植物生态学报 ›› 2015, Vol. 39 ›› Issue (4): 388-397.DOI: 10.17521/cjpe.2015.0038
所属专题: 生态系统碳水能量通量
刘诚1,*(), 黄建平1,**(
), 刁一伟1, 温学发2, 肖薇1, 张弥1, 李旭辉1, 刘寿东1
收稿日期:
2014-09-04
接受日期:
2015-01-10
出版日期:
2015-04-01
发布日期:
2015-04-21
通讯作者:
刘诚,黄建平
作者简介:
*作者简介:E-mail:
基金资助:
LIU Cheng1,*(), HUANG Jian-Ping1,**(
), DIAO Yi-Wei1, WEN Xue-Fa2, XIAO Wei1, ZHANG Mi1, LEE Xu-Hui1, LIU Shou-Dong1
Received:
2014-09-04
Accepted:
2015-01-10
Online:
2015-04-01
Published:
2015-04-21
Contact:
Cheng LIU,Jian-Ping HUANG
About author:
# Co-first authors
摘要:
碳循环模型参数的确定和优化对生态系统净CO2交换(NEE)的模型计算至关重要。该文利用2010-2012年ChinaFLUX千烟洲站点的通量观测资料, 对植被光合呼吸模型(VPRM)的参数进行了优化。通过比较两种不同的拟合方案, 发现利用传统光响应方程得到的参数不适用于VPRM, 而利用模型自身反演方案拟合得到的参数最大光量子效率(λ)达0.203, 大于C3植物平均值, 但与其他相关研究结果吻合。采用VPRM模型反演方案优化得到的参数后, VPRM能较准确地模拟千烟洲站不同季节的NEE。其对全年半小时NEE模拟的平均误差为-0.86 μmol·m-2·s-1, 相关系数为0.72。模型可准确地模拟生长旺季NEE平均日变化, 但低估了非生长旺季白天吸收峰值约52%。通过个例分析发现, VPRM模型可以准确模拟晴天条件下NEE的时间变化, 但对阴雨天条件下NEE的模拟还存在较大的不确定性。该研究将有助于进一步改进CO2通量及浓度的区域数值模拟。
刘诚, 黄建平, 刁一伟, 温学发, 肖薇, 张弥, 李旭辉, 刘寿东. 植被光合呼吸模型在千烟洲亚热带常绿针叶林的优化及验证. 植物生态学报, 2015, 39(4): 388-397. DOI: 10.17521/cjpe.2015.0038
LIU Cheng,HUANG Jian-Ping,DIAO Yi-Wei,WEN Xue-Fa,XIAO Wei,ZHANG Mi,LEE Xu-Hui,LIU Shou-Dong. Optimization and evaluation of vegetation photosynthesis and respiration model using the measurements collected from the forest site of subtropical coniferous-evergreen. Chinese Journal of Plant Ecology, 2015, 39(4): 388-397. DOI: 10.17521/cjpe.2015.0038
图1 VPRM模型结构示意图。EVI, 增强型植被指数; GEE, 总生态系统CO2交换; LSWI, 地表水分指数; NEE, 净生态系统CO2交换; PAR, 光合有效辐射; R, 生态系统呼吸; T, 温度。
Fig. 1 Schematic diagram of the vegetation photosynthesis respiration model (VPRM). EVI, enhanced vegetation index; GEE, gross ecosystem CO2 exchange; LSWI, land surface water index; NEE, net ecosystem CO2 exchange; PAR, photosynthetically active radiation; R, respiration; T, temperature.
方案 Scheme | λ | PAR0 (μmol·m-2·s-1) | α (μmol CO2·m-2·s-1·℃-1) | β (μmol CO2·m-2·s-1) |
---|---|---|---|---|
1 | 0.048 | 514 | 0.164 | 0.906 |
2 | 0.203 | 345 | 0.164 | 0.906 |
表1 采用2010-2011年千烟洲观测资料两种不同方案得到的参数对比
Table 1 A comparison of the parameters derived from two schemes at Qianyanzhou site
方案 Scheme | λ | PAR0 (μmol·m-2·s-1) | α (μmol CO2·m-2·s-1·℃-1) | β (μmol CO2·m-2·s-1) |
---|---|---|---|---|
1 | 0.048 | 514 | 0.164 | 0.906 |
2 | 0.203 | 345 | 0.164 | 0.906 |
图2 千烟洲2012年全年VPRM模拟的生态系统净CO2交换(NEE-VPRM)与观测值(NEE-Obs)的对比。+, 方案一参数模拟的NEE; ·, 方案二参数模拟的NEE; 黑色实线代表1:1线。
Fig. 2 A comparison of VPRM-simulated net ecosystem CO2 exchange (NEE-VPRM) with observed NEE (NEE-Obs) for year 2012 at Qianyanzhou site. +, simulated NEE with optimized parameters of scheme 1; ·, simulated NEE with optimized parameters of scheme 2; Solid black line, 1:1 line.
