植物生态学报 ›› 2013, Vol. 37 ›› Issue (9): 889-900.DOI: 10.3724/SP.J.1258.2013.00092
所属专题: 入侵生态学
• 综述 • 上一篇
收稿日期:
2013-03-15
接受日期:
2013-06-24
出版日期:
2013-03-15
发布日期:
2013-09-02
通讯作者:
丁建清
作者简介:
*E-mail: dingjianqing@yahoo.com基金资助:
HUANG Wei, WANG Yi, DING Jian-Qing()
Received:
2013-03-15
Accepted:
2013-06-24
Online:
2013-03-15
Published:
2013-09-02
Contact:
DING Jian-Qing
About author:
*E-mail: dingjianqing@yahoo.com摘要:
生长于不同昆虫群落胁迫下的植物地理种群可能进化出不同的防御策略。入侵植物在原产地同时受到专食性昆虫和广食性昆虫的取食危害, 而在入侵地“逃逸”了专食性昆虫的取食危害。入侵植物对不同类型昆虫防御策略的演化可能在其成功入侵的过程中起着至关重要的作用。该文主要以原产中国入侵北美的木本植物乌桕(Triadica sebifera)为例, 并结合其他入侵植物防御策略演化的研究, 从抗性和耐受性、直接抗性和间接抗性、组成抗性和诱导抗性三个方面系统分析不同昆虫选择压力下入侵植物防御策略的演化, 同时探讨入侵植物防御策略演化对生物防治效果的影响, 指出未来的重点研究方向。
黄伟, 王毅, 丁建清. 入侵植物乌桕防御策略的适应性进化研究. 植物生态学报, 2013, 37(9): 889-900. DOI: 10.3724/SP.J.1258.2013.00092
HUANG Wei, WANG Yi, DING Jian-Qing. A review of adaptive evolution of defense strategies in an invasive plant species, Chinese tallow (Triadica sebifera). Chinese Journal of Plant Ecology, 2013, 37(9): 889-900. DOI: 10.3724/SP.J.1258.2013.00092
昆虫取食类型 Insect feeding type | 昆虫种类 Insect species | 测定指标 Measured index | 变化 Variation | 参考文献 Reference |
---|---|---|---|---|
专食性昆虫取食 Specialist insects feeding | 癞皮夜蛾 Gadirtha inexacta | 幼虫生长速率 Larval growth rate (mg·d-1) | ↑ | Huang et al., |
幼虫体重 Larval weight (g) | ↑ | Huang et al., | ||
蛹重 Pupal weight (g) | ↑ | Wang et al., | ||
取食叶片量 Leaf mass consumed (mg·d-1) | ↑ | Huang et al., | ||
花外蜜分泌量 Volume of extrafloral nectarines production | ↓ | Wang, | ||
耐受性 Tolerance | ↑ | Huang et al., | ||
乌桕卷象 Heterapoderopsis bicallosicollis | ||||
耐受性 Tolerance | ↑ | Wang et al., | ||
红胸律点跳甲 Bikasha collaris | 地上昆虫取食率 Aboveground insect feeding rate (%) | ↑ | Zou et al., | |
地上耐受性 Aboveground tolerance | ↑ | Zou et al., | ||
地下昆虫存活率 Belowground insect survival rate (%) | ↑ | Huang et al., | ||
地下耐受性 Belowground tolerance | - | Huang et al., | ||
广食性昆虫取食 Generalist insects feeding | 黄刺蛾 Cnidocampa flavescens | 幼虫体重 Larval weight (g) | - | Huang et al., |
幼虫生长速率 Larval growth rate (mg·d-1) | - | Huang et al., | ||
取食叶片量 Leaf mass consumed (mg·d-1) | - | Huang et al., | ||
耐受性 Tolerance | ↑ | Huang et al., | ||
蝗虫 Melanoplus angustipennis | 危害率 Damage rate (%) | ↑ | Lankau et al., | |
耐受性 Tolerance | ↑ | Rogers & Siemann, | ||
米兰褐软蚧 Coccus hesperidum | 花外蜜分泌量 Volume of extrafloral nectarines production | - | Carrillo et al., | |
草地贪夜蛾 Spodoptera frugiperda | 花外蜜分泌量 Volume of extrafloral nectarines production | - | Carrillo et al., | |
模拟昆虫取食 Simulated insects feeding | 花外蜜分泌量 Volume of extrafloral nectarines production | - | Rogers et al., | |
耐受性 Tolerance | ↑ | Rogers & Siemann, | ||
自然昆虫取食 Natural insects feeding | 危害率 Damage rate (%) | ↑ | Siemann & Rogers, | |
无昆虫取食 No insect feeding | 叶片单宁含量 Foliar tannin content | ↓ | Siemann & Rogers, | |
叶片黄酮含量 Foliar flavonoid content | ↑ | Wang et al., |
表1 乌桕入侵地种群和原产地种群昆虫生长发育、植物耐受性和次生代谢物质的差异
Table 1 Differences in insect performance, plant tolerance and secondary metabolites of Triadica sebifera between invasive and native populations
昆虫取食类型 Insect feeding type | 昆虫种类 Insect species | 测定指标 Measured index | 变化 Variation | 参考文献 Reference |
---|---|---|---|---|
专食性昆虫取食 Specialist insects feeding | 癞皮夜蛾 Gadirtha inexacta | 幼虫生长速率 Larval growth rate (mg·d-1) | ↑ | Huang et al., |
幼虫体重 Larval weight (g) | ↑ | Huang et al., | ||
蛹重 Pupal weight (g) | ↑ | Wang et al., | ||
