植物生态学报 ›› 2014, Vol. 38 ›› Issue (6): 640-652.DOI: 10.3724/SP.J.1258.2014.00060
收稿日期:
2013-12-19
接受日期:
2014-03-27
出版日期:
2014-12-19
发布日期:
2014-06-10
通讯作者:
张黎
基金资助:
YAN Shuang1,2,ZHANG Li2,*(),JING Yuan-Shu1,HE Hong-Lin2,YU Gui-Rui2
Received:
2013-12-19
Accepted:
2014-03-27
Online:
2014-12-19
Published:
2014-06-10
Contact:
ZHANG Li
摘要:
叶片最大羧化速率是表征植物光合能力的关键参数, 受到光照、温度、水分、CO2浓度、叶片氮含量等多个要素的控制。准确地模拟植物叶片最大羧化速率对环境因子的响应是预测未来植被生产力和碳循环过程的前提。目前大多数陆地碳循环过程模型以Farqhuar光合作用模型为基础模拟植物的光合作用, 关于植物叶片的最大羧化速率与叶氮含量关系的模拟方法却各不相同。该文汇总了1990-2013年国内外植物叶片光合速率观测研究文献中叶片最大羧化速率与叶氮含量的关系式及相关数据, 分析了叶片最大羧化速率与叶氮含量关系随不同植被功能型和时间的变化特征, 以及环境因子变化条件下最大羧化速率与叶氮含量关系的变化特征, 探讨了二者关系变异性的可能原因以及影响因子。结果表明: 1)不同功能型植物叶片的最大羧化速率和叶氮含量的关系存在较大差异, 二者线性关系式的斜率平均值变化范围为16.29-50.25 μmol CO2·g N-1·s-1。落叶植被叶片的最大羧化速率随叶氮含量的变化率和光合氮利用效率一般都高于常绿植被, 其变异主要源于植物的比叶重和叶片内部氮素分配的差异。2)叶片最大羧化速率随叶氮含量的变化存在季节和年际变异。在没有受到水分胁迫的年份中, 叶片最大羧化速率随叶氮含量变化的速率一般在春季或夏季最高, 其季节变异与比叶重和叶氮在Rubisco的分配比例的季节变化有关。受到干旱的影响, 叶片最大羧化速率随叶氮含量的变化率会升高。3)当大气CO2浓度增加时, 由于叶片中Rubisco含量的降低, 多年生针叶叶片最大羧化速率和叶氮关系斜率值会出现降低; 当供氮水平增加时, 叶片最大羧化速率和叶片氮含量均表现出增加趋势, 二者线性关系的斜率也相应增加。在此基础上, 该文指出在模拟叶片最大羧化速率与叶氮含量的关系时, 应考虑叶片比叶重和叶氮在Rubisco中的分配比例的季节变异、水分胁迫、大气CO2浓度和供氮水平变化对二者关系的影响。囿于数据的有限性, 今后应进一步加强多因子控制实验研究, 深入探讨叶片最大羧化速率与叶氮含量关系的变异性机理, 并获得更系统的观测数据, 以助生态系统过程模型的改进, 提高模型的模拟精度。
闫霜,张黎,景元书,何洪林,于贵瑞. 植物叶片最大羧化速率与叶氮含量关系的变异性. 植物生态学报, 2014, 38(6): 640-652. DOI: 10.3724/SP.J.1258.2014.00060
YAN Shuang,ZHANG Li,JING Yuan-Shu,HE Hong-Lin,YU Gui-Rui. Variations in the relationship between maximum leaf carboxylation rate and leaf nitrogen concentration. Chinese Journal of Plant Ecology, 2014, 38(6): 640-652. DOI: 10.3724/SP.J.1258.2014.00060
图1 不同植被功能型叶片最大羧化速率与叶片氮含量回归关系的斜率(A)和叶氮光合利用率(PNUE) (B)。图中横线和空心点分别代表中位数和平均值, 箱子的高度代表四分位数间距, 上下两端短线代表最大值和最小值, 星号为异常值。CP, 农田; DB, 落叶灌木; DBF, 落叶阔叶林; DNF, 落叶针叶林; EB, 常绿灌木; EBF1, 温带常绿阔叶林; EBF2, 热带常绿阔叶林; ENF, 常绿针叶林; GL, 草地。
Fig. 1 The slope of the relationship between maximum leaf carboxylation rate and leaf nitrogen content (A) and photosynthetic nitrogen use efficiency (PNUE) for different plant functional types (B). The horizontal line and open square in the box represent median and mean, the box represents the interguartile range from the 25th to 75th percentiles, the lower whisker extends to the minimum and the upper whisker extends to the maximum, the asterisk symbol is the outlier datum point. CP, crop; DB, deciduous bush; DBF, deciduous broadleaf forest; DNF, deciduous needle forest; EB, evergreen bush; EBF1, temperate evergreen broadleaf forest; EBF2, tropical evergreen broadleaf forest; ENF, evergreen needle forest; GL, grassland.