2012年 Year 2012 | 斜率 Slope | 截距 Intercept (μmol·m-2·s-1) | R平方值 R square | 均方根误差 Root mean squared error (μmol·m-2·s-1) | 平均误差 Mean bias (μmol·m-2·s-1) | 有效数据 Valid data | |
---|---|---|---|---|---|---|---|
方案一 Scheme 1 | 全年0.5 h NEE All year 0.5 h NEE | 0.17 | 2.44 | 0.51 | 9.58 | 6.68 | 5 909 |
生长旺季时刻平均 Mean diurnal variation during the peak growing season | 0.27 | 3.49 | 0.97 | 8.01 | 5.63 | 48 | |
非生长旺季时刻平均 Mean diurnal variation during the non-peak growing season | 0.06 | 1.78 | 0.61 | 4.12 | 2.24 | 48 | |
方案二 Scheme 2 | 全年0.5 h NEE All year 0.5 h NEE | 0.73 | -2.23 | 0.52 | 6.23 | -0.86 | 5 909 |
生长旺季时刻平均 Mean diurnal variation during the peak growing season | 0.92 | 0.65 | 0.96 | 1.72 | 0.87 | 48 | |
非生长旺季时刻平均 Mean diurnal variation during the non-peak growing season | 0.50 | 0.66 | 0.89 | 2.15 | 0.91 | 48 |
表2 VPRM模拟生态系统净CO2交换(NEE)与观测值之间统计分析
Table 2 Statistical analysis between simulated net ecosystem CO2 exchange (NEE) and observed NEE
2012年 Year 2012 | 斜率 Slope | 截距 Intercept (μmol·m-2·s-1) | R平方值 R square | 均方根误差 Root mean squared error (μmol·m-2·s-1) | 平均误差 Mean bias (μmol·m-2·s-1) | 有效数据 Valid data | |
---|---|---|---|---|---|---|---|
方案一 Scheme 1 | 全年0.5 h NEE All year 0.5 h NEE | 0.17 | 2.44 | 0.51 | 9.58 | 6.68 | 5 909 |
生长旺季时刻平均 Mean diurnal variation during the peak growing season | 0.27 | 3.49 | 0.97 | 8.01 | 5.63 | 48 | |
非生长旺季时刻平均 Mean diurnal variation during the non-peak growing season | 0.06 | 1.78 | 0.61 | 4.12 | 2.24 | 48 | |
方案二 Scheme 2 | 全年0.5 h NEE All year 0.5 h NEE | 0.73 | -2.23 | 0.52 | 6.23 | -0.86 | 5 909 |
生长旺季时刻平均 Mean diurnal variation during the peak growing season | 0.92 | 0.65 | 0.96 | 1.72 | 0.87 | 48 | |
非生长旺季时刻平均 Mean diurnal variation during the non-peak growing season | 0.50 | 0.66 | 0.89 | 2.15 | 0.91 | 48 |
图3 千烟洲2012年生长旺季(4-9月)模拟的生态系统净CO2交换(NEE)与观测值的平均日变化。NEE-Obs, NEE观测值; NEE-Mod, 方案二得到的VPRM模拟NEE。
Fig. 3 A comparison between the observed and modeled mean diurnal variation of net ecosystem CO2 exchange (NEE) during the peak growing season (April to September) of 2012 at Qianyanzhou site. NEE-Obs, observed NEE; NEE-Mod, simulated NEE with optimized parameters of scheme 2.
图4 千烟洲2012年生长旺季(4-9月)生态系统净CO2交换的VPRM模拟值(NEE-VPRM)与观测值(NEE-Obs)的平均日变化回归分析。黑色圆圈代表方案二得到的VPRM模型模拟NEE; 虚线为1:1线。
Fig. 4 Regression analyses between the VPRM modeled net ecosystem CO2 exchange (NEE-VPRM) and observed NEE (NEE-Obs) during growing season (April to September) in year 2012 at Qianyanzhou site. Black circle: simulated NEE with optimized parameters of scheme 2; dotted line: 1:1 line.