取食叶片量 Leaf mass consumed (mg·d-1) | ↑ | Huang et al., | ||
花外蜜分泌量 Volume of extrafloral nectarines production | ↓ | Wang, | ||
耐受性 Tolerance | ↑ | Huang et al., | ||
乌桕卷象 Heterapoderopsis bicallosicollis | ||||
耐受性 Tolerance | ↑ | Wang et al., | ||
红胸律点跳甲 Bikasha collaris | 地上昆虫取食率 Aboveground insect feeding rate (%) | ↑ | Zou et al., | |
地上耐受性 Aboveground tolerance | ↑ | Zou et al., | ||
地下昆虫存活率 Belowground insect survival rate (%) | ↑ | Huang et al., | ||
地下耐受性 Belowground tolerance | - | Huang et al., | ||
广食性昆虫取食 Generalist insects feeding | 黄刺蛾 Cnidocampa flavescens | 幼虫体重 Larval weight (g) | - | Huang et al., |
幼虫生长速率 Larval growth rate (mg·d-1) | - | Huang et al., | ||
取食叶片量 Leaf mass consumed (mg·d-1) | - | Huang et al., | ||
耐受性 Tolerance | ↑ | Huang et al., | ||
蝗虫 Melanoplus angustipennis | 危害率 Damage rate (%) | ↑ | Lankau et al., | |
耐受性 Tolerance | ↑ | Rogers & Siemann, | ||
米兰褐软蚧 Coccus hesperidum | 花外蜜分泌量 Volume of extrafloral nectarines production | - | Carrillo et al., | |
草地贪夜蛾 Spodoptera frugiperda | 花外蜜分泌量 Volume of extrafloral nectarines production | - | Carrillo et al., | |
模拟昆虫取食 Simulated insects feeding | 花外蜜分泌量 Volume of extrafloral nectarines production | - | Rogers et al., | |
耐受性 Tolerance | ↑ | Rogers & Siemann, | ||
自然昆虫取食 Natural insects feeding | 危害率 Damage rate (%) | ↑ | Siemann & Rogers, | |
无昆虫取食 No insect feeding | 叶片单宁含量 Foliar tannin content | ↓ | Siemann & Rogers, | |
叶片黄酮含量 Foliar flavonoid content | ↑ | Wang et al., |
植物种 Plant species | 昆虫取食类型 Insect feeding type | 测定指标 Measured index | 变化 Variation | 参考文献 Reference |
---|---|---|---|---|
糖朴 Celtis laevigata | 自然昆虫取食 Natural insects feeding | 危害率 Damage rate (%) | ↑ | Siemann & Rogers, |
模拟地上昆虫取食 Simulated aboveground insects feeding | 耐受性 Tolerance | ↑ | Rogers & Siemann, | |
北美枫香 Liquidambar styraci?ua | 蝗虫 Melanoplus angustipennis Orphullela pelidna | 危害率 Damage rate (%) | ↓ | Lankau et al., |
悬铃木 Platanus occidentalis | 蝗虫 Melanoplus angustipennis Orphullela pelidna | 危害率 Damage rate (%) | ↓ | Lankau et al., |
表2 入侵植物乌桕和入侵地乡土植物昆虫生长发育和植物耐受性的差异
Table 2 Differences in insect performance and plant tolerance between invasive plant Triadica sebifera and native plant species in invaded range
植物种 Plant species | 昆虫取食类型 Insect feeding type | 测定指标 Measured index | 变化 Variation | 参考文献 Reference |
---|---|---|---|---|
糖朴 Celtis laevigata | 自然昆虫取食 Natural insects feeding | 危害率 Damage rate (%) | ↑ | Siemann & Rogers, |
模拟地上昆虫取食 Simulated aboveground insects feeding | 耐受性 Tolerance | ↑ | Rogers & Siemann, | |
北美枫香 Liquidambar styraci?ua | 蝗虫 Melanoplus angustipennis Orphullela pelidna | 危害率 Damage rate (%) | ↓ | Lankau et al., |
悬铃木 Platanus occidentalis | 蝗虫 Melanoplus angustipennis Orphullela pelidna | 危害率 Damage rate (%) | ↓ | Lankau et al., |
性状 Trait | 测定指标 Measured index | 变化 Variation | 参考文献 Reference |
---|---|---|---|
生理性状 Physiological traits | 叶面积 Leaf area (cm2) | ↑ | Zou et al., |
光合组织分配 Photosynthetic tissue allocation (m2·g-1) | ↑ | Zou et al., | |
非光合组织分配 Non-photosynthetic tissue allocation (m2·g-1) | ↑ | Zou et al., | |
净CO2同化速率 Net CO2assimilation rate (μmol·m-2·s-1) | ↑ | Zou et al., | |
暗呼吸速率 Dark respiration rate (μmol·m-2·s-1) | - | Zou et al., | |
叶片碳氮比 Foliar C:N | ↑ | Siemann & Rogers, | |
叶片碳水化合物蛋白质比 Foliar carbohydrate : protein | ↑ | Huang et al., | |
繁殖性状 Reproductive trait | 植株结实率 Percentage of the trees produced seed (%) | ↑ | Siemann & Rogers, |