植被类型 Plant functional type | 优势种 Dominant species | PR (%) | 文献 References |
---|---|---|---|
落叶阔叶林 Deciduous broadleaf forest | Magnolia hyporeuca | 19.37 | |
落叶阔叶林 Deciduous broadleaf forest | 蒙栎 Quercus mongolica | 13.53 | |
落叶阔叶林 Deciduous broadleaf forest | Prunus ssiori | 20.78 | |
落叶阔叶林 Deciduous broadleaf forest | 千金榆 Carpinus cordata | 18.47 | |
落叶阔叶林 Deciduous broadleaf forest | 柚 Citrus grandis | 26.8 | |
落叶阔叶林 Deciduous broadleaf forest | Populus × euroamericana | -1.587Na + 26.42 | |
常绿针叶林 Evergreen needle forest | 花旗松 Pseudotsuga menziesii | -3.725Na + 20.72 | |
常绿针叶林 Evergreen needle forest | 火炬松 Pinus taedaA | 10.3 | |
常绿针叶林 Evergreen needle forest | 火炬松 Pinus taedaB | 8.7 | |
常绿灌木 Evergreen bush | 大白杜鹃 Rhododendron decoruma | 20 | |
常绿灌木 Evergreen bush | 大白杜鹃 Rhododendron decorumb | 22 | |
常绿灌木 Evergreen bush | 红棕杜鹃 Rhododendron rubiginosuma | 27 | |
常绿灌木 Evergreen bush | 红棕杜鹃 Rhododendron rubiginosumb | 24 | |
灌木 Bush | 云南杜鹃 Rhododendron yunnanensea | 36 | |
灌木 Bush | 云南杜鹃 Rhododendron yunnanenseb | 31 | |
草地 Grassland | 苘麻 Abutilon theophrastiC | 14.6 | |
草地 Grassland | 苘麻 Abutilon theophrastiD | 17.2 | |
草地 Grassland | 红波罗花 Incarvillea delavayiI | 14.5 | |
草地 Grassland | 红波罗花 Incarvillea delavayiII | 24 | |
草地 Grassland | 红波罗花 Incarvillea delavayiIII | 21 | |
草地 Grassland | 红波罗花 Incarvillea delavayiIV | 21.2 |
表1 叶氮在Rubisco中的分配比例
Table 1 Proportion of leaf nitrogen in Rubisco
植被类型 Plant functional type | 优势种 Dominant species | PR (%) | 文献 References |
---|---|---|---|
落叶阔叶林 Deciduous broadleaf forest | Magnolia hyporeuca | 19.37 | |
落叶阔叶林 Deciduous broadleaf forest | 蒙栎 Quercus mongolica | 13.53 | |
落叶阔叶林 Deciduous broadleaf forest | Prunus ssiori | 20.78 | |
落叶阔叶林 Deciduous broadleaf forest | 千金榆 Carpinus cordata | 18.47 | |
落叶阔叶林 Deciduous broadleaf forest | 柚 Citrus grandis | 26.8 | |
落叶阔叶林 Deciduous broadleaf forest | Populus × euroamericana | -1.587Na + 26.42 | |
常绿针叶林 Evergreen needle forest | 花旗松 Pseudotsuga menziesii | -3.725Na + 20.72 | |
常绿针叶林 Evergreen needle forest | 火炬松 Pinus taedaA | 10.3 | |
常绿针叶林 Evergreen needle forest | 火炬松 Pinus taedaB | 8.7 | |
常绿灌木 Evergreen bush | 大白杜鹃 Rhododendron decoruma | 20 | |
常绿灌木 Evergreen bush | 大白杜鹃 Rhododendron decorumb | 22 | |
常绿灌木 Evergreen bush | 红棕杜鹃 Rhododendron rubiginosuma | 27 | |
常绿灌木 Evergreen bush | 红棕杜鹃 Rhododendron rubiginosumb | 24 | |
灌木 Bush | 云南杜鹃 Rhododendron yunnanensea | 36 | |
灌木 Bush | 云南杜鹃 Rhododendron yunnanenseb | 31 | |
草地 Grassland | 苘麻 Abutilon theophrastiC | 14.6 | |
草地 Grassland | 苘麻 Abutilon theophrastiD | 17.2 | |
草地 Grassland | 红波罗花 Incarvillea delavayiI | 14.5 | |
草地 Grassland | 红波罗花 Incarvillea delavayiII | 24 | |
草地 Grassland | 红波罗花 Incarvillea delavayiIII | 21 | |
草地 Grassland | 红波罗花 Incarvillea delavayiIV | 21.2 |
图2 不同月份叶片最大羧化速率和叶氮关系斜率的变化。A, 赤松(Han et al., 2004); B, 帽斗栎(张石宝等, 2011); C, Fraxinus angustifolia /夏栎(2001) (Grassi et al., 2005); D, Fraxinus angustifolia /夏栎(2002) (Grassi et al., 2005); E, Quercus prinus/Quercus alba/Acer rubrum (1997)(Wilson et al., 2000)。
Fig. 2 Changes in the slope of the relationship between maximum leaf carboxylation rate and leaf nitrogen in different months. A, Pinus densiflora (Han et al., 2004); B, Quercus guyavifolia (Zhang et al., 2011); C, Fraxinus angustifolia/Quercus robur (2001) (Grassi et al., 2005); D, Fraxinus angustifolia/Quercus robur (2002) (Grassi et al., 2005); E, Quercus prinus/Quercus alba/Acer rubrum (1997)(Wilson et al., 2000).
