Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (6): 512-520.doi: 10.17521/cjpe.2019.0082

• Research Articles • Previous Articles     Next Articles

Characteristic environmental factors in peatlands facilitate the formation of persistent Sphagnum spore banks

FENG Lu1,3,*(),BU Zhao-Jun2,3,WU Yu-Huan4,LIU Sha-Sha2,3,LIU Chao2,3   

  1. 1 Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, Shandong 256603, China
    2 Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountain, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
    3 State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
    4 School of Life and Environment Science, Hangzhou Normal University, Hangzhou 310036, China
  • Received:2019-04-15 Revised:2019-06-03 Online:2019-09-30 Published:2019-06-20
  • Contact: FENG Lu E-mail:fengl144@nenu.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(41471043);Supported by the National Natural Science Foundation of China(41871046);Supported by the National Natural Science Foundation of China(41371103);Jilin Provincial Science and Technology Development Project(20190101025JH);the National Natural Science Foundation of Shandong Province(ZR2019PD008)

Abstract:

Aims To test the effects of environmental factors in peatlands on the persistence of Sphagnum spore germinability. The results may help to understand the mechanisms behind the formation of Sphagnum spore banks in peatlands. They can also provide valuable insights for restoration of degraded peatlands. Methods We determined the initial germination percentage in spores of two Sphagnum species (hummock- forming Sphagnum capillifolium and hollow-forming S. flexuosum) and then stored them for 60 days, either dry, in ultrapure water, peatland surface water or Sphagnum water leachate. We varied oxygen concentration by injecting air at three concentrations during the storage experiment. After retrieval from experimental storage, spore germinability was assessed. Important findings Spore germinability was lower after air-injection than under oxygen-deficiency. Spore germinability was higher after storage in the peatland surface and Sphagnum leachate water, having high concentrations of allelochemicals, than in ultrapure water, under oxygen-deficiency. Path analysis showed that dissolved oxygen is the main factor negatively affecting Sphagnum spore persistence in peatlands. Nitrogen (TN) and phosphorus (TP) also affect spore persistence negatively. These results indicate that once dispersed onto Sphagnum substrates or waterlogged hollows, Sphagnum spores can remain viable longer than when exposed to dry conditions or in water without allelochemicals. Extreme longevity of Sphagnum spores and other plant propagules may be attributed to the oxygen-deficient, nutrient-poor and allelopathic substrates in peatlands.

Key words: Sphagnum, spore persistence, peatland, dissolved oxygen, allelochemicals

Table 1

Dissolved oxygen concentration (DO), pH value and redox potential (Eh) in different water storage solutions with or without air injection (mean ± SE, n = 3) "

DO (mg·L-1) pH Eh (mV)
超纯水
Ultrapure water
不充气 Control 8.91 ± 0.02Ab 5.36 ± 0.04Bb 196.7 ± 3.9Bb
低速率充气 Low 8.84 ± 0.02c 5.24 ± 0.06b 191.0 ± 5.0b
高速率充气 High 9.09 ± 0.01a 5.55 ± 0.07a 206.2 ± 1.0a
泥炭地地表水
Peatland surface water
不充气 Control 6.91 ± 0.02Cc 5.80 ± 0.02A 181.2 ± 3.7Cc
低速率充气 Low 9.60 ± 0.04b 7.47 ± 0.06a 192.8 ± 1.4b
高速率充气 High 10.08 ± 0.03a 7.19 ± 0.01b 198.6 ± 1.6a
中位泥炭藓沥出液
Leachate water of Sphagnum magellanicum
不充气 Control 7.52 ± 0.17Bc 4.96 ± 0.06Cc 247.1 ± 2.5Aa
低速率充气 Low 9.70 ± 0.02b 5.91 ± 0.09b 196.6 ± 5.8b
高速率充气 High 10.25 ± 0.02a 6.14 ± 0.01b 183.9 ± 0.4c

Table 2

Main chemical elements and total phenolics concentration (mg·L-1) in three solutions (mean ± SE, n = 3) "

