Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (7): 723-733.doi: 10.17521/cjpe.2017.0294

• Research Articles • Previous Articles     Next Articles

Rhizosphere effects of overstory tree and understory shrub species in central subtropical plantations—A case study at Qianyanzhou, Taihe, Jiangxi, China

MO Xue-Li1,2, DAI Xiao-Qin1,3,*(), WANG Hui-Min1,2,3, FU Xiao-Li1,3, KOU Liang1,3   

  1. 1 Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
    2 College of Resource and Environment, University of Chinese Academy of Science, Beijing 100049, China
    3 Jiangxi Province Key Laboratory of Regional Ecological Processes and Information, Taihe, Jiangxi 343725, China
  • Online:2018-06-01 Published:2018-07-20
  • Contact: Xiao-Qin DAI E-mail:daixq@igsnrr.ac.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(31730014);Supported by the National Natural Science Foundation of China(31670635);the National Basic Research Program of China(2016YFD0600202)

Abstract:

Aims The objective was to explore the differences in rhizosphere effect among different plants in plantation and provide important theoretical basis for understory vegetation management in plantation ecosystem.

Methods We collected bulk and rhizosphere soils of overstory trees and understory shrubs (Loropetalum chinense, Adinandra millettiiand Eurya muricata) in Cunninghamia lanceolata, Pinus massoniana and Pinus elliottiiplantations which were planted in about 1985, at Qianyanzhou Ecological Research Station, Taihe, Jiangxi, to investigate soil pH value, soil nitrogen, carbon and phosphorus content and to access their rhizosphere effects.+++Important findings (1) Most of the chemical properties of rhizosphere soil and bulk soil were significantly different for overstory tree species (p< 0.05), while the differences between bulk soil and rhizosphere soil of understory shrubs were related to understory shrub species. For example, most of the properties were significantly different between bulk and rhizosphere soils for L. chinense, but not for E. muricata. (2) Rhizosphere effects among shrub species were significantly different except for those of nitrate nitrogen (NO3 --N).Specifically,the rhizosphere effects of pH, ammonium nitrogen (NH4 +-N), dissolved organic carbon (DOC), total nitrogen (TN), total carbon (TC), carbon-nitrogen ratio (C/N), available phosphorus (AP) and total phosphorus (TP) of L. chinense were significantly higher than those of E. muricata.And the rhizosphere effects of TN, TC, C/N and AP of L. chinense were significantly higher than those of A. millettii. No significant differences were found between the rhizosphere effects of A. millettii and those of E. muricata. (3) The rhizosphere effects of C. lanceolata were significantly higher than those of the three understory shrubs. But no significant difference was found between P. massoniana or P. elliottii and L. chinense. While the rhizosphere effects of P. massoniana were significantly higher than those of A. millettii and E. Muricata, and the rhizosphere effects of P. elliottii were significantly higher than those of E. muricata. The results showed that the rhizosphere effects of overstory tree species were higher than those of understory shrubs (especially for E. muricata), indicating overstory tree species have stronger ability to obtain nutrients. But the differences in rhizoshpere effects between overstory trees and understory shrubs varied between shrub species and forest types. Therefore, this study suggested that understory shrub species should be considered according to forest stand type in plantation management in order to provide higher productive and ecological value.

Key words: understory shrubs, nutrient activation, understory management, rhizosphere effect, red soil hilly area

Table 1

General stand characteristics in our selected forest plantations (mean ± SE, n = 5)"

林分类型 Forest stand type 胸径
Diameter
at breast
height (cm)
树高
Tree
height (m)
林分密度
Stand density
(trees·hm-2)
郁闭度
Canopy
closure
凋落物干质量
Dry mass
of litter
(kg·hm-2)
群落多样性指数 Diversity indices of communities
灌木 Shrub 草本 Herb
Shannon-
Wiener (H)
Pielous (J) Shannon-
Wiener (H)
Pielous
(J)
杉木林
Cunninghamia lanceolata forest
20.5 ± 2.1ab 17.2 ± 3.0a 2 440 ± 357a 0.77 ± 0.04a 5 787 ± 351a 1.66 ± 0.24a 0.90 ± 0.05a 1.05 ± 0.19a 0.89 ± 0.04a
马尾松林
Pinus massoniana forest
19. 6 ± 1.4a 20.2 ± 0.6a 1 960 ± 211a 0.79 ± 0.05a 4 892 ± 719a 0.86 ± 0.07b 0.88 ± 0.06a 0.64 ± 0.19a 0.74 ± 0.10a
湿地松林 Pinus elliottii forest 24.6 ± 1.2b 22.0 ± 0.8a 2 060 ± 309a 0.75 ± 0.06a 7 070 ± 870b 1.51 ± 0.20a 0.86 ± 0.06a 0.86 ± 0.24a 0.92 ± 0.06a