植被类型 Plant functional type | 优势种 Dominant species | 环境CO2条件下的斜率 Slope under ambient CO2 | R2 | 升高CO2条件下的斜率 Slope under elevated CO2 | R2 | 文献 References |
---|---|---|---|---|---|---|
常绿针叶林 Evergreen needle forest | 欧洲云杉 Picea abies | 20 | 0.40 | 27.4 | 0.59 | |
常绿针叶林 Evergreen needle forest | 欧洲赤松 Pinus sylvestris | 11.4 | 0.81 | 16.1 | 0.94 | |
常绿针叶林 Evergreen needle forest | 欧洲赤松 P. sylvestris | 13.5 | 0.19 | 15.8 | 0.27 | |
常绿针叶林 Evergreen needle forest | 火炬松 P. taeda | 13.6 | 0.23 | 7.3 | 0.10 | |
常绿针叶林 Evergreen needle forest | 火炬松 P. taeda A | 15.99 | 0.31 | 12.25 | 0.44 | |
常绿针叶林 Evergreen needle forest | 火炬松 P. taeda B | 27.06 | 0.52 | 9.81 | 0.22 | |
落叶阔叶林 Deciduous broadleaf forest | Fagus sylvatica | 32.6 | 0.66 | 37.4 | 0.71 | |
落叶阔叶林 Deciduous broadleaf forest | Fagus sylvatica | 17.6 | 0.16 | 15.1 | 0.15 | |
落叶阔叶林 Deciduous broadleaf forest | Quercus petraea | 12.7 | 0.08 | 34.3 | 0.60 |
表2 常绿针叶林和落叶阔叶林在环境CO2浓度条件下和升高CO2浓度条件下的斜率值
Table 2 The slope in ambient and elevated CO2 of evergreen needle forest and deciduous broadleaf forest
植被类型 Plant functional type | 优势种 Dominant species | 环境CO2条件下的斜率 Slope under ambient CO2 | R2 | 升高CO2条件下的斜率 Slope under elevated CO2 | R2 | 文献 References |
---|---|---|---|---|---|---|
常绿针叶林 Evergreen needle forest | 欧洲云杉 Picea abies | 20 | 0.40 | 27.4 | 0.59 | |
常绿针叶林 Evergreen needle forest | 欧洲赤松 Pinus sylvestris | 11.4 | 0.81 | 16.1 | 0.94 | |
常绿针叶林 Evergreen needle forest | 欧洲赤松 P. sylvestris | 13.5 | 0.19 | 15.8 | 0.27 | |
常绿针叶林 Evergreen needle forest | 火炬松 P. taeda | 13.6 | 0.23 | 7.3 | 0.10 | |
常绿针叶林 Evergreen needle forest | 火炬松 P. taeda A | 15.99 | 0.31 | 12.25 | 0.44 | |
常绿针叶林 Evergreen needle forest | 火炬松 P. taeda B | 27.06 | 0.52 | 9.81 | 0.22 | |
落叶阔叶林 Deciduous broadleaf forest | Fagus sylvatica | 32.6 | 0.66 | 37.4 | 0.71 | |
落叶阔叶林 Deciduous broadleaf forest | Fagus sylvatica | 17.6 | 0.16 | 15.1 | 0.15 | |
落叶阔叶林 Deciduous broadleaf forest | Quercus petraea | 12.7 | 0.08 | 34.3 | 0.60 |
[1] |
Abrams MD (1990). Adaptations and responses to drought in Quercus species of North America. Tree Physiology, 7, 227-238.
DOI URL PMID |
[2] |
Anderson JE, Nowak RS, Rasmuson KE, Toft NL (1995). Gas exchange and resource-use efficiency of Leymus cinereus (Poaceae): diurnal and seasonal responses to naturally declining soil moisture. American Journal of Botany, 82, 699-708.