图5 千烟洲2012年非生长旺季模拟的生态系统净CO2交换(NEE)与观测值的平均日变化。NEE-Obs, NEE观测值; NEE-Mod, 方案二得到的VPRM模拟NEE。
Fig. 5 A comparison between the observed and modeled mean diurnal variation of net ecosystem CO2 exchange (NEE) during the non-peak growing season of 2012 at Qianyanzhou site. NEE-Obs, observed NEE; NEE-Mod, simulated NEE with optimized parameters of scheme 2.
图6 千烟洲2012年DOY184-190 (晴天)的生态系统净CO2交换(NEE)模拟值与观测值对比。NEE-Obs, NEE观测值; NEE-Mod, 方案二得到的VPRM模拟NEE; GEE-Mod, 方案二得到的VPRM模拟总生态系统CO2交换量; R-Mod, 方案二得到的VPRM模拟生态系统呼吸。
Fig. 6 A comparison of simulated net ecosystem CO2 exchange (NEE) with observations at Qianyanzhou site during the day 184-190 of 2012 (sunny). NEE-Obs, observed NEE; NEE-Mod, simulated NEE with optimized parameters of scheme 2; GEE-Mod, simulated gross ecosystem CO2 exchange with optimized parameters of scheme 2; R-Mod,simulated respiration with optimized parameters of scheme 2.
图7 千烟洲2012年DOY152-158 (阴天)的生态系统净CO2交换(NEE)模拟值与观测值对比。NEE-Obs, NEE观测值; NEE-Mod, 方案二得到的VPRM模拟NEE; GEE-Mod, 方案二得到的VPRM模拟总生态系统CO2交换量; R-Mod, 方案二得到的VPRM模拟生态系统呼吸。
Fig. 7 A comparison of simulated net ecosystem CO2 exchange (NEE) with observations at Qianyanzhou site during the day 152-158 of 2012 (cloudy). NEE-Obs, observed NEE; NEE-Mod, simulated NEE with optimized parameters of scheme 2; GEE-Mod, simulated gross ecosystem CO2 exchange with optimized parameters of scheme 2; R-Mod,simulated respiration with optimized parameters of scheme 2.
[1] | Ahmadov R, Gerbig C, Kretschmer R, Koerner S, Neininger B, Dolman AJ, Sarrat C (2007). Mesoscale covariance of transport and CO2 fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmosphere-biosphere model. Journal of Geophysical Research: Atmospheres (1984-2012), 112(D22), doi: 10.1029/2007 JD008552. |
[2] | Ahmadov R, Gerbig C, Kretschmer R, Körner S, Rödenbeck C, Bousquet P, Ramonet M (2009). Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2.Biogeosciences, 6, 807-817. |
[3] | Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001). Fluxnet: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities.Bulletin of the American Meteorological Society, 82, 2415-2434. |
[4] | Clark KL, Gholz HL, Castro MS (2004). Carbon dynamics along a chronosequence of slash pine plantations in north Florida.Ecological Applications, 14, 1154-1171. |
[5] | Diao YW, Huang JP, Liu C, Cui J, Liu SD (2015). A modeling study of CO2 flux and concentrations over Yangtze River Delta with the WRF-GHG model.Chinese Journal of Atmosphere Sciences. doi: 10.3878/j.issn.1006-9895.1409.14127.(in Chinese with English abstract) |
[刁一伟, 黄建平, 刘诚, 崔健, 刘寿东 (2015). 长三角地区净生态系统碳通量及大气二氧化碳浓度的数值模拟. 大气科学, doi: 10.3878/j.issn.1006-9895.1409.14127.] | |
[6] | Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law B, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001). Gap filling strategies for long term energy flux data sets.Agricultural and Forest Meteorology, 107, 71-77. |
[7] | Goulden ML, Daube BC, Fan SM, Sutton DJ, Bazzaz A, Munger JW, Wofsy SC (1997). Physiological responses of a black spruce forest to weather.Journal of Geophysical Research: Atmospheres (1984-2012), 102(D24), 28987-28996. |
[8] | Hansen MC, DeFries RS, Townshend JRG, Carroll M, Dimiceli C, Sohlberg RA (2003). Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm.Earth Interactions, 7(10), 1-15. |
[9] | Hilton TW, Davis KJ, Keller K, Urban NM (2013). Improving North American terrestrial CO2 flux diagnosis using spatial structure in land surface model residuals.Biogeosciences, 10, 4607-4625. |
