, including the Mekong- Salween Divide, the Tanaka-Kaiyong Line, the Sichuan Basin, ca. 105° E, the boundary between the Second and Third ladders, the North China, and the East China Sea and Korea Strait. These phylogeographic breaks are mainly attributable to both historical and ecological factors, which are generally due to a combined effect of the isolation by distance (IBD) and the isolation by environment (IBE). Geological events and climate changes are the historical factors, mainly including the uplift of Qinghai-Xizang Plateau, the formation and intensification of the Asian monsoon and the Asian interior aridification, the redevelopment of the arid belt, and the Quaternary climate oscillations and sea level fluctuations. Adaptive divergence, namely the divergence induced by different selective pressures under different environments, is responsible for the ecological factors. Adaptive divergence could obstacle gene flow among populations, resulting in the formation of phylogeographic break. However, an identical phylogeographic break is not shared by all the plants because of their various intrinsic biological characteristics, among which the difference in dispersal ability is most important. Finally, we envisaged the future development of phylogeographic break studies based on accurate divergence time estimation, relative contribution of IBD and IBE, and also the utilization of comparative phylogeography.

Key words: Sino-Japanese floristic region, phylogeographic break, geo-climate change, adaptive evolution, dispersal ability

[1] Aizawa M, Yoshimaru H, Saito H, Katsuki T, Kawahara T, Kitamura K, Shi F, Kaji M (2007). Phylogeography of a northeast Asian spruce,Picea jezoensis, inferred from genetic variation observed in organelle DNA markers. Molecular Ecology, 16, 3393-3405.
[2] An ZS, Kutzbach JE, Prell WL, Porter SC (2001). Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times.Nature, 411, 62-66.
[3] Arnold B, Corbett-Detig RB, Hartl DL, Bomblies K (2013). Radseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling.Molecular Ecology, 22, 3179-3190.
[4] Avise JC (2000). Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, UK.
[5] Avise JC (2009). Phylogeography: Retrospect and prospect.Journal of Biogeography, 36, 3-15.
[6] Bai WN, Liao WJ, Zhang DY (2010). Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia.New Phytologist, 188, 892-901.
[7] Bai WN, Wang WT, Zhang DY (2014). Contrasts between the phylogeographic patterns of chloroplast and nuclear DNA highlight a role for pollen-mediated gene flow in preventing population divergence in an East Asian temperate tree.Molecular Phylogenetics and Evolution, 81, 37-48.
[8] Bai WN, Wang WT, Zhang DY (2016). Phylogeographic breaks within Asian butternuts indicate the existence of a phytogeographic divide in East Asia.New Phytologist, 209, 1757-1772.
[9] Cao YN, Comes HP, Sakaguchi S, Chen LY, Qiu YX (2016). Evolution of East Asia’s Arcto-tertiary relict Euptelea (Eupteleaceae)shaped by late Neogene vicariance and Quaternary climate change. BMC Evolutionary Biology, 16, 1-17.
[10] Chen SC, Zhang L, Zeng J, Shi F, Yang H, Mao YR, Fu CX (2012). Geographic variation of chloroplast DNA in Platycarya strobilacea ( Juglandaceae). Journal of Systematics and Evolution, 50, 374-385.
[11] Chen ZD, Ying JS, Lu AM (2012). Disjunct distribution of seed plants between southwestern China and Taiwan island of China.Chinese Bulletin of Botany, 47, 551-570. (in Chinese with English abstract)[陈之端, 应俊生, 路安民 (2012). 中国西南地区与台湾种子植物间断分布现象. 植物学报, 47, 551-570.]
[12] Chou YW, Thomas PI, Ge XJ, LePage BA, Wang CN (2011). Refugia and phylogeography of Taiwania in East Asia.Journal of Biogeography, 38, 1992-2005.
[13] Coyne JA, Orr HA (2004). Speciation. Sinauer Associates, Sunderland, UK.
[14] Dao K, Chen J, Jin P, Dong C, Yang Y, Xu X, Wu J, Xie S, Lin Z, Sun B (2013). A new material of Lindera (Lauraceae) of the Late Pliocene from Tengchong, Yunnan and the genus’ biogeography significance. Acta Geologica Sinica, 87, 690-706
[15] Dobson M, Kawahara Y (1998). Origin of the Japanese land mammal fauna: Allocation of extant species to historically-based categories.Quaternary Research, 37, 385-395.
[16] Donoghue MJ, Bell CD, Li J (2001). Phylogenetic patterns in Northern Hemisphere plant geography.International Journal of Plant Sciences, 162, S41-S52.
[17] Fan DM, Hu W, Li B, Morris AB, Zheng M, Soltis DE, Soltis PS, Zhang ZY (2016). Idiosyncratic responses of evergreen broad-leaved forest constituents in China to the Late Quaternary climate changes.Scientific Reports, 6, 31044. doi: 10.1038/srep31044.