DOI URL |
[3] | Badeck FW, Dufrênce E, Epron D, Dantec VL, Liozon R, Mousseau M, Pontailler JY, Saugier B (1997). Sweet chestnut and beech saplings under elevated CO2. In: Mohren GMJ ed. Impacts of Global Change on Tree Physiology and Forest Ecosystems. Kluwer Academic Publishers, Dordrecht. 15-25. |
[4] | Bekele A, Hudnall WH, Tiarks AE (2003). Response of densely stocked loblolly pine (Pinus taeda L.) to applied nitrogen and phosphorus. Southern Journal of Applied Forestry, 27, 181-190. |
[5] |
Berry JA, Björkman O (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31, 491-543.
DOI URL |
[6] |
Bihmidine S, Bryan NM, Payne KR, Parde MR, Okalebo JA, Cooperstein SE, Awada T (2010). Photosynthetic performance of invasive Pinus ponderosa and Juniperus virginiana seedlings under gradual soil water depletion. Plant Biology, 12, 668-675.
DOI URL PMID |
[7] | Brown KR, Thompson WA, Weetman GF (1996). Effects of N addition rates on the productivity of Picea sitchensis, Thuja plicata, and Tsuga heterophylla seedlings. Trees, 10, 189-197. |
[8] |
Cao MK, Woodward FI (1998). Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393, 249-252.
DOI URL |
[9] |
Carswell FE, Meir P, Wandelli EV, Bonates LCM, Kruijt B, Barbosa EM, Nobre AD, Grace J, Jarvis PG (2000). Photosynthetic capacity in a central Amazonian rain forest. Tree Physiology, 20, 179-186.
URL PMID |
[10] | Chen JM, Mo G, Pisek J, Liu J, Deng F, Ishizawa M, Chan D (2012). Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Global Biogeochemical Cycles, 26, GB1019, doi: 10.1029/2010-GB003996. |
[11] |
Chen WJ, Chen J, Cihlar J (2000). An integrated terrestrial ecosystem carbon-budget model based on changes in disturbance, climate, and atmospheric chemistry. Ecological Modelling, 135, 55-79.
DOI URL |
[12] |
Clearwater MJ, Meinzer FC (2001). Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees. Tree Physiology, 21, 683-690.
DOI URL PMID |
[13] |
Comstock J, Mencuccini M (1998). Control of stomatal conductance by leaf water potential in Hymenoclea salsola (T. & G.), a desert subshrub. Plant, Cell & Environment, 21, 1029-1038.
DOI URL |
[14] |
Cotrufo MF, Ineson P, Scott A (1998). Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology, 4, 43-54.
DOI URL |
[15] |
Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999). The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dynamics, 15, 183-203.
DOI URL |
[16] |
Crous KY, Walters MB, Ellsworth DS (2008). Elevated CO2 concentration affects leaf photosynthesis-nitrogen relationships in Pinus taeda over nine years in FACE. Tree Physiology, 28, 607-614.
DOI URL PMID |
[17] |
Ellsworth DS, Reich PB (1993). Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia, 96, 169-178.
URL PMID |
[18] |
Ellsworth DS, Reich PB, Naumburg ES, Koch GW, Kubiske ME, Smith SD (2004). Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Global Change Biology, 10, 2121-2138.
DOI URL |
[19] |
Ellsworth DS, Thomas R, Crous KY, Palmroth S, Ward E, Maier C, Delucia E, Oren R (2012). Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke FACE. Global Change Biology, 18, 223-242.
DOI URL |
[20] |
Epron D, Dreyer E (1993). Long-term effects of drought on photosynthesis of adult oak trees [Quercus petraea (Matt.) Liebl. and Quercus robur L.] in a natural stand. New Phytologist, 125, 381-389.
DOI URL |
[21] |
Ethier GJ, Livingston NJ, Harrison DL, Black TA, Moran JA (2006). Low stomatal and internal conductance to CO2 versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves. Plant, Cell & Environment, 29, 2168-2184.
DOI URL PMID |
[22] |
Evans JR (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78, 9-19.
URL PMID |
[23] | Fan J, Zhao HX, Li M (2003). The specific leaf weight and its relationship with photosynthetic capacity. Journal of Northeast Forestry University, 31, 37-39. (in Chinese with English abstract) |
[ 范晶, 赵惠勋, 李敏 (2003). 比叶重及其与光合能力的关系. 东北林业大学学报, 31, 37-39.] | |
[24] |
Farquhar GD, von Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
DOI URL PMID |
[25] |
Feng QH, Cheng RM, Shi ZM, Liu SR, Wang WX, Liu XL, He F (2013). Response of leaf functional traits and the relationships among them to altitude of Salix dissa in Balang Mountain. Acta Ecologica Sinica, 33, 2712-2718. (in Chinese with English abstract)
DOI URL |
[ 冯秋红, 程瑞梅, 史作民, 刘世荣, 王卫霞, 刘兴良, 何飞 (2013). 巴郎山异型柳叶片功能性状及性状间关系对海拔的响应. 生态学报, 33, 2712-2718.]
DOI URL |
|
[26] |
Feng YL, Auge H, Ebeling SK (2007). Invasive Buddleja davidii allocates more nitrogen to its photosynthesis machinery than five native woody species. Oecologia, 153, 501-510.