生长性状 Growth traits | 地径 Stem diameter (cm) | ↑ | Siemann & Rogers, |
株高 Plant height (cm) | ↑ | Siemann & Rogers, | |
相对株高生长速率 Relative plant height growth rate (mm·cm-1·d-1) | - | Rogers & Siemann, | |
叶片数 Total number of leaves | - | Zou et al., | |
地上生物量 Aboveground biomass (g) | ↑ | Rogers & Siemann, | |
地下生物量 Belowground biomass (g) | - | Rogers & Siemann, | |
总生物量 Total biomass (g) | ↑ | Zou et al., | |
根冠比 Ratio of root to shoot | ↓ | Zou et al., | |
相对生长速率 Relative growth rates (mg·g-1·d-1) | ↑ | Zou et al., | |
幼苗存活率 Seedlings survival (%) | ↑ | Siemann et al., |
表3 乌桕入侵地种群和原产地种群生理特性、繁殖和生长的差异
Table 3 Differences in physiological property, reproduction and growth of Triadica sebifera between invasive and native populations
性状 Trait | 测定指标 Measured index | 变化 Variation | 参考文献 Reference |
---|---|---|---|
生理性状 Physiological traits | 叶面积 Leaf area (cm2) | ↑ | Zou et al., |
光合组织分配 Photosynthetic tissue allocation (m2·g-1) | ↑ | Zou et al., | |
非光合组织分配 Non-photosynthetic tissue allocation (m2·g-1) | ↑ | Zou et al., | |
净CO2同化速率 Net CO2assimilation rate (μmol·m-2·s-1) | ↑ | Zou et al., | |
暗呼吸速率 Dark respiration rate (μmol·m-2·s-1) | - | Zou et al., | |
叶片碳氮比 Foliar C:N | ↑ | Siemann & Rogers, | |
叶片碳水化合物蛋白质比 Foliar carbohydrate : protein | ↑ | Huang et al., | |
繁殖性状 Reproductive trait | 植株结实率 Percentage of the trees produced seed (%) | ↑ | Siemann & Rogers, |
生长性状 Growth traits | 地径 Stem diameter (cm) | ↑ | Siemann & Rogers, |
株高 Plant height (cm) | ↑ | Siemann & Rogers, | |
相对株高生长速率 Relative plant height growth rate (mm·cm-1·d-1) | - | Rogers & Siemann, | |
叶片数 Total number of leaves | - | Zou et al., | |
地上生物量 Aboveground biomass (g) | ↑ | Rogers & Siemann, | |
地下生物量 Belowground biomass (g) | - | Rogers & Siemann, | |
总生物量 Total biomass (g) | ↑ | Zou et al., | |
根冠比 Ratio of root to shoot | ↓ | Zou et al., | |
相对生长速率 Relative growth rates (mg·g-1·d-1) | ↑ | Zou et al., | |
幼苗存活率 Seedlings survival (%) | ↑ | Siemann et al., |
植物种 Plant species | 测定指标 Measured index | 变化Variation | 参考文献 Reference |
---|---|---|---|
小须芒草 Schizachyrium scoparium | 地上生物量 Aboveground biomass (g) | ↑ | Zou et al., |
地下生物量 Belowground biomass (g) | ↑ | ||
总生物量 Total biomass (g) | ↑ | ||
相对株高生长速率 Relative plant height growth rate (mm·cm-1·d-1) | ↑ | ||
北美枫香 Liquidambar styraci?ua | 存活时间 Survival time (d) | ↑ | Siemann et al., |
地下生物量 Belowground biomass (g) | ↑ | ||
总生物量 Total biomass (g) | ↑ | ||
相对株高生长速率 Relative plant height growth rate (mm·cm-1·d-1) | ↑ | ||
黑橡胶树 Nyssa sylvatica | 地下生物量 Belowground biomass (g) | ↑ | Nijjer et al., |
相对株高生长速率 Relative plant height growth rate (mm·cm-1·d-1) | ↑ | ||
黑栎 Quercus nigra | 地下生物量 Belowground biomass (g) | - | Siemann & Rogers, |
存活时间 Survival time (d) | ↑ | ||
种子数 Number of seeds | ↑ | ||
糖朴 Celtis laevigata | 株高 Plant height (cm) | ↑ | Rogers & Siemann, |
地上生物量 Aboveground biomass (g) | ↑ | ||
总生物量 Total biomass (g) | ↑ | ||
种子数 Number of seeds | ↑ | ||
美国榆 Ulmus americana | 种子数 Number of seeds | ↑ | Siemann & Rogers, |
表4 入侵植物乌桕和入侵地乡土植物生长和繁殖的差异
Table 4 Differences in growth and reproduction between invasive plant Triadica sebifera and native plant species in invaded range
植物种 Plant species | 测定指标 Measured index | 变化Variation | 参考文献 Reference |
---|---|---|---|
小须芒草 Schizachyrium scoparium | 地上生物量 Aboveground biomass (g) | ↑ | Zou et al., |
地下生物量 Belowground biomass (g) | ↑ | ||
总生物量 Total biomass (g) | ↑ | ||