[18] Fan DM, Yue JP, Nie ZL, Li ZM, Comes HP, Sun H (2013). Phylogeography of Sophora davidii (Leguminosae) across the “Tanaka-Kaiyong Line”, an important phytogeographic boundary in southwest China. Molecular Ecology, 22, 4270-4288.
[19] Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, Muellner-Riehl AN (2015). The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas.Biological Reviews, 90, 236-253.
[20] Feng G, Mao L, Sandel B, Swenson NG, Svenning JC (2015). High plant endemism in China is partially linked to reduced glacial-interglacial climate change.Journal of Biogeography, 43, 145-154.
[21] Feng JM, Zhu YY (2010). Tanaka line and its bio-geographical significance: A further discussion.Chinese Journal of Ecology, 29, 1-7. (in Chinese with English abstract)[冯建孟, 朱有勇 (2010). 也论“田中线”及其生物地理意义. 生态学杂志, 29, 1-7.]
[22] Gao LM, Möller M, Zhang XM, Hollingsworth ML, Liu J, Mill RR, Gibby M, Li DZ (2007). High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Molecular Ecology, 16, 4684-4698.
[23] Garrick RC, Bonatelli IAS, Hyseni C, Morales A, Pelletier TA, Perez MF, Rice E, Satler JD, Symula RE, Thomé MTC, Carstens BC (2015). The evolution of phylogeographic datasets.Molecular Ecology, 24, 1164-1171.
[24] Gong W, Liu WZ, Gu L, Kaneko S, Koch MA, Zhang DX (2015). From glacial refugia to wide distribution range: Demographic expansion of Loropetalum chinense(Hamamelidaceae) in Chinese subtropical evergreen broadleaved forest. Organisms Diversity and Evolution, 16, 23-38.
[25] Guan BC, Comes HP (2010). Genetic structure and breeding system of a rare understory herb,Dysosma versipellis ( Berberidaceae), from temperate deciduous forests in China. American Journal of Botany, 97, 111-122.
[26] Guo XD, Bao L, Bai WN, Wang HF, Ge JP (2015). Non-random genetic structure revealed by neutral molecular markers in phylogeography researches with special focus on plant species in East Asia.Journal of Beijing Normal University (Natural Science), 5, 511-521. (in Chinese with English abstract)[郭希的, 鲍蕾, 白伟宁, 王红芳, 葛剑平 (2015). DNA中性标记反映的非随机亲缘地理格局-以东亚植物物种为例. 北京师范大学学报:自然科学版, 5, 511-521.]
[27] Guo XD, Wang HF, Bao L, Wang TM, Bai WN, Ye JW, Ge JP (2014). Evolutionary history of a widespread tree species Acer mono in East Asia. Ecology and Evolution, 4, 4332-4345.
[28] Guo ZT, Sun B, Zhang ZS, Peng SZ, Xiao GQ, Ge JY, Hao QZ, Qiao YS, Liang MY, Liu JF (2008). A major reorganization of Asian climate by the early Miocene.Climate of the Past, 4, 153-174.
[29] Harrison SP, Yu G, Takahara H, Prentice IC (2001). Palaeovegetation: Diversity of temperate plants in East Asia.Nature, 413, 129-130.
[30] Harrison TM, Copeland P, Kidd WS, Yin A (1992). Raising Tibet.Science, 255, 1663-1670.
[31] He K, Jiang XL (2014). Sky islands of southwest China. I: An overview of phylogeographic patterns.Science Bulletin, 12, 1055-1068. (in Chinese)[何锴, 蒋学龙 (2014). 中国西南地区的“天空之岛”: Ⅰ系统地理学研究概述. 科学通报, 12, 1055-1068.]
[32] He SL, Wang YS, Li DZ, Yi TS (2016). Environmental and historical determinants of patterns of genetic differentiation in wild soybean (Glycine soja Sieb. et Zucc). Scientific Reports, 6, 22795. doi: 10.1038/srep22795.
[33] Hedrick PW (1999). Perspective: Highly variable loci and their interpretation in evolution and conservation.Evolution, 53, 313-318.
[34] Hewitt GM (1996). Some genetic consequences of ice ages, and their role in divergence and speciation.Biological Journal of the Linnean Society, 58, 247-276.
[35] Hickerson MJ, Carstens BC, Cavender-bares J, Crandall KA, Graham CH, Johnson JB, Rissler L, Victoriano PF, Yoder AD (2010). Phylogeography’s past, present, and future: 10 years after Avise, 2000. Molecular Phylogenetics and Evolution, 54, 291-301.