Table 2

The characteristics of understory shrub species (mean ± SE, n = 5)"

林分类型
Forest stand type
灌木树种 Shrub species 基径
Basal diameter (mm)
高度
Height (cm)
冠幅
Crown width (cm)
密度
Density (shrubs·hm-2)
重要值
Important value (%)
杉木林
Cunninghamia
lanceolata
forest
檵木 Loropetalum chinense 15.8 ± 1.8 183 ± 25 124 ± 17 700 ± 146 22.22
杨桐 Adinandra millettii 14.4 ± 1.7 178 ± 25 89 ± 11 2 320 ± 320 37.87
格药柃 Eurya muricata 16.3 ± 1.3 200 ± 12 102 ± 10 1 354 ± 277 29.67
马尾松林
Pinus
massoniana
forest
檵木 L. chinense 30.2 ± 4.3 413 ± 41 186 ± 22 2 655 ± 988 33.67
杨桐 A. millettii 36.0 ± 7.2 376 ± 64 173 ± 34 2 585 ± 520 14.67
格药柃 E. muricata 23.8 ± 3.6 302 ± 50 118 ± 16 2 240 ± 470 8.00
湿地松林
Pinus elliottii forest
檵木 L. chinense 16.3 ± 2.7 244 ± 34 134 ± 18 3 960 ± 905 36.00
杨桐 A. millettii 16.4 ± 1.8 206 ± 21 111 ± 13 1 640 ± 324 25.34
格药柃 E. muricata 11.0 ± 2.9 112 ± 25 73 ± 14 850 ± 159 21.33

"

Table 4

Rhizosphere effects of different overstory tree species (mean ± SE, n=5)"

乔木树种 Tree species pH 可溶性有机碳
DOC
硝态氮
NO3--N
铵态氮
NH4+-N
有效磷
AP
全碳
TC
全氮
TN
全磷
TP
碳氮比
C/N
杉木 Cunninghamia lanceolata 0.87 ± 0.01 3.6 ± 0.72 4.7 ± 1.97 1.4 ± 0.14 4.4 ± 0.85 6.2 ± 1.12 3.6 ± 0.69 1.7 ± 0.18 1.8 ± 0.08
马尾松 Pinus massoniana 0.86 ± 0.04 5.5 ± 1.11 4.0 ± 1.82 1.6 ± 0.11 4.8 ± 1.33 7.5 ± 1.94 4.5 ± 0.98 1.6 ± 0.19 1.7 ± 0.12
湿地松 Pinus elliottii 0.83 ± 0.01 4.5 ± 0.87 2.8 ± 1.58 1.8 ± 0.33 7.4 ± 2.39 9.1 ± 2.30 5.1 ± 1.51 1.6 ± 0.25 1.9 ± 0.07
F 0.620 1.010 0.290 0.731 1.741 0.799 0.285 0.023 1.432
p 0.556 0.396 0.754 0.528 0.246 0.493 0.762 0.978 0.284

Table 5

Rhizosphere effects of different understory shrub species (mean ± SE, n=15)"