URL PMID |
[27] |
Field C, Mooney HA (1983). Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a California shrub. Oecologia, 56, 348-355.
URL PMID |
[28] | Field C, Mooney HA (1986). On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, UK. 25-55. |
[29] |
Finzi AC, Moore DJP, Delucia EH, Lichter J, Hofmockel KS, Jackson RB, Kim HS, Matamala R, McCarthy HR, Oren R, Pippen JS, Schlesinger WH (2006). Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology, 87, 15-25.
DOI URL PMID |
[30] |
Garnier E, Cordonnier P, Guillerm JL, Sonié L (1997). Specific leaf area and leaf nitrogen concentrations in annual and perennial grass species growing in Mediterranean old-fields. Oecologia, 111, 490-498.
URL PMID |
[31] | Grassi G, Meir P, Cromer R, Tompkins D, Jarvis PG (2002). Photosynthetic parameters in seedlings of Eucalyptus grandis as affected by rate of nitrogen supply. Plant, Cell & Environment, 25, 1677-1688. |
[32] |
Grassi G, Vicinelli E, Ponti F, Cantoni L, Magnani F (2005). Seasonal and interannual variability of photosynthetic capacity in relation to leaf nitrogen in a deciduous forest plantation in northern Italy. Tree Physiology, 25, 349-360.
DOI URL PMID |
[33] |
Gutiérrez D, Morcuende R, Pozo AD, Carrasco RM, Pérez P (2013). Involvement of nitrogen and cytokinins in photosynthetic acclimation to elevated CO2 of spring wheat. Journal of Plant Physiology, 170, 1337-1343.
URL PMID |
[34] |
Han Q, Kawasaki T, Nakano T, Chiba Y (2004). Spatial and seasonal variability of temperature responses of biochemical photosynthesis parameters and leaf nitrogen content within a Pinus densiflora crown. Tree Physiology, 24, 737-744.
DOI URL PMID |
[35] | Harmens H, Stirling CM, Marshall C, Farrar JF (2000). Does down-regulation of photosynthetic capacity by elevated CO2 depend on N supply in Dacylis glomerata? Physiologia Plantarum, 108, 43-50. |
[36] |
Hikosaka K, Hanba YT, Hirose T, Terashima I (1998). Photosynthetic nitrogen-use efficiency in leaves of woody and herbaceous species. Functional Ecology, 12, 896-905.
DOI URL |
[37] |
Hrstka M, Urban O, Babák L (2012). Seasonal changes of Rubisco content and activity in Fagus sylvatica and Picea abies affected by elevated CO2 concentration. Chemical Papers, 66, 836-841.
DOI URL |
[38] |
Jach ME, Ceulemans R (1999). Effects of elevated atmospheric CO2 on phenology, growth and crown structure of Scots pine (Pinus sylvestris) seedlings after two years of exposure in the field. Tree Physiology, 19, 289-300.
DOI URL PMID |
[39] | Jarvis PG (1993). MAESTRO: a model of CO2 and water vapour exchange by forests in a globally changing world. In: Schulze ED, Mooney HA eds. Design and Execution of Experiments on CO2 Enrichment, Ecosystem Research Report 6. Commission of the European Communities, Brussels. 107-116. |
[40] |
Kattge J, Knorr W, Raddatz T, Wirth C (2009). Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biology, 15, 976-991.
DOI URL |
[41] |
Kellomäki S, Wang KY (1997). Photosynthetic responses of Scots pine to elevated CO2 and nitrogen supply: results of a branch-in-bag experiment. Tree Physiology, 17, 231-240.
DOI URL PMID |
[42] |
Kenzo T, Ichie T, Yoneda R, Kitahashi Y, Watanabe Y, Ninomiya I, Koike T (2004). Interspecific variation of photosynthesis and leaf characteristics in canopy trees of five species of Dipterocarpaceae in a tropical rain forest. Tree Physiology, 24, 1187-1192.
URL PMID |
[43] |
Kitaoka S, Koike T (2004). Invasion of broad-leaf tree species into a larch plantation: seasonal light environment, photosynthesis and nitrogen allocation. Physiologia Plantarum, 121, 604-611.
DOI URL |
[44] | Lawlor DW (1995). The effects of water deficit on photosynthesis. In: Smirnoff N ed. Environment and Plant Metabolism: Flexibility and Acclimation. Bios Scientific Publishers, Oxford. 129-160. |
[45] |
Lei M, Li SY, Zhang SB, Hu H (2009). Effects of nitrogen on photosynthesis and growth in Incarvillea delavayi (Bignoniaceae). Acta Botanica Yunnanica, 31, 82-88. (in Chinese with English abstract)
DOI URL |
[ 雷鸣, 李树云, 张石宝, 胡虹 (2009). 氮素对红波罗花光合作用和生长的影响. 云南植物研究, 31, 82-88.]