[36] Higashi H, Ikeda H, Setoguchi H (2015). Molecular phylogeny of Shortia sensu lato (Diapensiaceae) based on multiple nuclear sequences. Plant Systematics and Evolution, 301, 523-529.
[37] Hoorn C, Mosbrugger V, Mulch A, Antonelli A (2013). Biodiversity from mountain building. Nature Geoscience, 6, 154.
[38] Hughes CE, Atchison GW (2015). The ubiquity of alpine plant radiations: From the Andes to the Hengduan Mountains. New Phytologist, 207, 275-282.
[39] Jin J, Liao W, Wang B, Peng S (2003). Global change in Cenozoic and evolution of flora in China.Guihaia, 23, 217-225.
[40] Kim Y, Stephan W (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome.Genetics, 160, 765.
[41] Kou YX, Cheng SM, Tian S, Li B, Fan DM, Chen YJ, Soltis DE, Soltis PS, Zhang ZY (2016). The antiquity of Cyclocarya paliurus(Juglandaceae) provides new insights into the evolution of relict plants in subtropical China since the late Early Miocene. Journal of Biogeography, 43, 351-360.
[42] Lang KY (1994). Studies on the distribution patterns of some significant genera in orchid flora.Acta Phytotaxonomica Sinica, 32, 328-339. (in Chinese with English abstract)[郎楷永 (1994). 兰科植物区系中一些有意义属的地理分布格局的研究. 植物分类学报, 32, 328-339.]
[43] Lee JH, Lee DH, Choi IS, Choi BH (2014). Genetic diversity and historical migration patterns of an endemic evergreen oak,Quercus acuta, across Korea and Japan, inferred from nuclear microsatellites. Plant Systematics and Evolution, 300, 1913-1923.
[44] Lei M, Wang Q, Wu ZJ, López-Pujol J, Li DZ, Zhang ZY (2012). Molecular phylogeography of Fagus engleriana (Fagaceae) in subtropical China: Limited admixture among multiple refugia. Tree Genetics and Genomes, 8, 1203-1212.
[45] Li EX, Yi S, Qiu YX, Guo JT, Comes HP, Fu CX (2008). Phylogeography of two East Asian species in Croomia (Stemonaceae) inferred from chloroplast DNA and ISSR fingerprinting variation. Molecular Phylogenetics and Evolution, 49, 702-714.
[46] Li SF, Mao LM, Spicer RA, Lebreton-Anberrée J, Su T, Sun M, Zhou ZK (2015). Late Miocene vegetation dynamics under monsoonal climate in southwestern China.Palaeogeography Palaeoclimatology Palaeoecology, 425, 14-40.
[47] Li XW, Li J (1992). On the validity of Tanaka line & its sigificance viewed from the distribution of Eastern Asiatic genera in Yunnan.Acta Botanica Yunnanica, 14, 1-12. (in Chinese with English abstract)[李锡文, 李捷 (1992). 从滇产东亚属的分布论述“田中线”的真实性和意义. 云南植物研究, 14, 1-12.]
[48] Li XW, Li J (1997). The Tanaka-Kaiyong line—An important floristic line for the study of the flora of East Asia.Annals of the Missouri Botanical Garden, 84, 888-892.
[49] Li Y, Zhai SN, Qiu YX, Guo YP, Ge XJ, Comes HP (2011). Glacial survival east and west of the “Mekong-Salween Divide”in the Himalaya-Hengduan Mountains region as revealed by AFLPs and cpDNA sequence variation in Sinopodophyllum hexandrum (Berberidaceae). Molecular Phylogenetics and Evolution, 59, 412-424.
[50] Liu CP, Tsuda Y, Shen HL, Hu LJ, Saito Y, Ide Y (2014). Genetic structure and hierarchical population divergence history of Acer mono var. mono in south and northeast China. PLOS ONE, 9, e87187. doi: 10.1371/journ.pone.0087187.
[51] Liu J, Möller M, Provan J, Gao LM, Poudel RC, Li DZ (2013a). Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot.New Phytologist, 199, 1093-1108.
[52] Liu JQ, Sun YS, Ge XJ, Gao LM, Qiu YX (2012). Phylogeographic studies of plants in China: Advances in the past and directions in the future.Journal of Systematics and Evolution, 50, 267-275.
[53] Liu W, Kang M, Tian H, Huang H (2013b). A range wide geographic pattern of genetic diversity and population structure of Castanea mollissima populations inferred from nuclear and chloroplast microsatellites. Tree Genetics and Genomes, 9, 975-987.
[54] Liu Y, Xu C (2003). Modeling for the burial and subsidence history of the Sichuan basin.Chinese Journal of Geophysics, 46, 283-290.
[55] Lu HY, Guo ZT (2014). Evolution of the monsoon and dry climate in East Asia during late Cenozoic: A review. Science China: Earth Sciences, 57, 70-79.