灌木树种 Shrub species pH 可溶性有机碳
DOC
硝态氮
NO3--N
铵态氮
NH4+-N
有效磷
AP
全碳
TC
全氮
TN
全磷
TP
碳氮比
C/N
檵木 Loropetalum chinense 0.91 ± 0.02a 3.9 ± 0.65b 3.9 ± 0.67a 1.5 ± 0.08b 5.0 ± 0.94b 5.5 ± 0.86b 3.6 ± 0.41b 1.5 ± 0.10b 1.6 ± 0.08b
杨桐 Adinandra millettii 0.94 ± 0.01ab 2.7 ± 0.54ab 3.0 ± 0.91a 1.3 ± 0.10ab 3.0 ± 0.65a 3.1 ± 0.51a 2.3 ± 0.27a 1.3 ± 0.10ab 1.3 ± 0.07a
格药柃 Eurya muricata 0.96 ± 0.02b 1.8 ± 0.23a 1.7 ± 0.47a 1.1 ± 0.07a 2.2 ± 0.67a 1.9 ± 0.26a 1.5 ± 0.18a 1.1 ± 0.09a 1.2 ± 0.06a
F 3.464 5.037 1.699 5.508 4.833 9.535 12.481 5.304 5.972
p 0.043* 0.012* 0.198 0.009* 0.014* 0.001* 0.000* 0.010* 0.006*

Fig. 1

Rhizosphere effects of tree species and shrub species in different forest stand types (mean ± SE, n = 5). A, Cunninghamia lanceolata forest. B, Pinus massoniana forest. C, Pinus elliottii forest. LC, Loropetalum chinense; AM, Adinandra millettii; EM, Eurya muricata; OS, overstory tree species. Different lowercase letters indicate significant differences among different species (p < 0.05). See Table 3 for DOC, NO3--N, NH4+-N, AP, TC, TN, TP, C/N."

Table 6

Comprehensive scores on rhizosphere effects of tree and shrub species in different forest stand types by principal component analysis (mean ± SE, n=5)"