[10] | Hollinger DY, Goltz SM, Davidson EA, Lee JT, Tu K, Valentine HT (1999). Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest.Global Change Biology, 5, 891-902. |
[11] | Huete AR, Liu HQ, Batchily K, Van Leeuwen W (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS.Remote Sensing of Environment, 59, 440-451. |
[12] | IPCC (2007). Climate change 2007: The physical science basis. In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. |
[13] | King DA, Turner DP, Ritts WD (2011). Parameterization of a diagnostic carbon cycle model for continental scale application.Remote Sensing of Environment, 115, 1653-1664. |
[14] | Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw UKT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2002). Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation.Agricultural and Forest Meteorology, 113, 97-120. |
[15] | Li HG, Wu J (2006). Uncertainty analysis in ecological studies: An overview. In: Wu J, Jones KB, Li H, Loucks OL eds. Scaling and Uncertainty Analysis in Ecology: Methods and Applications. Springer, Dordrecht, The Netherlands. 45-66. |
[16] | Liu YF, Yu GR, Wen XF, Wang YH, Song X, Li J, Sun XM, Yang FT, Chen YR, Liu QJ (2006). Seasonal dynamics of CO2 fluxes from subtropical plantation coniferous ecosystem.Science in China Series D: Earth Science, 49, 99-109. |
[刘允芬, 于贵瑞, 温学发, 王迎红, 宋霞, 李菊, 孙晓敏, 杨风亭, 陈永瑞, 刘琪璟 (2006). 千烟洲中亚热带人工林生态系统CO2通量的季节变异特征. 中国科学D辑: 地球科学, 36, 91-102.] | |
[17] | Mahadevan P, Wofsy SC, Matross DM, Xiao XM, Dunn AL, Lin JC, Gerbig C, Munger JW, Chow VY, Gottlieb EW (2008). A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM). Global Biogeochemical Cycles, 22, GB2005, doi: 10.1029/2006GB002735. |
[18] | Mi N, Yu GR, Wang PX, Wen XF, Sun XM, Zhang LM, Song X, Wang SS (2007). Modeling seasonal variation of CO2 flux in a subtropical coniferous forest using the EALCO model. Journal of Plant Ecology (in Chinese), 31, 1119-1131.(in Chinese with English abstract) |
[米娜, 于贵瑞, 王盘兴, 温学发, 孙晓敏, 张雷明, 宋霞, 王树森 (2007). 基于EALCO模型对中亚热带人工针叶林CO2通量季节变异的模拟. 植物生态学报, 31, 1119-1131.] | |
[19] | Monteith JL (1972). Solar radiation and productivity in tropical ecosystems.Journal of Applied Ecology, 9, 747-766. |
[20] | Pillai D, Gerbig C, Ahmadov R, Rödenbeck C, Kretschmer R, Koch T, Thompson R, Neininger B, Lavrié JV (2011). High-resolution simulations of atmospheric CO2 over complex terrain-representing the Ochsenkopf mountain tall tower.Atmospheric Chemistry and Physics, 11, 7445-7464. |
[21] | Potter CS, Klooster SA (1998). Interannual variability in soil trace gas (CO2, N2O, NO) fluxes and analysis of controllers on regional to global scales.Global Biogeochemical Cycles, 12, 621-635. |
[22] | Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993). Terrestrial ecosystem production: a process model based on global satellite and surface data.Global Biogeochemical Cycles, 7, 811-841. |
[23] | Turner DP, Ritts WD, Styles JM, Yang Z, Cohen WB, Law BE, Thornton PE (2006). A diagnostic carbon flux model to monitor the effects of disturbance and interannual variation in climate on regional NEP.Tellus B, 58, 476-490. |
[24] | Veroustraete F, Sabbe H, Eerens H (2002). Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data.Remote Sensing of Environment, 83, 376-399. |
[25] | Wofsy SC, Harriss RC (2002). The North American Carbon Program (NACP). Report of the NACP Committee of the US Interagency Carbon Cycle Science Program. US Global Change Research Program, Washington, DC. |