[56] Luo D, Yue JP, Sun WG, Xu B, Li ZM, Comes HP, Sun H (2016). Evolutionary history of the subnival flora of the Himalaya-Hengduan Mountains: First insights from comparative phylogeography of four perennial herbs.Journal of Biogeography, 43, 31-43.
[57] Luo S, He Y, Ning G, Zhang J, Ma G, Bao M (2011). Genetic diversity and genetic structure of different populations of the endangered species Davidia involucrata in China detected by inter-simple sequence repeat analysis. Trees, 25, 1063-1071.
[58] Ma Q, Du Y, Chen N, Zhang L, Li J, Fu CX (2015). Phylogeography of Davidia involucrata (Davidiaceae) inferred from cpDNA haplotypes and nSSR data. Systematic Botany, 40, 769-810.
[59] Meng L, Chen G, Li Z, Yang Y, Wang Z, Wang L (2015). Refugial isolation and range expansions drive the genetic structure of Oxyria sinensis (Polygonaceae) in the Himalaya-Hengduan Mountains.Scientific Reports, 5, 10396. doi: 10.1038/srep10396.
[60] Milne RI, Abbott RJ (2002). The origin and evolution of Tertiary relict floras.Advances in Botanical Research, 38, 281-314.
[61] Myers N, Mittermeier RA, Mittermeier CG, Da FG, Kent J (2000). Biodiversity hotspots for conservation priorities.Nature, 403, 853-858.
[62] Ni J, Yu G, Harrison SP, Prentice IC (2010). Palaeovegetation in China during the late Quaternary: Biome reconstructions based on a global scheme of plant functional types.Palaeogeography Palaeoclimatology Palaeoecology, 289, 44-61.
[63] Nosil P, Egan SP, Funk DJ (2008). Heterogeneous genomic differentiation between walking-stick ecotypes: “Isolation by adaptation” and multiple roles for divergent selection.Evolution, 62, 316-336.
[64] Nosil P, Parchman TL, Feder JL, Gompert Z (2012). Do highly divergent loci reside in genomic regions affecting reproductive isolation? A test using next-generation sequence data in timema stick insects.BMC Evolutionary Biology, 12, 164-176.
[65] Qi XS, Chen C, Comes HP, Sakaguchi S, Liu YH, Tanaka N, Sakio H, Qiu YX (2012). Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae). New Phytologist, 196, 617-630.
[66] Qi XS, Yuan N, Comes HP, Sakaguchi S, Qiu YX (2014). A strong “filter” effect of the East China Sea land bridge for East Asia’s temperate plant species: Inferences from molecular phylogeography and ecological niche modelling ofPlatycrater arguta (Hydrangeaceae). BMC Evolutionary Biology, 14, 14-41.
[67] Qian H, Ricklefs RE (2000). Large-scale processes and the Asian bias in species diversity of temperate plants.Nature, 407, 180-182.
[68] Qiu YX, Fu CX, Comes HP (2011). Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora.Molecular Phylogenetics and Evolution, 59, 225-244.
[69] Qiu YX, Guan BC, Fu CX, Comes HP (2009a). Did glacials and/or interglacials promote allopatric incipient speciation in East Asian temperate plants? Phylogeographic and coalescent analyses on refugial isolation and divergence in Dysosma versipellis. Molecular Phylogenetics and Evolution, 51, 281-293.
[70] Qiu YX, Lu QX, Zhang YH, Cao YN (2017). Phylogeography of East Asia’s Tertiary relict plants: Current progress and future prospects.Biodiversity Science, 25, 136-146. (in Chinese with English abstract)[邱英雄, 鹿启祥, 张永华, 曹亚男 (2017). 东亚第三纪孑遗植物的亲缘地理学: 现状与趋势. 生物多样性, 25, 136-146.]
[71] Qiu YX, Qi XS, Jin XF, Tao XY, Fu CX, Naiki A, Comes HP (2009b). Population genetic structure, phylogeography, and demographic history ofPlatycrater arguta (Hydrangeaceae) endemic to east China and south Japan, inferred from chloroplast DNA sequence variation. Taxon, 58, 1226-1241.
[72] Qiu YX, Sun Y, Zhang XP, Lee J, Fu CX, Comes HP (2009c). Molecular phylogeography of East Asian Kirengeshoma (Hydrangeaceae) in relation to Quaternary climate change and landbridge configurations. New Phytologist, 183, 480-495.
[73] Renner SS (2016). Available data point to a 4-km-high Tibetan Plateau by 40 Ma, but 100 molecular-clock papers have linked supposed recent uplift to young node ages.Journal of Biogeography, 43, 1479-1487.
[74] Rowley DB, Currie BS (2006). Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet.Nature, 439, 677-681.