TN TP K+ Ca2+ Na+ Mg2+ 总酚 Phenolics
超纯水 Ultrapure water 0.00 ± 0.00c 0.00 ± 0.00c 0.00 ± 0.00c 0.05 ± 0.01c 0.00 ± 0.00c 0.02 ± 0.00c 0.00 ± 0.00c
泥炭地地表水
Peatland surface water
0.52 ± 0.05b 0.03 ± 0.01b 2.90 ± 0.33b 5.22 ± 0.70a 1.64 ± 0.16b 1.43 ± 0.12a 6.51 ± 0.05a
中位泥炭藓沥出液
Leachate water of Sphagnum magellanicum
5.03 ± 0.31a 0.26 ± 0.04a 8.89 ± 1.13a 0.71 ± 0.49b 4.33 ± 0.18a 0.39 ± 0.06b 3.23 ± 0.09b

Table 3

Two-way ANOVA on the effect of water type, air injection and the interaction between water type and air injection on spore persistence"

来源 Source d.f. 尖叶泥炭藓
Sphagnum
capillifolium
喙叶泥炭藓
Sphagnum
flexuosum
F p F p
保存液类型 Water type 2 3.74 0.044 3.33 0.059
充气速率 Air injection 2 16.31 0.000 2.90 0.081
保存液类型 × 充气速率
Water type × Air injection
4 5.57 0.004 3.73 0.022

Fig. 1

Germination conservation rate of Sphagnum spores after three types of storage solutions and three levels of air injection. (mean ± SE) A, S. capillifolium. B, S. flexuosum PW, peatland surface water; SW, Sphagnum leachate water; UW, ultrapurewater. 0, no air injection; 1, low air injection; 2, high air injection. * in each group (UW0, PW0 and SW0; UW0, UW1 and UW2; PW0, PW1 and PW2; SW0, SW1 and SW2; Air and UW0) indicated significant differences in one-way ANOVA (p < 0.05)."

Table 4

Correlation analysis among water physicochemical indicators and between those indicators with sphagnum spore persistence"

因子 Factor DO pH Eh TN TP K+ Ca2+ Na+ Mg2+ 总酚Phenolics
DO
pH 0.562
Eh -0.322 -0.401
TN 0.108 -0.183 0.364
TP 0.108 -0.175 0.362 1.000
K+ 0.096 -0.008 0.310 0.973 0.976
Ca2+ -0.074 0.765 -0.296 -0.307 -0.296 -0.080
Na+ 0.091 0.038 0.293 0.958 0.961 0.998 -0.022
Mg2+ -0.061 0.766 -0.254 -0.173 -0.161 0.058 0.990 0.116
总酚
Phenolics
0.047 0.767 -0.156 0.051 0.063 0.277 0.925 0.332 0.965
尖叶泥炭藓孢子持久性
Sphagnum capillifolium GCR
-0.777 -0.187 0.375 -0.126 -0.123 -0.057 0.310 -0.039 0.303 0.206
喙叶泥炭藓孢子持久性
Sphagnum flexuosum GCR
-0.402 -0.207 0.052 -0.382 -0.382 -0.365 0.146 -0.357 0.096 0.031

Table 5

Path analysis of spore persistence and water physicochemical indicators"