相对株高生长速率 Relative plant height growth rate (mm·cm-1·d-1) | ↑ | ||
北美枫香 Liquidambar styraci?ua | 存活时间 Survival time (d) | ↑ | Siemann et al., |
地下生物量 Belowground biomass (g) | ↑ | ||
总生物量 Total biomass (g) | ↑ | ||
相对株高生长速率 Relative plant height growth rate (mm·cm-1·d-1) | ↑ | ||
黑橡胶树 Nyssa sylvatica | 地下生物量 Belowground biomass (g) | ↑ | Nijjer et al., |
相对株高生长速率 Relative plant height growth rate (mm·cm-1·d-1) | ↑ | ||
黑栎 Quercus nigra | 地下生物量 Belowground biomass (g) | - | Siemann & Rogers, |
存活时间 Survival time (d) | ↑ | ||
种子数 Number of seeds | ↑ | ||
糖朴 Celtis laevigata | 株高 Plant height (cm) | ↑ | Rogers & Siemann, |
地上生物量 Aboveground biomass (g) | ↑ | ||
总生物量 Total biomass (g) | ↑ | ||
种子数 Number of seeds | ↑ | ||
美国榆 Ulmus americana | 种子数 Number of seeds | ↑ | Siemann & Rogers, |
[1] | Abdala-Roberts L, Mooney KA (2013). Environmental and plant genetic effects on tri-trophic interactions. Oikos, 122, 1157-1166. doi: 10.1111/j.1600-0706.2012.00159.x. |
[2] |
Agrawal AA (2007). Macroevolution of plant defense strategies. Trends in Ecology & Evolution, 22, 103-109.
DOI URL PMID |
[3] | Agrawal AA (2011). Current trends in the evolutionary ecology of plant defence. Functional Ecology, 25, 420-432. |
[4] | Agrawal AA, Conner JK, Stinchcombe JR (2004). Evolution of plant resistance and tolerance to frost damage. Ecology Letters, 7, 1199-1208. |
[5] |
Agrawal AA, Kotanen PM (2003). Herbivores and the success of exotic plants: a phylogenetically controlled experiment. Ecology Letters, 6, 712-715.
DOI URL |
[6] | Arimura G, Kost C, Boland W (2005). Herbivore-induced, indirect plant defences. Biochimica et Biophysica Acta (BBA)―Molecular and Cell Biology of Lipids, 1734, 91-111. |
[7] | Ashton IW, Lerdau MT (2008). Tolerance to herbivory, and not resistance, may explain differential success of invasive, naturalized, and native North American temperate vines. Diversity and Distributions, 14, 169-178. |
[8] | Barbet-Massin M, Rome Q, Muller F, Perrard A, Villemant C, Jiguet F (2013). Climate change increases the risk of invasion by the yellow-legged hornet. Biological Conservation, 157, 4-10. |
[9] |
Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005). A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20, 634-641.
DOI URL PMID |
[10] | Bardgett RD, Wardle DA (2003). Herbivore-mediated linkages between aboveground and belowground communities. Ecology, 84, 2258-2268. |
[11] | Beaton LL, van Zandt PA, Esselman EJ, Knight TM (2011). Comparison of the herbivore defense and competitive ability of ancestral and modern genotypes of an invasive plant. Lespedeza cuneata. Oikos, 120, 1413-1419. |
[12] | Beck SD (1965). Resistance of plants to insects. Annual Review of Entomology, 10, 207-232. |
[13] | Bennett RN, Wallsgrove RM (1994). Secondary metabolites in plant defence mechanisms. New Phytologist, 127, 617-633. |
[14] |
Bezemer TM, van Dam NM (2005). Linking aboveground and belowground interactions via induced plant defenses. Trends in Ecology & Evolution, 20, 617-624.
URL PMID |
[15] | Blank R (2010). Intraspecific and interspecific pair-wise seedling competition between exotic annual grasses and native perennials: plant-soil relationships. Plant and Soil, 326, 331-343. |
[16] |
Blossey B, Hunt-Joshi TR (2003). Belowground herbivory by insects: influence on plants and aboveground herbivores. Annual Review of Entomology, 48, 521-547.