[75] Royden LH, Clark BB, Hilst RDVD (2008). The geological evolution of the Tibetan Plateau.Science, 321, 1054-1058.
[76] Sakaguchi S, Qiu YX, Liu YH, Qi XS, KIM SH, Takeuchi Y, Worth JR, Yamasaki M, Sakurai S (2012). Climate oscillation during the Quaternary associated with landscape heterogeneity promoted allopatric lineage divergence of a temperate tree Kalopanax septemlobus (Araliaceae) in East Asia. Molecular Ecology, 21, 3823-3838.
[77] Sheng Y, Zheng WH, Pei KQ, Ma KP (2002). Applications of microsatellites in population biology.Acta Phytoecologica Sinica, 26, 119-126. (in Chinese with English abstract)[盛岩, 郑蔚虹, 裴克全, 马克平 (2002). 微卫星标记在种群生物学研究中的应用. 植物生态学报, 26, 119-126.]
[78] Shi MM, Michalski SG, Welk E, Chen XY, Durka W (2014). Phylogeography of a widespread Asian subtropical tree: Genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia.Journal of Biogeography, 41, 1710-1720.
[79] Shi YF, Li JJ, Li BY, Yao TD, Wang SM, Li SJ, Cui ZJ, Wang FB, Pan BT, Fang XM, Zhang QS (1999). Uplift of the Qinghai-Xizang (Tibetan) Plateau and East Asia environmental change during late Cenozoic.Acta Geographica Sinica, 54, 10-21. (in Chinese with English abstract)[施雅风, 李吉均, 李炳元, 姚檀栋, 王苏民, 李世杰, 崔之久, 王富保, 潘保田, 方小敏, 张青松 (1999). 晚新生代青藏高原的隆升与东亚环境变化. 地理学报, 54, 10-21.]
[80] Shi Y F, Tang MC, Ma YZ (1998). The relationship of the second phase uplift of Qinghai-Xizang Plateau with the inoculation of Asian monsoon.Science in China: Earth Sciences, 28, 263-271. (in Chinese)[施雅风, 汤懋苍, 马玉贞 (1998). 青藏高原二期隆升与亚洲季风孕育关系探讨. 中国科学: 地球科学, 28, 263-271.]
[81] Spicer RA, Harris NB, Widdowson M, Herman AB, Guo S, Valdes PJ, Wolfe JA, Kelley SP (2003). Constant elevation of southern Tibet over the past 15 million years.Nature, 421, 622-624.
[82] Stephens M, Smith NJ, Donnelly P (2001). A new statistical method for haplotype reconstruction from population data.The American Journal of Human Genetics, 68, 978-989.
[83] Storz JF (2005). Invited review: Using genome scans of DNA polymorphism to infer adaptive population divergence.Molecular Ecology, 14, 671-688.
[84] Sun JM, Ye J, Wu WY, Ni XJ, Bi SD, Zhang ZQ, Liu WM, Meng J (2010). Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior.Geology, 38, 515-518.
[85] Sun XJ, Wang PX (2005). How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeography Palaeoclimatology Palaeoecology, 222, 181-222.
[86] Sun Y, Hu H, Huang H, Vargas-Mendoza CF (2014). Chloroplast diversity and population differentiation ofCastanopsis fargesii(Fagaceae): A dominant tree species in evergreen broad-leaved forest of subtropical China. Tree Genetics and Genomes, 10, 1531-1539.
[87] Tanaka T (1954). Species Problem in Citrus. Japanese Society for Promotion of Science, Ueno, Tokyo.
[88] The Editorial Committee of Vegetation Map of China,Chinese Academy of Sciences (2007). Vegetation Map of the People's Republic of China 1:1000000. Geological Publishing House, Beijing. (in Chinese)[中国科学院中国植被图编辑委员会 (2007). 中华人民共和国植被图(1:1000000). 地质出版社, 北京.]
[89] Tian B, Zhou Z, Du FK, He C, Xin P, Ma H (2015). The Tanaka line shaped the phylogeographic pattern of the cotton tree (Bombax ceiba) in southwest China. Biochemical Systematics and Ecology, 60, 150-157.
[90] Tiffney BH (1985). Perspectives on the origin of the floristic similarity between Eastern Asia and Eastern North America.Journal of the Arnold Arboretum (USA), 66, 73-94.
[91] Wang J, Gao P, Kang M, Lowe AJ, Huang H (2009). Refugia within refugia: The case study of a canopy tree (Eurycorymbus cavaleriei) in subtropical China. Journal of Biogeography, 36, 2156-2164.
[92] Wang JF, Gong X, Chiang YC, Kuroda C (2013). Phylogenetic patterns and disjunct distribution inLigularia hodgsonii hook.(Asteraceae). Journal of Biogeography, 40, 1741-1754.