植物类型
Plant type
杉木林
Cunninghamia lanceolata forest
马尾松林
Pinus massoniana forest
湿地松林
Pinus
elliottii
forest
乔木 Overstory tree 0.56 ± 0.400a 0.68 ± 0.447a 0.84 ± 0.469a
檵木
Loropetalum chinense
-0.11 ± 0.041b 0.44 ± 0.427a 0.4 ± 0.225ab
杨桐 Adinandra millettii -0.25 ± 0.274b -0.64 ± 0.142b 0.08 ± 0.396ab
格药柃 Eurya muricata -0.93 ± 0.114c -0.8 ± 0.154b -0.4 ± 0.228b
F 10.940 8.239 1.705
p 0.004* 0.003* 0.211
[1] Brzostek ER, Dragoni D, Brown ZA, Phillips RP ( 2015). Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest. New Phytologist, 206, 1274-1282.
doi: 10.1111/nph.13303 pmid: 25627914
[2] Calvaruso CN, Dira V, Turpault MP ( 2011). Impact of common European tree species and Douglas-fir ( Pseudotsuga menziesii [Mirb.] Franco) on the physicochemical properties of the rhizosphere. Plant and Soil, 342, 469-480.
doi: 10.1007/s11104-010-0710-x
[3] Cheeke TE, Phillips RP, Brzostek ER, Rosling A, Bever JD, Fransson P ( 2017). Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytologist, 214, 432-442.
doi: 10.1111/nph.14343 pmid: 27918073
[4] Du Z, Cai XH, Bao WK, Chen H, Pan HL ( 2016). Understory effects on overstory trees: A review. Chinese Journal of Applied Ecology, 27, 963-972.
[ 杜忠, 蔡小虎, 包维楷, 陈槐, 潘红丽 ( 2016). 林下层植被对上层乔木的影响研究综述. 应用生态学报, 27, 963-972.]
[5] Du Z, Cai XH, Bao WK, Chen H, Pan HL, Wang X, Zhao QX, Zhu WZ, Liu XL, Jiang Y, Li MH ( 2016). Short-term vs. long-term effects of understory removal on nitrogen and mobile carbohydrates in overstory trees. Forests, 7, 67. DOI: 10.3390/f7030067.
[6] Fan C, Li XW, Zhang J ( 2014). Nitrogen dynamic of rhizosphere and bulk soil in Alnus formosana silvopasture systems. Journal of Nanjing Forestry University (Natural Science Edition), 38(5), 73-78.
doi: 10.3969/j.issn.1000-2006.2014.04.015
[ 范川, 李贤伟, 张健 ( 2014). 台湾桤木林草复合模式根际与非根际氮特征. 南京林业大学学报(自然科学版), 38(5), 73-78.]
doi: 10.3969/j.issn.1000-2006.2014.04.015
[7] Fu XL, Wang JL, Di YB, Wang HM ( 2015 a). Differences in fine-root biomass of trees and understory vegetation among stand types in subtropical forests. PLOS ONE, 10, e0128894. DOI: 10.1371/journal.pone.0128894.
doi: 10.1371/journal.pone.0128894 pmid: 4457824
[8] Fu XL, Wang JL, Wang HM, Dai XQ, Yang FT, Zhao M ( 2016). Response of the fine root production, phenology, and turnover rate of six shrub species from a subtropical forest to a soil moisture gradient and shading. Plant and Soil, 399, 1-12.
doi: 10.1007/s11104-015-2674-3
[9] Fu XL, Yang FT, Wang JL, Di YB, Dai XQ, Zhang XY, Wang HM ( 2015 b). Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation. Science of the Total Environment, 502, 280-286.
doi: 10.1016/j.scitotenv.2014.09.018 pmid: 25261818
[10] Gong X ( 2013). Soil Phosphorus Availability and Its Influence Factors of Plantation in Degraded Subtropical Hilly Red Soil Region. PhD dissertation, Jiangxi Agricultural University, Nanchang.
[ 龚霞 ( 2013). 亚热带退化丘陵红壤区人工林土壤磷素有效性及其影响因素. 博士学位论文, 江西农业大学, 南昌.]
[11] Gschwendtner S, Engel M, Lueders T, Buegger F, Schloter M ( 2016). Nitrogen fertilization affects bacteria utilizing plant-derived carbon in the rhizosphere of beech seedlings. Plant and Soil, 407, 203-215.
doi: 10.1007/s11104-016-2888-z
[12] Guan X, Wang SL, Zhang WD ( 2016). Availability of N and P in the rhizosphere of three subtropical species. Journal of Tropical Forest Science, 28, 159-166.