[26] | Xiao XM, Boles S, Liu JY, Zhang DF, Liu ML (2002). Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data.Remote Sensing of Environment, 82, 335-348. |
[27] | Xiao XM, Hollinger D, Aber J, Goltz M, Davidson EA, Zhang QY, Moore B (2004b). Satellite-based modeling of gross primary production in an evergreen needleleaf forest.Remote Sensing of Environment, 89, 519-534. |
[28] | Xiao XM, Zhang QY, Braswell B, Urbanski S, Boles S, Wofsy S, Moore B, Ojima D (2004a). Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data.Remote Sensing of Environment, 91, 256-270. |
[29] | Xiao XM, Zhang QY, Hollinger D, Aber J, Moore B (2005a). Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data.Ecological Applications, 15, 954-969. |
[30] | Xiao XM, Zhang QY, Saleska S, Hutyra L, de Camargo P, Wofsy S, Frolking S, Boles S, Keller M, Moore B (2005b). Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest.Remote Sensing of Environment, 94, 105-122. |
[31] | Yuan W, Liu S, Cai W, Dong W, Chen J, Arain A, Blanken PD, Cescatti A, Wohlfahrt G, Georgiadis T, Genesio L, Gianelle D, Grelle A, Kiely G, Knohl A, Liu D, Marek M, Merbold L, Montagnani L, Panferov O, Peltoniemi M, Rambal S, Raschi A, Varlagin A, Xia J (2013). Are vegetation-specific model parameters required for estimating gross primary production?Geoscientific Model Development Discussions, 6, 5475-5488. |
[32] | Yuan WP, Cai WW, Xia JZ, Liu SG, Dong WJ, Merbold L, Law B, Arain A, Beringer J, Bernhofer C, Black A, Blanken PD, Cescatti A, Chen Y, Francois L, Gianelle D, Janssens IA, Jung M, Kato T, Kiely G, Liu D, Marcolla B, Montagnani L, Raschi A, Roupsard O, Varlagin A, Wohlfahrt G (2014). Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agricultural and Forest Meteorology, 192-193, 108-120. |
[33] | Yuan WP, Liu SG, Yu GR, Bonnefond JM, Chen JQ, Davis K, Desai AR, Goldstein AH, Gianelle D, Rossi F, Suyker AE, Verma SB (2010). Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data.Remote Sensing of Environment, 114, 1416-1431. |
[34] | Yuan WP, Liu SG, Zhou GS, Zhou GY, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H, Goldstein AH, Goulden ML, Hollinger DY, Hu YM, Law BE, Stoy PC, Vesala T, Wofsy SC, other AmeriFlux collaborators (2007). Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes.Agricultural and Forest Meteorology, 143, 189-207. |
[35] | Zhang DQ, Shi PL, Zhang XZ (2005). Some advance in the main factors controlling soil respiration.Advances in Earth Science, 20, 778-785.(in Chinese with English abstract) |
[张东秋, 石培礼, 张宪洲 (2005). 土壤呼吸主要影响因素的研究进展. 地球科学进展, 20, 778-785.] | |
[36] | Zhang L, Yu GR, Luo YQ, He HL, Zhang LM (2009). Carbon cycle modeling of a broad-leaved Korean pine forest in Changbai mountain of China using the model-data fusion approach.Chinese Journal of Plant Ecology, 33, 1044-1055.(in Chinese with English abstract) |
[张黎, 于贵瑞, Luo YQ, 何洪林, 张雷明 (2009). 基于模型数据融合的长白山阔叶红松林碳循环模拟. 植物生态学报, 33, 1044-1055.] | |
[37] | Zhang LM, Yu GR, Sun XM, Wen XF, Ren CY, Song X, Liu YF, Guan DX, Yan JH, Zhang YP (2006). Seasonal variation of carbon exchange of typical forest ecosystems along the eastern forest transect in China.Science in China Series D: Earth Sciences, 49(2), 47-62. |
[38] | Zhu WQ, Chen YH, Xu D, Li J (2005). Advances in terrestrial net primary productivity (NPP) estimation models.Chinese Journal of Ecology, 24, 296-300.(in Chinese with English abstract) |
[朱文泉, 陈云浩, 徐丹, 李京 (2005). 陆地植被净初级生产力计算模型研究进展. 生态学杂志, 24, 296-300.] |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19