Chin J Plan Ecolo ›› 2013, Vol. 37 ›› Issue (2): 132-141.doi: 10.3724/SP.J.1258.2013.00014

• Research Articles • Previous Articles     Next Articles

Determination of spatial scale of response unit for the WASSI-C eco-hydrological model—a case study on the upper Zagunao River watershed of China

LIU Ning1, SUN Peng-Sen1*, LIU Shi-Rong1, and SUN Ge2   

  1. 1Key Laboratory of Forest Ecology and Environment of the State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China;

    2Eastern Forest Environmental Threat Assessment Center, USDA Forest Service, Raleigh, NC 27606, USA
  • Received:2012-08-27 Revised:2013-01-15 Online:2013-01-31 Published:2013-02-01
  • Contact: SUN Peng-Sen


Aims Optimal spatial scale of hydrological response unit (HRU) is a precondition for eco-hydrological modeling as it is essential to improve accuracy. Our objective was to evaluate the spatial scale of HRU for application of the WASSI-C model.
Methods We determined the best HRU scale for the eco-hydrological model (WASSI-C) through examining the modeling accuracies at different HRU thresholds. This study focused on a large watershed, the upper Zagunao River watershed, situated in the upper reach of the Minjiang River, Yangtze River Basin, China.
Important findings Variation of spatial scales in HRU significantly affected the modeling accuracy. With the increase of the spatial scale of HRU, the accuracy of simulated results first increased then remained relatively unchanged and then decreased, suggesting existence of a threshold around 85 km2 in HRU for this model for this watershed. We validated the model using this optimum spatial scale and discussed the potential to improve model output by addressing input parameters such as temperature.

[1] Cao MK, Woodward FI (1998). Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology, 4, 185-198. CrossRef
[2] Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A(1996). An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10, 603-628. CrossRef
[3] Hao FH, Zhang ZS, Cheng HG (2004). Discussion on reasonable subdivision level of watershed for distributed hydrologic model. Journal of Soil and Water Conversation, 17, 75-78. (in Chinese with English abstract) [郝芳华, 张雪松, 程红光 (2004). 分布式水文模型亚流域合理划分水平刍议. 水土保持学报, 17, 75-78. ] CrossRef
[4] Hamon WR (1963). Computation of direct runoff amounts from storm rainfall. International Association of Hydrological Sciences Publication, 63, 52-62. CrossRef
[5] Jiang XY (1963). The primary study on habitat type of alpine forest in Miyaluo and Markang, West Sichuan. Scientia Silvae Sinicae, 8, 321-335. CrossRef
[6] Kramer K, Leinonen I, Bartelink HH, Berbigier P, Borghetti M, Bernhofer C, Cienciala E, Dolman AJ, Froer O, Gracia CA (2002). Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Global Change Biology, 8, 213-230. CrossRef
[7] Liu J, Chen JM, Cihlar J, Park WM (1997). A process-based boreal ecosystem productivity simulator using remote Sensing inputs. Remote Sensing of the Environment, 62, 158. CrossRef
[8] Liu N, Sun PS, Liu SQ (2012). Research advances in simulating land water-carbon coupling. Chinese Journal of Applied Ecology, 23, 3187-3196. (in Chinese with English abstract) [刘宁, 孙鹏森, 刘世荣 (2012). 陆地水碳耦合模拟研究进展. 应用生态学报, 23, 3187-3196. ] CrossRef
[9] McCuen RH, Knight Z, Cutter AG (2006). Evaluation of the Nash-Sutcliffe Efficiency Index. Journal of Hydrologic Engineering, 11, 597-602. CrossRef
[10] Penman HL (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the royal society of London. Series A, 193, 120-145. CrossRef
[11] Shi XZ, Yu DS, Xu SX, Warner ED, Wang HJ, Sun WX, Zhao YC, Gong ZT (2010). Cross-reference for relating genetic soil classification of China with WRB at different scales. Geothermal, 155, 344-350. CrossRef
[12] Shi XZ, Yu DS, Gao P (2007). Soil information system of China (SISChina) and its application. Soils, 39, 329-333. (in Chinese with English abstract) [史学正, 于东升, 高鹏 (2007). 中国土壤信息系统(SISChina)及其应用基础研究. 土壤, 39, 329-333. ] CrossRef
[13] Sun G, Alstad K, Chen JQ, Chen SP, Ford CR, Lin GH, Liu CF, Lu N, McNulty SG, Miao HX, Noormets A, Vose JM, Wilske B, Zeppel M, Zhang Y, Zhang ZQ (2011). A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology, 4, 245-255. CrossRef
[14] Sun G, Caldwell P, Noormets A, McNulty SG, Cohen E, Myers JM, Domec JC, Treasure E, Mu QZ, Xiao JF, John R, Chen JQ (2011). Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model. Journal of Geophysical Research, 116, G00J05. CrossRef
[15] Tague CL, Band LE (2004). RHESSys: regional hydro-ecologic simulation system-an object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interactions, 8, 1-42. CrossRef
[16] Tian HQ, Liu ML, Zhang C, Ren W, Xu XF, Chen GS Lu CQ, Tao B (2010). The dynamic land ecosystem model (DLEM) for simulating terrestrial processes and interactions in the context of multifactor global change. Acta Geographica Sinica, 65, 1027-1047. (in Chinese with English abstract) [田汉勤, 刘明亮, 张弛, 任巍, 徐小锋, 陈广生, 吕超群, 陶波 (2010). 全球变化与陆地系统综合集成模拟--新一代陆地生态系统动态模型(DLEM). 地理学报, 65, 1027-1047. ] CrossRef
[17] Vorosmarty CJ, Moore III B, Grace AL, Gildea MP, Melillo JM, Peterson BJ, Rastetter EB, Steudler PA (1989). Continental scale models of water balance and fluvial transport: an application to South America. Global Biogeochemical Cycles, 3, 241-265. CrossRef
[18] Wang GX, Qian J, Cheng GD (2001). Current situation and prospect of the ecological hydrology. Advance in Earth Sciences, 16, 314-323. (in Chinese with English abstract) [王根绪, 钱鞠, 程国栋 (2001). 生态水文科学研究的现状与展望. 地球科学进展, 16, 314-323. ] CrossRef
[19] Wang LH, Yan DH, Long AH, Yang SY (2009). Advances in Basin ecohydrological process modelling. Advance in Earth Sciences, 24, 891-898. (in Chinese with English abstract) [王凌河, 严登华, 龙爱华, 杨舒媛 (2009). 流域生态水文过程模拟研究进展. 地球科学进展, 24, 891-898] CrossRef
[20] Wang SP, Zhang ZQ, Sun G, McNulty S, Zhang ML, Li JL (2008). Effect of grid size and time step of MIKESHE on hydrological processes modeling at watershed scale. Hydrology, 28, 1-7. (in Chinese with English abstract) [王盛萍, 张志强, 孙阁, McNulty S, 张满良, 李建牢 (2008). 基于物理过程分布式流域水文模型尺度依赖性. 水文, 28, 1-7. ] CrossRef
[21] Wolock DM (1995). Effects of subbasin size on topographic characteristics and simulated RUNOFF paths in Sleepers River watershed, Vermont. Water Resource Research, 31, 1989-1997. CrossRef
[22] Wood EF, Sivapalan M, Beven K (1998). Effects of spatial variability and scale with implications to hydrologic modeling. Journal of Hydrology, 102, 29-47. CrossRef
[23] Yu Z, Sun PS, Liu SR (2011). Phenological change of main vegetation types along a North-South Transect of Eastern China. Chinese Journal of Plant Ecology, 34, 316-329. (in Chinese with English abstract) [余振, 孙鹏森, 刘世荣 (2011). 中国东部南北样带主要植被类型物候期的变化. 植物生态学报, 34, 316-329. ] CrossRef
[24] Zhang K, Kimball JS, Nemani RR, Running SW (2010). A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resource Research, 46, W9522. CrossRef
[25] Zhang XS, Hao FH, Cheng HG, Yang ZF (2004). Influence of subdivision of watershed on distributed hydrological model. Journal of Hydraulic Engineering, 35, 119-123. (in Chinese with English abstract) [张雪松, 郝芳华, 程红光 (2004). 亚流域划分对分布式水文模型模拟结果的影响. 水利学报, 35, 119-123. ] CrossRef
No related articles found!
Full text