[13] Hess LJT, Austin AT ( 2017). Pine afforestation alters rhizosphere effects and soil nutrient turnover across a precipitation gradient in Patagonia, Argentina. Plant and Soil, 415, 449-464.
doi: 10.1007/s11104-017-3174-4
[14] Hinsinger P, Plassard C, Tang C, Jaillard B ( 2003). Origins of root-mediated pH changes in rhizosphere and their responses to environmental constraints: A review. Plant and Soil, 248, 43-59.
doi: 10.1023/A:1022371130939
[15] Li B (2000). Ecology. High Educational Press, Beijing.
[ 李博 (2000). 生态学. 高等教育出版社, 北京.]
[16] Li CC, Li QR, Qiao N, Xu XL, Li QK, Wang HM ( 2016). Inorganic and organic nitrogen uptake by nine dominant subtropical tree species. iForest, 9, 253-258.
doi: 10.3832/ifor1502-008
[17] Li YP, Xu H, Li YD, Luo TS, Chen DX, Zhou Z, Lin MX, Yang H ( 2016). Scale-dependent spatial patterns of species diversity in the tropical montane rain forest in Jianfengling, Hainan Island, China. Chinese Journal of Plant Ecology, 40, 861-870.
[ 李艳朋, 许涵, 李意德, 骆土寿, 陈德祥, 周璋, 林明献, 杨怀 ( 2016). 海南尖峰岭热带山地雨林物种多样性空间分布格局的尺度效应. 植物生态学报, 40, 861-870.]
[18] Lin GG, Zhao Q, Zhao L, Li HC, Zeng DH ( 2012). Effects of understory removal and nitrogen addition on the soil chemical and biological properties of Pinus sylvestris var. mongolica plantation in Keerqin Sandy Land. Chinese Journal of Applied Ecology, 23, 1188-1194.
[ 林贵刚, 赵琼, 赵蕾, 李慧超, 曾德慧 ( 2012). 林下植被去除与氮添加对樟子松人工林土壤化学和生物学性质的影响. 应用生态学报, 23, 1188-1194. ]
[19] Liu S, Sheng KY, Liu XS, Wu ZH, Guo XM, Xiao FM, Zhang WY ( 2017). Contents of soil organic carbon and nitrogen forms in rhizosphere soil of Cunninghamia lanceolata and the rhizopshere effect. Chinese Journal of Ecology, 36, 1957-1964.
doi: 10.13292/j.1000-4890.201707.033
[ 刘顺, 盛可银, 刘喜帅, 吴珍花, 郭晓敏, 肖复明, 张文元 ( 2017). 陈山红心杉根际土壤有机碳、氮含量及根际效应. 生态学杂志, 36, 1957-1964.]
doi: 10.13292/j.1000-4890.201707.033
[20] Liu SX, Wang MY, Yang YM, Xiong Z, Wang JH, Miao FJ, Zhang JY, Wang J ( 2013). Rhizosphere effect of five plant communities in Jianhu wetland lakeside zone on nitrogen and phosphorus. Environmental Science & Technology, 36(10), 73-77.
[ 刘绍雄, 王明月, 杨宇明, 熊智, 王金华, 缪福俊, 张敬宜, 王娟 ( 2013). 剑湖湿地湖滨带5种植物群落类型氮和磷根际效应. 环境科学与技术, 36(10), 73-77.]
[21] Liu Y, Hu XF, Chen FS, Yuan PC ( 2013). Temperature sensitivity of CO2 fluxes from rhizosphere soil mineralization and root decomposition inPinus massoniana and Castanopsis sclerophylla forests. Chinese Journal of Applied Ecology, 24, 1501-1508.
[ 刘煜, 胡小飞, 陈伏生, 袁平成 ( 2013). 马尾松和苦槠林根际土壤矿化和根系分解CO2释放的温度敏感性. 应用生态学报, 24, 1501-1508.]
[22] Pan F, Liang Y, Zhang W, Zhao J ( 2016). Enhanced nitrogen availability in karst ecosystems by oxalic acid release in the rhizosphere. Frontiers in Plant Science, 7, 687. DOI: 10.3389/fpls.2016.00687.
doi: 10.3389/fpls.2016.00687 pmid: 4877511
[23] Phillips RP, Erlitz Y, Bier R, Bernhardt ES ( 2008). New approach for capturing soluble root exudates in forest soils. Functional Ecology, 22, 990-999.
doi: 10.1111/fec.2008.22.issue-6
[24] Phillips RP, Fahey TJ ( 2006). Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology, 87, 1302-1303.
doi: 10.1890/0012-9658(2006)87[1302:TSAMAI]2.0.CO;2 pmid: 16761608
[25] Phillips RP, Fahey TJ ( 2008). The influence of soil fertility on rhizosphere effects in northern hardwood forest soils. Soilence Society of America Journal, 72, 453-461.
doi: 10.2136/sssaj2006.0389