物种
Species
因子
Factor
直接作用
Direct effect
间接作用 Indirect effect
DO pH Eh TN TP K+ Ca2+ Na+ Mg2+ 总酚Phenolics
尖叶泥炭藓
Sphagnum capillifolium
DO -0.777 0.270 -0.068 -0.007 -0.007 0.003 -0.030 0.005 -0.025 0.018
pH 0.480 -0.437 -0.084 0.012 0.011 0.000 0.308 0.002 0.312 0.297
Eh 0.210 0.250 -0.192 -0.024 -0.022 0.008 -0.119 0.015 -0.103 -0.061
TN -0.067 -0.103 -0.088 0.076 -0.062 0.026 -0.124 0.049 -0.070 0.020
TP -0.062 -0.102 -0.084 0.076 -0.067 0.026 -0.119 0.049 -0.066 0.024
K+ 0.027 -0.091 -0.004 0.065 -0.065 -0.061 -0.032 0.051 0.024 0.107
Ca2+ 0.403 0.070 0.367 -0.062 0.021 0.018 -0.002 -0.001 0.403 0.358
Na+ 0.051 -0.087 0.018 0.062 -0.064 -0.060 0.027 -0.009 0.047 0.129
Mg2+ 0.407 0.058 0.367 -0.053 0.012 0.010 0.002 0.399 0.006 0.374
总酚Phenolics 0.387 -0.045 0.368 -0.033 -0.003 -0.004 0.007 0.373 0.017 0.393
喙叶泥炭藓
Sphagnum flexuosum
DO -0.402 0.014 0.029 -0.040 -0.040 -0.034 -0.009 -0.032 -0.005 0.003
pH 0.025 -0.226 0.036 0.068 0.065 0.003 0.098 -0.013 0.060 0.042
Eh -0.089 0.129 -0.010 -0.135 -0.135 -0.111 -0.038 -0.103 -0.020 -0.009
TN -0.372 -0.044 -0.005 -0.032 -0.372 -0.348 -0.039 -0.336 -0.013 0.003
TP -0.372 -0.043 -0.004 -0.032 -0.372 -0.349 -0.038 -0.337 -0.013 0.003
K+ -0.358 -0.038 0.000 -0.028 -0.362 -0.363 -0.010 -0.350 0.005 0.015
Ca2+ 0.128 0.030 0.019 0.026 0.114 0.110 0.029 0.008 0.077 0.051
Na+ -0.351 -0.037 0.001 -0.026 -0.356 -0.358 -0.357 -0.003 0.009 0.018
Mg2+ 0.078 0.024 0.019 0.023 0.064 0.060 -0.021 0.127 -0.041 0.053
总酚Phenolics 0.055 -0.019 0.019 0.014 -0.019 -0.023 -0.099 0.118 -0.117 0.075
[1] Abbott GD, Swain EY, Muhammad AB, Allton K, Belyea LR, Laing CG, Cowie GL (2013). Effect of water-table fluctuations on the degradation of Sphagnum phenols in surficial peats. Geochimica et Cosmochimica Acta, 106, 177-191.
[2] Aerts R, Wallen B, Malmer N (1992). Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. Journal of Ecology, 80, 131-140.
[3] Boatman DJ, Lark PM (1971). Inorganic nutrition of the protonemata of Sphagnum papillosum Lindb., S. magellanicum Brid. and S. cuspidatum Ehrh. New Phytologist, 70, 1053-1059.
[4] Bu ZJ, Li Z, Liu LJ, Sundberg S, Feng YM, Yang YH, Liu S, Song X, Zhang XL (2017a). Bryophyte spore germinability is inhibited by peatland substrates. Acta Oecologica, 78, 34-40.
[5] Bu ZJ, Sundberg S, Feng L, Li HK, Zhao HY, Li HC (2017b). The Methuselah of plant diaspores: Sphagnum spores can survive in nature for centuries. New Phytologist, 214, 1398-1402.
[6] Clymo RS, Duckett JG (1986). Regeneration of Sphagnum. New Phytologist, 102, 589-614.
[7] Du JJ, Chen ZW (2010). The methods of path analysis by SPSS linear regression. Bulletin of Biology, 45(2), 4-6.
doi: 10.3969/j.issn.0006-3193.2010.02.002
[ 杜家菊, 陈志伟 (2010). 使用SPSS线性回归实现通径分析的方法. 生物学通报, 45(2), 4-6.]
doi: 10.3969/j.issn.0006-3193.2010.02.002
[8] Feng L, Bu ZJ, Mallik A, Wang ZC, Liu SS, Wu YH (2017). Continuous waterlogging may not facilitate germinability maintenance of Sphagnum spores. Wetlands, 37, 1015-1022.
[9] Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC (2009). Global patterns in belowground communities. Ecology Letters, 12, 1238-1249.
[10] González-Benito ME, Pérez-García F, Tejeda G, Gómez- Campo C (2011). Effect of the gaseous environment and water content on seed viability of four Brassicaceae species after 36 years storage. Seed Science and Technology, 39, 443-451.