DOI URL PMID |
[17] | Blossey B, Nötzold R (1995). Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology, 83, 887-889. |
[18] |
Bossdorf O, Auge H, Lafuma L, Rogers W, Siemann E, Prati D (2005). Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia, 144, 1-11.
DOI URL PMID |
[19] |
Brent M, Diane W, Patricia D (2010). Defensive effects of extrafloral nectaries in quaking aspen differ with scale. Oecologia, 165, 983-993.
DOI URL PMID |
[20] | Brown VK, Gange AC (1990). Insect herbivory below ground. Advances in Ecological Research, 20, 1-58. |
[21] | Bundy JG, Davey MP, Viant MR (2009). Environmental metabolomics: a critical review and future perspectives. Metabolomics, 5, 3-21. |
[22] | Carrillo J, Wang Y, Ding JQ, Klootwyk K, Siemann E (2012a). Decreased indirect defense in the invasive tree, Triadica sebifera. Plant Ecology, 213, 945-954. |
[23] | Carrillo J, Wang Y, Ding JQ, Siemann E (2012b). Induction of extrafloral nectar depends on herbivore type in invasive and native Chinese tallow seedlings. Basic and Applied Ecology, 13, 449-457. |
[24] | Chuine I, Morin X, Sonié L, Collin C, Fabreguettes J, Degueldre D, Salager JL, Roy J (2012). Climate change might increase the invasion potential of the alien C 4 grass Setaria parviflora (Poaceae) in the Mediterranean Basin. Diversity and Distributions, 18, 661-672. |
[25] |
Chun YJ, van Kleunen M, Dawson W (2010). The role of enemy release, tolerance and resistance in plant invasions: linking damage to performance. Ecology Letters, 13, 937-946.
DOI URL PMID |
[26] |
Cipollini D, Mbagwu J, Barto K, Hillstrom C, Enright S (2005). Expression of constitutive and inducible chemical defenses in native and invasive populations of Alliaria petiolata. Journal of Chemical Ecology, 31, 1255-1267.
URL PMID |
[27] | Cipollini D, Purrington CB, Bergelson J (2003). Costs of induced responses in plants. Basic and Applied Ecology, 4, 79-89. |
[28] | Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ (2004). Is invasion success explained by the enemy release hypothesis? Ecology Letters, 7, 721-733. |
[29] | Dlugosch KM, Lai Z, Bonin A, Hierro J, Rieseberg LH (2013). Allele identification for transcriptome-based population genomics in the invasive plant Centaurea solstitialis. G3: Genes, Genomes, Genetics, 3, 359-367. |
[30] | Eigenbrode SD, Andreas JE, Cripps MG, Ding HJ, Biggam RC, Schwarzländer M (2008). Induced chemical defenses in invasive plants: a case study with Cynoglossum officinale L. Biological Invasions, 10, 1373-1379. |
[31] |
Fennell M, Murphy JE, Gallagher T, Osborne B (2013). Simulating the effects of climate change on the distribution of an invasive plant, using a high resolution, local scale, mechanistic approach: challenges and insights. Global Change Biology, 19, 1262-1274.
DOI URL PMID |
[32] | Fineblum WL, Rausher MD (1995). Tradeoff between resistance and tolerance to herbivore damage in a morning glory. Nature, 377, 517-520. |
[33] |
Fornoni J, Núñez-Farfán J, Valverde PL, Rausher MD (2004). Evolution of mixed strategies of plant defense allocation against natural enemies. Evolution, 58, 1685-1695.
DOI URL PMID |
[34] |
Franks SJ, Wheeler GS, Goodnight C (2012). Genetic variation and evolution of secondary compounds in native and introduced populations of the invasive plant Melaleuca quinquenervia. Evolution, 66, 1398-1412.
URL PMID |
[35] | Gellesch E, Hein R, Jaeschke A, Beierkuhnlein C, Jentsch A (2013). Biotic interactions in the face of climate change. Progress in Botany, 74, 321-349. |
[36] | Goldberg DE, Novoplansky A (1997). On the relative importance of competition in unproductive environments. Journal of Ecology, 85, 409-418. |
[37] | Haag JJ, Coupe MD, Cahill JF (2004). Antagonistic interactions between competition and insect herbivory on plant growth. Journal of Ecology, 92, 156-167. |
[38] |
Hakes AS, Cronin JT (2011). Resistance and tolerance to herbivory in Solidago altissima (Asteraceae): genetic variability, costs, and selection for multiple traits. American Journal of Botany, 98, 1446-1455.
URL PMID |
[39] | Hambäck PA, Beckerman AP (2003). Herbivory and plant resource competition: a review of two interacting interactions. Oikos, 101, 26-37. |
[40] | Heil M (2004). Induction of two indirect defences benefits lima bean (Phaseolus lunatus, Fabaceae) in nature. Journal of Ecology, 92, 527-536. |
[41] | Heil M (2008). Indirect defence via tritrophic interactions. New Phytologist, 178, 41-61. |
[42] |
Heil M (2011). Nectar: generation, regulation and ecological functions. Trends in Plant Science, 16, 191-200.