[93] Wang LN, Jiang XL, Lei Y, Zhang ML (2012). A panbiogeographical explanation of the disjunct distribution ofFagus(Fagaceae) in the northern temperate zone. Chinese Journal of Plant Ecology, 36, 393-402. (in Chinese with English abstract)[王丽娜, 姜小龙, 雷耘, 张明理 (2012). 北温带水青冈属的间断分布及其泛生物地理学解释. 植物生态学报 36, 393-402.]
[94] Wang SH, Bao L, Wang TM, Wang HF, Ge JP (2016). Contrasting genetic patterns between two coexisting Eleutherococcus species in northern China. Ecology and Evolution, 6, 3311-3324.
[95] Wang WM (1994). Paleofloristic and paleoclimatic implications of Neogene palynofloras in China.Review of Palaeobotany and Palynology, 82, 239-250.
[96] Wang WT (1992a). On some distribution patterns and some migration routes found in the eastern Asiatic region.Acta Phytotaxonomica Sinica, 30, 1-24. (in Chinese with English abstract)[王文采 (1992a). 东亚植物区系的一些分布式样和迁移路线. 植物分类学报, 30, 1-24.]
[97] Wang WT (1992b). On some distribution patterns and some migration routes found in the eastern Asiatic region (Cont.).Acta Phytotaxonomica Sinica, 30, 97-117. (in Chinese with English abstract)[王文采 (1992b). 东亚植物区系的一些分布式样和迁移路线(续). 植物分类学报, 30, 97-117.]
[98] Wang YH, Jiang WM, Comes HP, Hu FS, Qiu YX, Fu CX (2015a). Molecular phylogeography and ecological niche modelling of a widespread herbaceous climber,Tetrastigma hemsleyanum (Vitaceae): Insights into Plio-Pleistocene range dynamics of evergreen forest in subtropical China.New Phytologist, 206, 852-867.
[99] Wang ZW, Chen ST, Nie ZL, Zhang JW, Zhou Z, Deng T, Sun H (2015b). Climatic factors drive population divergence and demography: Insights based on the phylogeography of a riparian plant species endemic to the Hengduan mountains and adjacent regions.PLOS ONE, 10, e0145014. doi: 10.1371/journ.pone.0145014.
[100] Wen J, Zhang JQ, Nie ZL, Zhong Y, Sun H (2014). Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau.Frontiers in Genetics, 5, 1-16.
[101] Wu ZY, Wu SG (1996). A proposal for a new floristic kingdom (realm): The E. Asiatic kingdom, its delimitation and characteristics. In: Zhang AL, Wu SG eds. Proceedings of the First International Symposium on Floristic Characteristics and Diversity of East Asian Plants.Higher Education Press,Beijing.
[102] Wu ZY, Sun H, Zhou ZK, Li DZ, Peng H (2010).Floristics of Seed Plants from China. Science Press, Beijing. (in Chinese)[吴征镒, 孙航, 周浙昆, 李德铢, 彭华 (2010).中国种子植物区系地理. 科学出版社, 北京.]
[103] Xie XF, Yan HF, Wang FY, Ge XJ, Hu CM, Hao G (2012). Chloroplast DNA phylogeography of Primula ovalifolia in central and adjacent southwestern China: Past gradual expansion and geographical isolation. Journal of Systematics and Evolution, 50, 284-294.
[104] Xu J, Deng M, Jiang XL, Westwood M, Song YG, Turkington R (2015). Phylogeography of Quercus glauca (Fagaceae), a dominant tree of east Asian subtropical evergreen forests, based on three chloroplast DNA interspace sequences.Tree Genetics and Genomes, 1, 1-17.
[105] Yan HF, Zhang CY, Wang FY, Hu CM, Ge XJ, Hao G (2012). Population expanding with the phalanx model and lineages split by environmental heterogeneity: A case study of Primula obconica in subtropical China. PLOS ONE, 7, e41315. doi: 10.1371/journ.pone.0041315.
[106] Ye JF, Chen ZD, Liu B, Qin HN, Yang Y (2012). Disjunct distribution of vascular plants between southwestern area and Taiwan area in China.Biodiversity of Science, 20, 482-494. (in Chinese with English abstract)[叶建飞, 陈之端, 刘冰, 覃海宁, 杨永 (2012). 中国西南与台湾地区维管植物的间断分布格局及形成机制. 生物多样性, 20, 482-494.]
[107] Ye JW, Bai WN, Bao L, Wang TM, Wang HF, Ge JP (2017). Sharp genetic discontinuity in the aridity-sensitive species Lindera obtusiloba (Lauraceae): Solid evidence supporting the Tertiary floral subdivision in East Asia. Journal of Biogeography, 44, 2082-2095.