[11] Hättenschwiler S, Vitousek PM (2000). The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in Ecology & Evolution, 15, 238-243.
[12] Jauhiainen S (1998). Seed and spore banks of two boreal mires. Annales Botanici Fennici, 35, 197-201.
[13] Ke X, Lu W, Conrad R (2015). High oxygen concentration increases the abundance and activity of bacterial rather than archaeal nitrifiers in rice field soil. Microbial Ecology, 70, 961-970.
[14] Li J, He Y, Ma D, He B, Wang Y, Chen B (2018a). Volatile allelochemicals of Chenopodium ambrosioides L. induced mitochondrion-mediated Ca 2+-dependent and caspase-‌dependent apoptosis signaling pathways in receptor plant cells. Plant and Soil, 425, 297-308.
[15] Li Y, Rashid A, Wang HJ, Hu AY, Lin LF, Yu CP, Chen M, Sun Q (2018b). Contribution of biotic and abiotic factors in the natural attenuation of sulfamethoxazole: A path analysis approach. Science of the Total Environment, 633, 1217-1226.
[16] Liu LJ, Bu ZJ, Liu S, Chen YD, Feng L, Fu B, Yang YH, Wang SZ (2019). Sand and dust deposition may retard the autogenic vegetation succession of peatlands. Scientia Geographica Sinica, 39, 351-358.
[ 刘礼洁, 卜兆君, 刘霜, 陈永达, 冯璐, 付彪, 杨云荷, 王升忠 (2019). 沙尘沉降可能阻滞泥炭地植被的自发演替. 地理科学, 39, 351-358.]
[17] McLetchie DN (1999). Dormancy/Nondormancy cycles in spores of the liverwort Sphaerocarpos texanus. The Bryologist, 102, 15-21.
[18] Michel P, Burritt DJ, Lee WG (2011). Bryophytes display allelopathic interactions with tree species in native forest ecosystems. Oikos, 120, 1272-1280.
[19] Mishler BD, Newton AE (1988). Influences of mature plants and desiccation on germination of spores and gametophyticfragments of Tortula. Journal of Bryology, 15, 327-342.
[20] Montenegro G, Portaluppi MC, Salas FA, Díaz MF (2009). Biological properties of the Chilean native moss Sphagnum magellanicum. Biological Research, 42, 233-237.
[21] Ooi MKJ, Auld TD, Denham AJ (2009). Climate change and bet-hedging: Interactions between increased soil temperatures and seed bank persistence. Global Change Biology, 15, 2375-2386.
[22] Pinsonneault AJ, Moore TR, Roulet NT (2016). Effects of long-term fertilization on peat stoichiometry and associated microbial enzyme activity in an ombrotrophic bog. Biogeochemistry, 129, 149-164.
[23] Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007). Desiccation-tolerance in bryophytes: A review. The Bryologist, 110, 595-621.
[24] Rudolph H, Kirchhoff M, Gliesmann S (1988). Sphagnum culture techniques. In: Glime JM ed. Methods in Bryology. Proceedings of the Bryological Methods Workshop, Mainz, Hattori Botanical Laboratory, Nichinan, Japan.
[25] Saatkamp A, Poschlod P, Venable DL (2014). The functional role of soil seed banks in natural communities. In: Gallagher RS ed. Seeds: The Ecology of Regeneration in Plant Communities. CABI, Wallingford. 263-295.
[26] Shen-Miller J, Mudgett MB, Schopf JW, Clarke S, Berger R (1995). Exceptional seed longevity and robust growth: Ancient Sacred Lotus from China. American Journal of Botany, 82, 1367-1380.
[27] Song YY, Song CC, Meng HN, Swarzenski CM, Wang XW, Tan WW (2017). Nitrogen additions affect litter quality and soil biochemical properties in a peatland of Northeast China. Ecological Engineering, 100, 175-185.
[28] Sundberg S, Rydin H (2000). Experimental evidence for a persistent spore bank in Sphagnum. New Phytologist, 148, 105-116.