[1] Xiling Dai;Jianguo Cao;Quanxi Wang* . Formation and Development of Sporoderm of Ceratopteris thalictroides (L.) Brongn. (Parkeriaceae)[J]. Chin Bull Bot, 2008, 25(01): 72 -79 .
[2] Liu De-li. Heat-Shock Proteins of Plants and their Functions[J]. Chin Bull Bot, 1996, 13(01): 14 -19 .
[3] Chengqiang Ding, Dan Ma, Shaohua Wang, Yanfeng Ding. Optimization Process and Method of 2-D Electrophoresis for Rice Proteomics[J]. Chin Bull Bot, 2011, 46(1): 67 -73 .
[4] Xing Xue-rong Lu Chun-sheng Guo Da-li. Effect of Oraganic Acid to Nitrate Reductase and Nitrite Reductase Activity in the Vegetables[J]. Chin Bull Bot, 1995, 12(专辑2): 156 -162 .
[5] SONG Ke-Min. Phosphorus Nutrition of Plants: Phosphate Transport Systems and their Regulation[J]. Chin Bull Bot, 1999, 16(03): 251 -256 .
[6] CHEN Fa-Ju;YANG Ying-Gen;ZHAO De-Xiu;GUI Yao-Lin and GUO Zhong-Chen. Advances in Studies of Species Habitats Distribution and Chemical Composition of Snow Lotuses(Saussurea) in China[J]. Chin Bull Bot, 1999, 16(05): 561 -566 .
[7] YANG Hong-QiangJIE Yu-lingLI Jun. The Stresses Messenger from Roots and Its Production and Transport in Plant[J]. Chin Bull Bot, 2002, 19(01): 56 -62 .
[8] Xianwei Zhang;Li Yang;Tao Zhang;Kaifeng Jiang;Guixue Wang;Jiakui Zheng;*;Xianlin Ni;Cui Tian;Yingjiang Cao. QTL Mapping for Zinc Content in Rice Grains[J]. Chin Bull Bot, 2009, 44(05): 594 -600 .
[9] Hui Li, Guangcan Zhang, Huicheng Xie, Jingwei Xu, Chuanrong Li, Juwen Sun. The Effect of Phenol Concentration on Photosynthetic Physiological Parameters of Salix babylonica[J]. Chin Bull Bot, 2016, 51(1): 31 -39 .
[10] . [J]. Chin Bull Bot, 1996, 13(专辑): 97 -98 .