DOI URL |
|
[46] |
Li L, Hang M, Gu FX, Zhang L (2013). The modeling algorithms for the effects of nitrogen on terrestrial vegetation carbon cycle process. Journal of Natural Resources, 28, 2012-2022. (in Chinese with English abstract)
DOI URL |
[ 李雷, 黄玫, 顾峰雪, 张黎 (2013). 氮素影响陆地生态系统碳循环过程的模型表达方法. 自然资源学报, 28, 2012-2022.]
DOI URL |
|
[47] | Li NN, Guo SR, Li J, Li J (2007). Effects of nitrogen nutrition on the photosynthetic characteristics of leaves in broccoli (Brassica olerecea var. italica). Journal of Inner Mongolia Agricultural University, 28, 140-144. (in Chinese with English abstract) |
[ 栗娜娜, 郭世荣, 李娟, 李军 (2007). 氮素营养对青花菜叶片光合特性的影响. 内蒙古农业大学学报, 28, 140-144.] | |
[48] | Li YB, Wang HF, Sun CY (2013). Leaf characters of four tree species at Maoershan Homogeneous Park. Forestry Science and Technology, 38(3), 12-15. (in Chinese with English abstract) |
[ 李玉波, 王海芳, 孙承烨 (2013). 帽儿山同质园4个树种叶片结构性状研究. 林业科技, 38(3), 12-15.] | |
[49] |
Liu J, Price DT, Chen JM (2005). Nitrogen controls on ecosystem carbon sequestration: a model implementation and application to Saskatchewan, Canada. Ecological Modelling, 186, 178-195.
DOI URL |
[50] | Lloyd J, Syvertsen JP, Kriedemann PE, Farquhar GD (1992). Low conductances for CO2 diffusion from stomata to the sites of carboxylation in leaves of woody species. Plant, Cell & Environment, 15, 873-899. |
[51] |
Loewenstein NJ, Pallardy SG (1998). Drought tolerance, xylem sap abscisic acid and stomatal conductance during soil drying: a comparison of canopy trees of three temperate deciduous angiosperms. Tree Physiology, 18, 431-439.
URL PMID |
[52] | Lü JL, Chen RK, Zhang MQ, Li CM, Liao JF (1998). Seasonal change of the net photosynthesis rate, chlorophyll content and specific weight of leaf of sugarcane and their relationships. Journal of Fujian Agricultural University, 27, 285-290. (in Chinese with English abstract) |
[ 吕建林, 陈如凯, 张木清, 李才明, 廖建峰 (1998). 甘蔗净光合速率、叶绿素和比叶重的季节变化及其关系. 福建农业大学学报, 27, 285-290.] | |
[53] |
Makino A, Nakano H, Mae T, Shimada T, Yamamoto N (2000). Photosynthesis, plant growth and N allocation in transgenic rice plants with decreased Rubisco under CO2 enrichment. Journal of Experimental Botany, 51, 383-389.
URL PMID |
[54] | Medlyn BE, Bdeck FW, de Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R, Angelis PD, Forstreuter M, Jach ME, Kellomäki S, Laitat E, Marek M, Philippot S, Rey A, Strassemeyer J, Laitinen K, Liozon R, Portier B, Roberntz P, Wang K, Jarvis PG (1999). Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell & Environment, 22, 1475-1495. |
[55] | Meir P, Kruijt B, Broadmeadow M, Barbosa E, Kull O, Carswell F, Nobre A, Jarvis PG (2002). Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant, Cell & Environment, 25, 343-357. |
[56] |
Misson L, Tu KP, Boniello RA, Goldstein AH (2006). Seasonality of photosynthetic parameters in a multi-specific and vertically complex forest ecosystem in the Sierra Nevada of California. Tree Physiology, 26, 729-741.
URL PMID |
[57] |
Murray MB, Smith RI, Friend A, Jarvis PG (2000). Effect of elevated [CO2] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis). Tree Physiology, 20, 421-434.
URL PMID |
[58] |
Nakaji T, Fukami M, Dokiya Y, Izuta T (2001). Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees, 15, 453-461.
DOI URL |
[59] |
Nakano H, Makino A, Mae T (1997). The effect of elevated partial pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiology, 115, 191-198.
URL PMID |
[60] |
Nicodemus MA, Salifu FK, Jacobs DF (2008). Growth, nutrition, and photosynthetic response of black walnut to varying nitrogen sources and rates. Journal of Plant Nutrition, 31, 1917-1936.
DOI URL |
[61] |
Niinemets Ü (1999). Research review. Components of leaf dry mass per area-thickness and density-alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist, 144, 35-47.