URL PMID |
[43] | Herrera AM, Carruthers RI, Mills NJ (2011). No evidence for increased performance of a specialist psyllid on invasive French broom. Acta Oecologica, 37, 79-86. |
[44] |
Hodgins KA, Lai Z, Nurkowski K, Huang J, Rieseberg LH (2013). The molecular basis of invasiveness: differences in gene expression of native and introduced common ragweed (Ambrosia artemisiifolia) in stressful and benign environments. Molecular Ecology, 22, 2496-2510.
DOI URL PMID |
[45] |
Howe GA, Jander G (2008). Plant immunity to insect herbi- vores. Annual Review of Plant Biology, 59, 41-66.
DOI URL PMID |
[46] |
Huang W, Carrillo J, Ding JQ, Siemann E (2012a). Interactive effects of herbivory and competition intensity determine invasive plant performance. Oecologia, 170, 373-382.
DOI URL PMID |
[47] |
Huang W, Carrillo J, Ding JQ, Siemann E (2012b). Invader partitions ecological and evolutionary responses to above- and belowground herbivory. Ecology, 93, 2343-2352.
DOI URL PMID |
[48] | Huang W, Siemann E, Wheeler GS, Zou J, Carrillo J, Ding JQ (2010). Resource allocation to defence and growth are driven by different responses to generalist and specialist herbivory in an invasive plant. Journal of Ecology, 98, 1157-1167. |
[49] | Jansen JJ, Allwood JW, Marsden-Edwards E, van der Putten WH, Goodacre R, van Dam NM (2009). Metabolomic analysis of the interaction between plants and herbivores. Metabolomics, 5, 150-161. |
[50] | Joshi J, Vrieling K (2005). The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecology Letters, 8, 704-714. |
[51] | Karban R (2011). The ecology and evolution of induced resistance against herbivores. Functional Ecology, 25, 339-347. |
[52] | Keane RM, Crawley MJ (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17, 164-170. |
[53] |
Kempel A, Schädler M, Chrobock T, Fischer M, van Kleunen M (2011). Tradeoffs associated with constitutive and induced plant resistance against herbivory. Proceedings of the National Academy of Sciences of the United States of America, 108, 5685-5689.
DOI URL PMID |
[54] | Kumschick S, Hufbauer RA, Alba C, Blumenthal DM (2013). Evolution of fast-growing and more resistant phenotypes in introduced common mullein (Verbascum thapsus). Journal of Ecology, 101, 378-387. |
[55] | Lankau RA, Rogers WE, Siemann E (2004). Constraints on the utilisation of the invasive Chinese tallow tree Sapium sebiferum by generalist native herbivores in coastal prairies. Ecological Entomology, 29, 66-75. |
[56] | Leimu R, Koricheva J (2006). A meta-analysis of tradeoffs between plant tolerance and resistance to herbivores: combining the evidence from ecological and agricultural studies. Oikos, 112, 1-9. |
[57] | Li YP, Feng YL, Barclay G (2012). No evidence for evolutionarily decreased tolerance and increased fitness in invasive Chromolaena odorata: implications for invasiveness and biological control. Plant Ecology, 213, 1157-1166. |
[58] | Maron JL, Crone E (2006). Herbivory: effects on plant abundance, distribution and population growth. Proceedings of the Royal Society B―Biological Sciences, 273, 2575-2584. |
[59] | Maron JL, Vilà M (2001). When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos, 95, 361-373. |
[60] |
McFadyen REC (1998). Biological control of weeds. Annual Review of Entomology, 43, 369-393.
DOI URL PMID |
[61] | McNaughton SJ (1983). Compensatory plant growth as a response to herbivory. Oikos, 40, 329-336. |
[62] |
Müller-Schärer H, Schaffner U, Steinger T (2004). Evolution in invasive plants: implications for biological control. Trends in Ecology & Evolution, 19, 417-422.
URL PMID |
[63] | Núñez-Farfán J, Fornoni J, Valverde PL (2007). The evolution of resistance and tolerance to herbivores. Annual Review of Ecology, Evolution, and Systematics, 38, 541-566. |
[64] | Nijjer S, Rogers WE, Lee CTA, Siemann E (2008). The effects of soil biota and fertilization on the success of Sapium sebiferum. Applied Soil Ecology, 38, 1-11. |
[65] | Oduor AMO, Lankau RA, Strauss SY, Gómez JM (2011). Introduced Brassica nigra populations exhibit greater growth and herbivore resistance but less tolerance than native populations in the native range. New Phytologist, 191, 536-544. |
[66] |
Oliveira PS, Freitas AVL (2004). Ant-plant-herbivore interactions in the neotropical cerrado savanna. Naturwissenschaften, 91, 557-570.
URL PMID |
[67] |
Orians CM, Ward D (2010). Evolution of plant defenses in nonindigenous environments. Annual Review of Entomology, 55, 439-459.