[26] Qi HY ( 2014). Nitrogen and Phosphorus Rhizosphere Effect: A Potential Strategy of Phyllostachys edulis Expansion to Broad-leaved Forest. Master degree dissertation, Jiangxi Agricultural University,Nanchang.
[ 祁红艳 ( 2014). 氮磷根际效应: 毛竹扩张的潜在策略. 硕士学位论文, 江西农业大学, 南昌.]
[27] Sommer J, Dippold MA, Zieger SL, Handke A, Scheu S, Kuzyakov Y ( 2017). The tree species matters: Belowground carbon input and utilization in the myco-rhizosphere. European Journal of Soil Biology, 81, 100-107.
doi: 10.1016/j.ejsobi.2017.07.001
[28] Song YC (2001). Vegetation Ecology. East China Normal University Press, Shanghai.
[ 宋永昌 (2001). 植被生态学. 华东师范大学出版社, 上海.]
[29] Su LY, Cheng AX, Yu AL, Fu WQ, Zhen PY ( 1992). Investigation on mycorrhizae of forest trees in Natural Reserve of Mount Tianmu. Journal of Zhejiang Forestry College, 9, 263-276.
[ 苏琍英, 程爱兴, 喻爱林, 傅卫庆, 郑平谣 ( 1992). 天目山自然保护区林木菌根调查. 浙江林学院学报, 9, 263-276.]
[30] Sun L, Kominami Y, Yoshimura K, Kitayama K ( 2017). Root-exudate flux variations among four co-existing canopy species in a temperate forest, Japan. Ecological Research, 32, 331-339.
doi: 10.1007/s11284-017-1440-9
[31] Takahashi K, Uemura S, Suzuki JI, Hara T ( 2003). Effects of understory dwarf bamboo on soil water and the growth of overstory trees in a dense secondary Betula ermanii forest, northern Japan. Ecological Research, 18, 767-774.
doi: 10.1111/j.1440-1703.2003.00594.x
[32] Uroz S, Oger P, Tisserand E, Cébron A, Turpault M-P, Buée M, de Boer W, Leveau JHJ, Frey-Klett P ( 2016). Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Scientific Reports, 6, 27756. DOI: 10.1038/srep27756.
doi: 10.1038/srep27756 pmid: 4908602
[33] Wan SZ, Zhang CL, Chen YQ, Zhao J, Wang XL, Wu JP, Zhou LX, Lin YB, Liu ZF, Fu SL ( 2014). The understory fern Dicranopteris dichotoma facilitates the overstory Eucalyptus trees in subtropical plantations. Ecosphere, 5(5), 1-12.
[34] Wang FC, Zou LQ, Tang J, Fang XM, Wan SZ, Wu NS, Wang HM, Chen FS ( 2016). Influence of nitrogen deposition on soil nutrient supply and organic carbon mineralization in Cunninghamia lanceolata and Liquidambar formosana plantations. Acta Ecologica Sinica, 36, 3226-3234.
doi: 10.5846/stxb201506171222
[ 王方超, 邹丽群, 唐静, 方向民, 万松泽, 吴南生, 王辉民, 陈伏生 ( 2016). 氮沉降对杉木和枫香土壤氮磷转化及碳矿化的影响. 生态学报, 36, 3226-3234.]
doi: 10.5846/stxb201506171222
[35] Wang JL, Wang HM, Fu XL, Yang FT, Chen FS ( 2015). Effects of intraspecific competition and litter coverage on fine root morphological traits of Cunninghamia lanceolata and Loropetalum chinensis. Chinese Journal of Ecology, 34, 596-603
[ 王君龙, 王辉民, 付晓莉, 杨风亭, 陈伏生 ( 2015). 种内竞争和残落物覆盖对杉木和檵木细根形态特征的影响. 生态学杂志, 34, 596-603.]
[36] Wang XZ, Hu ZL, Du YX, Liu YZ, Li LQ, Pan GX ( 2010). Comparison of microbial biomass and community structure of rhizosphere soil between forest and shrubbery in karst ecosystem. Soils, 42, 224-229.
[ 王新洲, 胡忠良, 杜有新, 刘永卓, 李恋卿, 潘根兴 ( 2010). 喀斯特生态系统中乔木和灌木林根际土壤微生物生物量及其多样性的比较. 土壤, 42, 224-229.]
[37] Wang YP, Wang HT, Tan XM, Jiang YZ, Kong LG ( 2010). Comparison on rhizosphere effect of cultivar alternation and non-alternation continuous cropping poplar (Populus deltoids) plantation. Acta Ecologica Sinica, 30, 1379-1389.
[ 王延平, 王华田, 谭秀梅, 姜岳忠, 孔令刚 ( 2010). 杨树人工林品种更替连作与非更替连作根际效应的比较. 生态学报, 30, 1379-1389.]
[38] Yang Y, Wang JF, Zhang XY, Li DD, Wang HM, Chen FS, Sun XM, Wen XF ( 2016). Mechanism of litter and understory vegetation effects on soil carbon and nitrogen hydrolase activities in Chinese fir forests. Acta Ecologica Sinica, 36, 8102-8110.