DOI URL |
[62] | Niinemets Ü, Tenhunen JD (1997). A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant, Cell & Environment, 20, 845-866. |
[63] | Oleson KW, Lawrence DW, Bonan GB, Flanner MG, Kluzek E, Lawrence PJ, Levis S, Swenson SC, Thornton PE (2010). Technical description of version 4.0 of the Community Land Model (CLM). http://www.esd.ornl.gov. Cited: Dec. 2013. |
[64] |
Oleson KW, Monaghan A, Wilhelmi O, Barlage M, Brunsell N, Feddema J, Hu L, Steinhoff DF (2013). Interactions between urbanization, heat stress, and climate change. Climatic Change, doi: 10.1007/s10584-013-0936-8.
DOI URL PMID |
[65] |
Onoda Y, Hikosaka K, Hirose T (2004). Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology, 18, 419-425.
DOI URL |
[66] |
Parry MAJ, Andralojc PJ, Khan S, Lea PJ, Keys AJ (2002). Rubisco activity: effects of drought stress. Annals of Botany, 89, 833-839.
DOI URL PMID |
[67] |
Poorter H, Evans JR (1998). Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia, 116, 26-37.
DOI URL PMID |
[68] | Reich PB, Walters MB, Ellsworth DS (1991). Leaf age and season influence the relationships between leaf nitrogen, leaf mass per area and photosynthesis in maple and oak trees. Plant, Cell & Environment, 14, 251-259. |
[69] |
Reich PB, Walters MB, Ellsworth DS, Uhl C (1994). Photosynthesis-nitrogen relations in Amazonian tree species. Oecologia, 97, 62-72.
DOI URL PMID |
[70] |
Reich PB, Kloeppel BD, Ellsworth DS, Walters MB (1995). Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous trees species. Oecologia, 104, 24-30.
DOI URL PMID |
[71] |
Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Science of the United States of America, 94, 13730-13734.
DOI URL |
[72] |
Rey A, Jarvis PG (1998). Long-term photosynthetic acclimation to increased atmospheric CO2 concentration in young birch (Betula pendula) trees. Tree Physiology, 18, 441-450.
DOI URL PMID |
[73] |
Ripullone F, Grassi G, Lauteri M, Borghetti M (2003). Photosynthesis-nitrogen relationships: interpretation of different patterns between Pseudotsuga menziesii and Populus × euroamericana in a mini-stand experiment. Tree Physiology, 23, 137-144.
URL PMID |
[74] |
Roberntz P, Stockfors J (1998). Effects of elevated CO2 concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grow Norway spruce trees. Tree Physiology, 18, 233-241.
DOI URL PMID |
[75] | Rodrigo G, Santamaria A, Bilenky M (1997). Do the quark masses run? Extracting mb(mZ) from LEP data. arXiv preprint hep.ph/9703358. |
[76] |
Sun GC, Zhao P, Zeng XP, Peng SL (2004). Variations of photosynthetic parameters in CO2 acclimation of Citrus grandis leaves. Chinese Journal of Applied Ecology, 15, 9-14 (in Chinese with English abstract)
URL PMID |
[ 孙谷畴, 赵平, 曾小平, 彭少麟 (2004). 柚树叶片CO2驯化的光合参数变化. 应用生态学报, 15, 9-14.]
URL PMID |
|
[77] |
Takashima T, Hikosaka K, Hirose T (2004). Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell and Environment, 27, 1047-1054.
DOI URL |
[78] | Terashima I, Hikosaka K (1995). Comparative ecophysiology of leaf and canopy photosynthesis. Plant, Cell & Environment, 18, 1111-1128. |
[79] |
Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 401, 914-917.
DOI URL |
[80] |
Thornton PE, Law BE, Gholz HL, Clark KL, Falge E, Ellsworth DS, Goldstein AH, Monson RK, Hollinger D, Falk M, Chen J, Sparks JP (2002). Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agricultural and Forest Meteorology, 113, 185-222.
DOI URL |
[81] |
Thornton PE, Zimmermann NE (2007). An improved canopy integration scheme for a land surface model with prognostic canopy structure. Journal of Climate, 20, 3902-3923.
DOI URL |
[82] |
Tian HQ, Liu ML, Zhang C, Ren W, Xu XF, Chen GS, Lü CQ, Tao B (2010). The dynamic land ecosystem model (DLEM) for simulating terrestrial processes and interactions in the context of multifactor global change. Acta Geographica Sinica, 65, 1027-1047. (in Chinese with English abstract)
DOI URL |
[ 田汉勤, 刘明亮, 张弛, 任巍, 徐小锋, 陈广生, 吕超群, 陶波 (2010). 全球变化与陆地系统综合集成模拟——新一代陆地生态系统动态模型 (DLEM). 地理学报, 65, 1027-1047.] .
DOI URL |
|
[83] |
Tissue DT, Griffin KL, Thomas RB, Strain BR (1995). Effects of low and elevated CO2 on C3 and C4 annuals. Oecologia, 101, 21-28.
DOI URL PMID |
[84] |
Tissue DT, Griffin KL, Ball JT (1999). Photosynthetic adjustment in field-grown ponderosa pine trees after six years of exposure to elevated CO2. Tree Physiology, 19, 221-228.