DOI URL PMID |
[68] | Perry LG, Shafroth PB, Blumenthal DM, Morgan JA, LeCain DR (2013). Elevated CO2 does not offset greater water stress predicted under climate change for native and exotic riparian plants. New Phytologist, 197, 532-543. |
[69] | Pilson D (2000). The evolution of plant response to herbivory: simultaneously considering resistance and tolerance in Brassica rapa. Evolutionary Ecology, 14, 457-489. |
[70] | Ridenour WM, Vivanco JM, Feng YL, Horiuchi JI, Callaway RM (2008). No evidence for trade-offs: Cntaurea plants from America are better competitors and defenders. Ecological Monographs, 78, 369-386. |
[71] | Rogers WE, Siemann E (2002). Effects of simulated herbivory and resource availability on native and invasive exotic tree seedlings. Basic and Applied Ecology, 3, 297-307. |
[72] | Rogers WE, Siemann E (2004). Invasive ecotypes tolerate herbivory more effectively than native ecotypes of the Chinese tallow tree Sapium sebiferum. Journal of Applied Ecology, 41, 561-570. |
[73] | Rogers WE, Siemann E (2005). Herbivory tolerance and compensatory differences in native and invasive ecotypes of Chinese tallow tree (Sapium sebiferum). Plant Ecology, 181, 57-68. |
[74] | Rogers WE, Siemann E, Lankau R (2003). Damage induced production of extrafloral nectaries in native and invasive seedlings of Chinese tallow tree (Sapium sebiferum). American Midland Naturalist, 149, 413-417. |
[75] | Rudgers JA (2004). Enemies of herbivores can shape plant traits: selection in a facultative ant-plant mutualism. Ecology, 85, 192-205. |
[76] |
Schädler M, Brandl R, Haase J (2007). Antagonistic interactions between plant competition and insect herbivory. Ecology, 88, 1490-1498.
URL PMID |
[77] |
Seabloom EW, Ruggiero P, Hacker SD, Mull J, Zarnetske P (2013). Invasive grasses, climate change, and exposure to storm-wave overtopping in coastal dune ecosystems. Global Change Biology, 19, 824-832.
DOI URL PMID |
[78] | Setter CM, Lym RG (2013). Change in leafy spurge (Euphorbia esula) density and soil seedbank composition 10 years following release of Aphthona spp. biological control agents. Invasive Plant Science and Management, 6, 147-160. |
[79] | Siemann E, Rogers WE (2001). Genetic differences in growth of an invasive tree species. Ecology Letters, 4, 514-518. |
[80] | Siemann E, Rogers WE (2003a). Changes in light and nitrogen availability under pioneer trees may indirectly facilitate tree invasions of grasslands. Journal of Ecology, 91, 923-931. |
[81] | Siemann E, Rogers WE (2003b). Herbivory, disease, recruitment limitation, and success of alien and native tree species. Ecology, 84, 1489-1505. |
[82] | Siemann E, Rogers WE (2003c). Increased competitive ability of an invasive tree may be limited by an invasive beetle. Ecological Applications, 13, 1503-1507. |
[83] |
Siemann E, Rogers WE (2003d). Reduced resistance of invasive varieties of the alien tree Sapium sebiferum to a generalist herbivore. Oecologia, 135, 451-457.
DOI URL PMID |
[84] | Siemann E, Rogers WE (2006). Recruitment limitation, seedling performance and persistence of exotic tree monocultures. Biological Invasions, 8, 979-991. |
[85] | Siemann E, Rogers WE, de Walt SJ (2006). Rapid adaptation of insect herbivores to an invasive plant. Proceedings of the Royal Society B―Biological Sciences, 273, 2763-2769. |
[86] |
Soler R, Badenes-Pérez FR, Broekgaarden C, Zheng SJ, David A, Boland W, Dicke M (2012). Plant-mediated facilitation between a leaf-feeding and a phloem-feeding insect in a brassicaceous plant: from insect performance to gene transcription. Functional Ecology, 26, 156-166.
DOI URL |
[87] |
Sorte CJB, Ibáñez I, Blumenthal DM, Molinari NA, Miller LP, Grosholz ED, Diez JM, D’Antonio CM, Olden JD, Jones SJ, Dukes JS (2013). Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecology Letters, 16, 261-270.
DOI URL PMID |
[88] | Stamp N (2003). Out of the quagmire of plant defense hypotheses. Quarterly Review of Biology, 78, 23-55. |
[89] | Stastny M, Schaffner URS, Elle E (2005). Do vigour of introduced populations and escape from specialist herbivores contribute to invasiveness? Journal of Ecology, 93, 27-37. |
[90] | Stewart CN, Tranel PJ, Horvath DP, Anderson JV, Rieseberg LH, Westwood JH, Mallory-Smith CA, Zapiola ML, Dlugosch KM (2009). Evolution of weediness and invasiveness: charting the course for weed genomics. Weed Science, 57, 451-462. |
[91] |
Strauss SY, Agrawal AA (1999). The ecology and evolution of plant tolerance to herbivory. Trends in Ecology & Evolution, 14, 179-185.