doi: 10.5846/stxb201505040908
[ 杨洋, 王继富, 张心昱, 李丹丹, 王辉民, 陈伏生, 孙晓敏, 温学发 ( 2016). 凋落物和林下植被对杉木林土壤碳氮水解酶活性的影响机制. 生态学报, 36, 8102-8110.]
doi: 10.5846/stxb201505040908
[39] Yin HJ, Wheeler E, Phillips RP ( 2014). Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biology & Biochemistry, 78, 213-221.
doi: 10.1016/j.soilbio.2014.07.022
[40] Yin HJ, Xiao J, Li YF, Chen Z, Cheng XY, Zhao CZ, Liu Q ( 2013). Warming effects on root morphological and physiological traits: The potential consequences on soil C dynamics as altered root exudation. Agricultural and Forest Meteorology, 180, 287-296.
doi: 10.1016/j.agrformet.2015.08.070
[41] Zhan YY, Xue ZY, Ren W, Zhou ZY ( 2009). Characteristic of nitrogen content between rhizosphere and bulk soil under seven shrubs in arid desert area of China. Acta Ecologica Sinica, 29, 59-66.
doi: 10.3321/j.issn:1000-0933.2009.01.008
[ 詹媛媛, 薛梓瑜, 任伟, 周志宇 ( 2009). 干旱荒漠区不同灌木根际与非根际土壤氮素的含量特征. 生态学报, 29, 59-66.]
doi: 10.3321/j.issn:1000-0933.2009.01.008
[42] Zhang X, Xue JH, Kikuo H, Xu XT, Tian Y, Hiroto T, Liu YH ( 2007). Nutrient dynamics and hydrological process of karst forests in mountainous area of central Guizhou Province, China. Journal of Plant Ecology (Chinese Version), 31, 757-768.
[ 张喜, 薛建辉, 生原喜久雄, 许笑天, 田野, 户田诰夫, 刘延惠 ( 2007). 黔中山地喀斯特森林的水文学过程和养分动态. 植物生态学报, 31, 757-768.]
[43] Zhao Q, Zeng DH, Yu ZY, Deng B, Fan ZP ( 2006). Rhizosphere effects of Pinus sylvestris var.mongolica on soil phosphorus transformation. Chinese Journal of Applied Ecology, 17, 1377-1381.
[ 赵琼, 曾德慧, 于占源, 邓斌, 范志平 ( 2006). 沙地樟子松人工林土壤磷素转化的根际效应. 应用生态学报, 17, 1377-1381.]
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 2002, 19(01): 121 -124 .
[2] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chin Bull Bot, 1999, 16(04): 429 -432 .
[3] HE Wei-Ming and ZHONG Zhang-Cheng. Effects of Soil Fertility on Gynostemma pentaphyllum Makino Population Behavior[J]. Chin Bull Bot, 1999, 16(04): 425 -428 .
[4] SHE Chao-WenSONG Yun-Chun LIU Li-Hua. Analysis on the G_banded Karyotypes and Its Fluctuation at Different Mitotic Phases and Stages in Triticum tauschii (Aegilops squarrosa)[J]. Chin Bull Bot, 2001, 18(06): 727 -734 .
[5] Guijun Yang, Wenjiang Huang, Jihua Wang, Zhurong Xing. Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote Sensing Data[J]. Chin Bull Bot, 2010, 45(05): 566 -578 .
[6] Man Chen, YishengTu, Linan Ye, Biyun Yang. Effect of Amino Acids on Thallus Growth and Huperzine-A Accumulation in Huperzia serrata[J]. Chin Bull Bot, 2017, 52(2): 218 -224 .
[7] Yefei Shang, Ming Li, Bo Ding, Hao Niu, Zhenning Yang, Xiaoqiang Chen, Gaoyi Cao, Xiaodong Xie. Advances in Auxin Regulation of Plant Stomatal Development[J]. Chin Bull Bot, 2017, 52(2): 235 -240 .
[8] CUI Xiao-Yong, Du Zhan-Chi, Wang Yan-Fen. Photosynthetic Characteristics of a Semi-arid Sandy Grassland Community in Inner Mongolia[J]. Chin J Plan Ecolo, 2000, 24(5): 541 -546 .
[9] LI Wei, ZHANG Ya-Li, HU Yuan-Yuan, YANG Mei-Sen, WU Jie, and ZHANG Wang-Feng. Research on the photoprotection and photosynthesis characteristics of young cotton leaves under field conditions[J]. Chin J Plan Ecolo, 2012, 36(7): 662 -670 .
[10] HU Bao-Zhong, LIU Di, HU Guo-Fu, ZHANG A-Ying, JIANG Shu-Jun. Random Amplified Polymorphic DNA Study of Local Breeds in Chinese lfalfa[J]. Chin J Plan Ecolo, 2000, 24(6): 697 -701 .