[108] Ye JW, Guo XD, Wang SH, Bai WN, Bao L, Wang HF, Ge JP (2015). Molecular evidence reveals a closer relationship between Japanese and mainland subtropical specimens of a widespread tree species,Acer mono. Biochemical Systematics and Ecology, 60, 143-149.
[109] Ye JW, Zhang Y, Wan XJ (2017). Phylogeographic history of broad-leaved forest plants in subtropical China. Acta Ecologica Sinica, 37, doi: 10.5846/stxb201606031072. (in Chinese with English abstract)[叶俊伟, 张阳, 王晓娟 (2017). 中国亚热带地区阔叶林植物的谱系地理历史. 生态学报, 37, 5894-5904.]
[110] Ying TS, Zhang ZS (1984). Endemism in the flora of China—Studies on the endemic genera.Acta Phytotaxonomica Sinica, 22, 259-268. (in Chinese with English abstract)[应俊生, 张志松 (1984). 中国植物区系中的特有现象—特有属的研究. 植物分类学报, 22, 259-268.]
[111] Ying LX, Zhang TT, Chiu CA, Chen TY, Luo SJ, Chen XY, Shen ZH (2016). The phylogeography of Fagus hayatae (Fagaceae): Genetic isolation among populations. Ecology and Evolution, 6, 2805-2816.
[112] Yu G, Chen X, Ni J, Cheddadi R, Guiot J, Han H, Harrison SP, Huang C, Ke M, Kong Z (2000). Palaeovegetation of China: A pollen data-based synthesis for the mid-Holocene and last Glacial Maximum.Journal of Biogeography, 27, 635-664.
[113] Yuan JH, Cheng FY, Zhou SL (2012). Genetic structure of the tree peony (Paeonia rockii) and the Qinling mountains as a geographic barrier driving the fragmentation of a large population。PLOS ONE, 7, e34955. doi: 10.1371/journal.pone.0034955.
[114] Yuan N, Sun Y, Comes HP, Fu CX, Qiu YX (2014). Understanding population structure and historical demography in a conservation context: Population genetics of the endangered Kirengeshoma palmata (Hydrangeaceae). American Journal of Botany, 101, 521-529.
[115] Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present.Science, 292, 686-693.
[116] Zeng YF, Liao WJ, Petit RJ, Zhang DY (2011). Geographic variation in the structure of oak hybrid zones provides insights into the dynamics of speciation.Molecular Ecology, 20, 4995-5011.
[117] Zhang D, Fengquan L, Jianmin B (2000). Eco-environmental effects of the Qinghai-Tibet Plateau uplift during the Quaternary in China.Environmental Geology, 39, 1352-1358.
[118] Zhang TC, Sun H (2011). Phylogeographic structure of Terminalia franchetii (Combretaceae) in southwest China and its implications for drainage geological history. Journal of Plant Research, 124, 63-73.
[119] Zhang YB, Sun DH, Li ZJ, Wang F, Wang X, Li BF, Guo F, Wu S (2014). Cenozoic record of aeolian sediment accumulation and aridification from Lanzhou, China, driven by Tibetan Plateau uplift and global climate.Global and Planetary Change, 120, 1-15.
[120] Zhang YH, Wang IJ, Comes HP, Hua P, Qiu YX (2016). Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species,Emmenopterys henryi (Rubiaceae). Scientic Reports, 6, 24041. doi: 10.1038/srep24041.
[121] Zhao C, Wang CB, Ma XG, Liang QL, He XJ (2013a). Phylogeographic analysis of a temperate-deciduous forest restricted plant (Bupleurum longiradiatum Turcz.) reveals two refuge areas in China with subsequent refugial isolation promoting speciation. Molecular Phylogenetics and Evolution, 68, 628-643.
[122] Zhao Y, Vrieling K, Liao H, Xiao MQ, Zhu YQ, Rong J, Zhang WJ, Wang YG, Yang J, Chen JK. (2013b). Are habitat fragmentation, local adaptation and isolation-by-distance driving population divergence in wild rice Oryza rufipogon? Molecular Ecology, 22, 5531-5547.
[123] Zhao Y, Zhang L (2015). The phylogeographic history of the self-pollinated herb Tacca chantrieri (Dioscoreaceae) in the tropics of mainland southeast Asia. Biochemical Systematics and Ecology, 58, 139-148.
[124] Zhou S, Wang X, Wang J, Xu L (2006). A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai-Tibetan Plateau.Quaternary International, 154, 44-51.
[125] Zhou YF, Zhang LR, Liu JQ, Wu GL, Savolainen O (2014). Climatic adaptation and ecological divergence between two closely related pine species in southeast China.Molecular Ecology, 23, 3504-3522.