DOI URL PMID |
[92] | Strauss SY, Rudgers JA, Lau JA, Irwin RE (2002). Direct and ecological costs of resistance to herbivory. Trends in Ecology & Evolution, 17, 278-285. |
[93] |
Suwa T, Louda SM, Russell FL (2010). No interaction between competition and herbivory in limiting introduced Cirsium vulgare rosette growth and reproduction. Oecologia, 162, 91-102.
DOI URL PMID |
[94] | Tilman D (1982). Resource Competition and Community Structure. Princeton University Press, Princeton, New Jersey, USA. |
[95] | Tilman D (1994). Competition and biodiversity in spatially structured habitats. Ecology, 75, 2-16. |
[96] | Turley NE, Godfrey RM, Johnson MTJ (2013). Evolution of mixed strategies of plant defense against herbivores. New Phytologist, 197, 359-361. |
[97] | van Dam NM (2009). Belowground herbivory and plant defenses. Annual Review of Ecology Evolution and Systematics, 40, 373-391. |
[98] | van Dam NM, Heil M (2011). Multitrophic interactions below and above ground: en route to the next level. Journal of Ecology, 99, 77-88. |
[99] |
van Zandt PA (2007). Plant defense, growth, and habitat: a comparative assessment of constitutive and induced resistance. Ecology, 88, 1984-1993.
URL PMID |
[100] |
Walling LL (2008). Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiology, 146, 859-866.
DOI URL PMID |
[101] | Wang Y (2012). Evolution of Defense Against Herbivores in the Invasive Plant, Triadica Sebifera. PhD dissertation, Graduate University of Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
王毅 (2012). 外来入侵植物防御昆虫能力的进化——以乌桕为例. 博士学位论文, 中国科学院大学, 北京.] | |
[102] |
Wang Y, Huang W, Siemann E, Zou J, Wheeler G, Carrillo J, Ding JQ (2011). Lower resistance and higher tolerance of host plants: biocontrol agents reach high densities but exert weak control. Ecological Applications, 21, 729-738.
DOI URL PMID |
[103] | Wang Y, Siemann E, Wheeler GS, Zhu L, Gu X, Ding JQ (2012). Genetic variation in anti-herbivore chemical defences in an invasive plant. Journal of Ecology, 100, 894-904. |
[104] |
Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
DOI URL PMID |
[105] |
Whiteman NK, Jander G (2010). Genome-enabled research on the ecology of plant-insect interactions. Plant Physiology, 154, 475-478.
URL PMID |
[106] | Wittenberg R, Cock MJW (2005). Best practices for the prevention and management of invasive alien species. In: Mooney HA, Mack RN, McNeely JA, Neville LE, Schei PJ, Waage JK eds. Invasive Alien Species: a New Synthesis. Island Press, Washington, DC.209-232. |
[107] | Wolfe LM, Elzinga JA, Biere A (2004). Increased susceptibility to enemies following introduction in the invasive plant Silene latifolia. Ecology Letters, 7, 813-820. |
[108] | Zou JW, Rogers WE, Siemann E (2007). Differences in morphological and physiological traits between native and invasive populations of Sapium sebiferum. Functional Ecology, 21, 721-730. |
[109] |
Zou JW, Rogers WE, de Walt SJ, Siemann E (2006). The effect of Chinese tallow tree (Sapium sebiferum) ecotype on soil-plant system carbon and nitrogen processes. Oecologia, 150, 272-281.
URL PMID |
[110] | Zou JW, Rogers WE, Siemann E (2008a). Increased competitive ability and herbivory tolerance in the invasive plant Sapium sebiferum. Biological Invasions, 10, 291-302. |
[111] | Zou JW, Rogers WE, Siemann E (2009). Plasticity of Sapium sebiferum seedling growth to light and water resources: inter- and intraspecific comparisons. Basic and Applied Ecology, 10, 79-88. |
[112] | Zou JW, Siemann E, Rogers WE, Dewalt SJ (2008b). Decreased resistance and increased tolerance to native herbivores of the invasive plant Sapium sebiferum. Ecography, 31, 663-671. |
[1] | 闫雅楠, 叶小齐, 吴明, 闫明, 张昕丽. 入侵植物加拿大一枝黄花根际解钾菌多样性及解钾活性[J]. 植物生态学报, 2019, 43(6): 543-556. |
[2] | 李春杰, 姚祥, 南志标. 醉马草内生真菌共生体研究进展[J]. 植物生态学报, 2018, 42(8): 793-805. |
[3] | 李秀璋, 姚祥, 李春杰, 南志标. 禾草内生真菌作为生防因子的潜力分析[J]. 植物生态学报, 2015, 39(6): 621-634. |
[4] | 余香琴, 冯玉龙, 李巧明. 外来入侵植物飞机草的研究进展与展望[J]. 植物生态学报, 2010, 34(5): 591-600. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19