DOI URL PMID |
[85] |
Turner IM (1994). Essay review. Sclerophylly: primarily protective? Functional Ecology, 8, 669-675.
DOI URL |
[86] | Wang Q, Xu CY (2005). Affects of nitrogen and phosphorus on plant leaf photosynthesis and carbon partitioning. Shandong Forestry Science and Technology,(5), 59-62. (in Chinese with English abstract) |
[ 王琪, 徐程扬 (2005). 氮磷对植物光合作用及碳分配的影响. 山东林业科技, (5), 59-62.] | |
[87] |
Warren CR, Adams MA (2004). Evergreen trees do not maximize instantaneous photosynthesis. Trends in Plant Science, 9, 270-274.
DOI URL PMID |
[88] |
Westbeek MHM, Pons TL, Cambridge ML, Atkin OK (1999). Analysis of differences in photosynthetic nitrogen use efficiency of alpine and lowland Poa species. Oecologia, 120, 19-26.
DOI URL PMID |
[89] |
Wilson KB, Baldocchi DD, Hanson PJ (2000). Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiology, 20, 565-578.
DOI URL PMID |
[90] | Wilson KB, Baldocchi DD, Hanson PJ (2001). Leaf age affects the seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant, Cell & Environment, 24, 571-583. |
[91] |
Wullschleger SD (1993). Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/Ci curves from 109 species. Journal of Experimental Botany, 44, 907-920.
DOI URL |
[92] | Xu YB, Shen YF, Li SQ (2013). Effects of elevated CO2 and nitrogen application on photosynthetic area and gain-leaf ratio of winter wheat. Chinese Journal of Eco-Agriculture, 21, 1049-1056. (in Chinese with English abstract) |
[ 许育彬, 沈玉芳, 李世清 (2013). CO2浓度升高和施氮对冬小麦光合面积及粒叶比的影响. 中国生态农业学报, 21, 1049-1056.] | |
[93] |
Yang T, Xu K, Yan N, Li SY, Hu H (2013). Photosynthetic ecophysiology of three species of genus Rhododendron. Plant Diversity and Resources, 35, 17-25. (in Chinese with English abstract)
DOI URL |
[ 杨婷, 许琨, 严宁, 李树云, 胡虹 (2013). 三种高山杜鹃的光合生理生态研究. 植物分类与资源学报, 35, 17-25.]
DOI URL |
|
[94] | Yu GR, Wang QF (2010). Ecophysiology of Plant Photosynthesis, Transpiration, and Water Use. Science Press, Beijing. 149. (in Chinese) |
[ 于贵瑞, 王秋凤 (2010). 植物光合、蒸腾与水分利用的生理生态学. 科学出版社, 北京. 149.] | |
[95] |
Zhang SB, Zhou ZK, Xu K (2011). Effects of altitude on photosynthetic gas exchange and the associated leaf trait in an Alpine oak, Quercus guyavifolia (Fagaceae). Plant Diversity and Resources, 33, 214-224.
DOI URL |
[ 张石宝, 周浙昆, 许琨 (2011). 海拔对高山栎光合气体交换和叶性状的影响. 植物分类与资源学报, 33, 214-224.]
DOI URL |
|
[96] |
Zhang YM, Zhou GS (2012a). Advances in leaf maximum carboxylation rate and its response to environmental factors. Acta Ecologica Sinica, 32, 5907-5917. (in Chinese with English abstract)
DOI URL |
[ 张彦敏, 周广胜 (2012a). 植物叶片最大羧化速率及其对环境因子响应的研究进展. 生态学报, 32, 5907-5917.]
DOI URL |
|
[97] | Zhang YM, Zhou GS (2012b). Primary simulation on the response of leaf maximum carboxylation rate to multiple environmental factors. Chinese Science Bulletin, 57, 1112-1118. (in Chinese with English abstract) |
[ 张彦敏, 周广胜 (2012b). 植物叶片最大羧化速率对多因子响应的模拟. 科学通报, 57, 1112-1118.] | |
[98] |
Zhu JT, Li XY, Zhang XM, Lin LS, Yang SG (2010). Nitrogen allocation and partitioning within a leguminous and two non-leguminous plant species growing at the southern fringe of China’s Taklamakan Desert. Chinese Journal of Plant Ecology, 34, 1025-1032. (in Chinese with English abstract)
DOI URL |
[ 朱军涛, 李向义, 张希明, 林丽莎, 杨尚功 (2010). 塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配. 植物生态学报, 34, 1025-1032.]
DOI URL |
[1] | 米晓洁, 戴剑锋, 罗卫红, 丁琪峰, 陈永山, 赵春江, 乔晓军, 刘克信. 氮素对日光温室独本菊品种‘神马’干物质分配影响的模拟[J]. 植物生态学报, 2009, 33(1): 108-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19