[29] Sundberg S, Rydin H (2002). Habitat requirements for establishment of Sphagnum from spores. Journal of Ecology, 90, 268-278.
[30] Taârit MB, Msaada K, Hosni K, Marzouk B (2012). Physiological changes, phenolic content and antioxidant activity of Salvia officinalis L. grown under saline conditions. Journal of the Science of Food and Agriculture, 92, 1614-1619.
[31] Tellier A (2019). Persistent seed banking as eco-evolutionary determinant of plant nucleotide diversity: Novel population genetics insights. New Phytologist, 221, 725-730.
[32] Turetsky MR (2003). The role of bryophytes in carbon and nitrogen cycling. The Bryologist, 106, 395-409.
[33] van Zanten BO (1978). Experimental studies on trans-oceanic long-range dispersal of moss spores in the Southern Hemisphere. Journal of the Hattori Botanical Laboratory, 44, 445-482.
[34] Verhoeven JTA, Liefveld WM (1997). The ecological significance of organochemical compounds in Sphagnum. Acta Botanica Neerlandica, 46, 117-130.
[35] Wheeler BD, Proctor MCF (2000). Ecological gradients, subdivisions and terminology of north-west European mires. Journal of Ecology, 88, 187-203.
[36] Whitehead J, Wittemann M, Cronberg N (2018). Allelopathy in bryophytes—A review. Lindbergia, 41, 01097. DOI: 10.25227/linbg.01097.
[37] Yu Z, Dahlgren RA (2000). Evaluation of methods for measuring polyphenols in conifer foliage. Journal of Chemical Ecology, 26, 2119-2140.
[38] Yuan M, Bu ZJ, Liu C, Ma JZ, Wang SZ (2015). Effects of water level and light intensity on capsule production dynamics of Sphagnum capillifolium. Chinese Journal of Plant Ecology, 39, 501-507.
[ 袁敏, 卜兆君, 刘超, 马进泽, 王升忠 (2015). 水位与光强变化对尖叶泥炭藓孢蒴生产动态的影响. 植物生态学报, 39, 501-507.]
[1] YUAN Min,BU Zhao-Jun,LIU Chao,MA Jin-Ze,WANG Sheng-Zhong. Effects of water level and light intensity on capsule production dynamics of Sphagnum capillifolium [J]. Chin J Plan Ecolo, 2015, 39(5): 501-507.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Wang-Da ZHAO Guo-PingYao Hai-GenZHANG Guo-Ping. Application of Canopy Temperature in Screening ofRice Genotypes with Resistance to Drought[J]. Chin Bull Bot, 2001, 18(01): 70 -75 .
[2] LIU Jie MO Jie-Sheng LIU Gong-She QI Dong-Mei LI Fang-Fang. Advances in Study on Sunflower Molecular Biology[J]. Chin Bull Bot, 2001, 18(01): 31 -39 .
[3] Xu Bing-sheng and Gu De-xing. Polymorphism in plant population[J]. Chin Bull Bot, 1983, 1(01): 24 -25 .
[4] Zhou Chang. Advances in Research on Fusion of Plant Reproductive Cell[J]. Chin Bull Bot, 1994, 11(04): 12 -16 .
[5] Cai De-tian and Zhou Chang. Induction of Haploid Plantlets by Anther Culture in Daucus carrota L.[J]. Chin Bull Bot, 1983, 1(02): 36 -37 .
[6] Yu Tetsun. Book Review: The Bibliography of Chinese Botany. 1857-1981[J]. Chin Bull Bot, 1985, 3(02): 64 .
[7] Ke Shan-qiang;Gui Yao-lin and Guo Zhong-chen. Studies on the Artificial Seeds of Plant[J]. Chin Bull Bot, 1989, 6(04): 205 -210 .
[8] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[9] Jiang Yue-ming;Lin Shu-xian and Chen Fang. The Granulation and Control of Harvested Citrus Fruit[J]. Chin Bull Bot, 1991, 8(02): 9 -12 .
[10] Liming Zhao;Shujun Liu;Songquan Song;. Efficient Induction of Callus and Plant Regeneration from Seeds and Mature Embryos of Sweet Sorghum[J]. Chin Bull Bot, 2008, 25(04): 465 -468 .