[126] Zhou ZK, Huang J, Ding WN (2017). The impact of major geological events on Chinese flora. Biodiversity Science, 25, 123-135. (in Chinese with English abstract)[周浙昆, 黄健, 丁文娜 (2017). 若干重要地质事件对中国植物区系形成演变的影响. 生物多样性, 25, 123-135.]
[127] Zhu SS, Ding YP, Yap ZY, Qiu YX (2016). De novo assembly and characterization of the floral transcriptome of an economically important tree species,Lindera glauca(Lauraceae), including the development of EST-SSR markers for population genetics. Molecular Biology Reports, 43, 1243-1250.
[1] TAN Ke, DONG Shu-Peng, LU Tao, ZHANG Ya-Jing, XU Shi-Tao, REN Ming-Xun. Diversity and evolution of samara in angiosperm [J]. Chin J Plan Ecolo, 2018, 42(8): 806-817.
[2] Zhenna Qian,Qianwan Meng,Mingxun Ren. Pollination ecotypes and herkogamy variation of Hiptage benghalensis (Malpighiaceae) with mirror-image flowers [J]. Biodiv Sci, 2016, 24(12): 1364-1372.
[3] Zhenna Qian,Mingxun Ren. Floral evolution and pollination shifts of the “Malpighiaceae route” taxa, a classical model for biogeographical study [J]. Biodiv Sci, 2016, 24(1): 95-101.
[4] HUANG Yan-Bo,WEI Yu-Kun,WANG Qi,XIAO Yue-E,YE Xi-Yang. Floral morphology and pollination mechanism of Salvia liguliloba, a narrow endemic species with degraded lever-like stamens [J]. Chin J Plan Ecolo, 2015, 39(7): 753-761.
[5] Qianghua Xu,Zhichao Wu,Liangbiao Chen. Biodiversity and adaptive evolution of Antarctic notothenioid fishes [J]. Biodiv Sci, 2014, 22(1): 80-87.
[6] Bao-Rong Lu, Hui Xia, Wei Wang, Xiao Yang. Impacts of natural hybridization and introgression on biological invasion of plant species [J]. Biodiv Sci, 2010, 18(6): 577-589.
[7] YU Xiang-Qin, FENG Yu-Long, LI Qiao-Ming. Review of research advances and prospects of invasive Chromolaena odorata [J]. Chin J Plan Ecolo, 2010, 34(5): 591-600.
[8] Jing Wang;Ting Wang*;Yingjuan Su;Lin Sen;Bing Zhang;Yongxia Yang. Adaptive Evolution in the PHY-PAS1 Domain of PHYP in Gymnosperms [J]. Chin Bull Bot, 2009, 44(05): 608-618.
[9] Yifei Liu;Hongwen Huang*. Gene Flow Dynamics and Related Adaptive Evolution in Plant Populations [J]. Chin Bull Bot, 2009, 44(03): 351-362.
[10] Yuan Gao;Li Tian;Song Qin* . Positive Selection in Plant Evolution [J]. Chin Bull Bot, 2008, 25(04): 401-406.
Full text



[1] Hu Shi-yi. Fertilization in Plants IV. Fertilization Barriers Inoompalibilty[J]. Chin Bull Bot, 1984, 2(23): 93 -99 .
[2] JIANG Gao-Ming. On the Restoration and Management of Degraded Ecosystems: with Special Reference of Protected Areas in the Restoration of Degraded Lands[J]. Chin Bull Bot, 2003, 20(03): 373 -382 .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 65 .
[4] . [J]. Chin Bull Bot, 1996, 13(专辑): 103 .
[5] ZHANG Xiao-Ying;YANG Shi-Jie. Plasmodesmata and Intercellular Trafficking of Macromolecules[J]. Chin Bull Bot, 1999, 16(02): 150 -156 .
[6] Chen Zheng. Arabidopsis thaliana as a Model Species for Plant Molecular Biology Studies[J]. Chin Bull Bot, 1994, 11(01): 6 -11 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 13 -16 .
[8] LEI Xiao-Yong HUANG LeiTIAN Mei-ShengHU Xiao-SongDAI Yao-Ren. Isolation and Identification of AOX (Alternative Oxidase) in ‘Royal Gala’ Apple Fruits[J]. Chin Bull Bot, 2002, 19(06): 739 -742 .
[9] Chunpeng Yao;Na Li. Research Advances on Abscisic Acid Receptor[J]. Chin Bull Bot, 2006, 23(6): 718 -724 .
[10] Li Wang, Qinqin Wang, Youqun Wang. Cytochemical Localization of ATPase and Acid Phosphatase in Minor Veins of the Leaf of Vicia faba During Different Developmental Stages[J]. Chin Bull Bot, 2014, 49(1): 78 -86 .