植物生态学报 ›› 2009, Vol. 33 ›› Issue (1): 108-117.DOI: 10.3773/j.issn.1005-264x.2009.01.012
米晓洁1, 戴剑锋1, 罗卫红1,*(), 丁琪峰1, 陈永山1, 赵春江2, 乔晓军2, 刘克信3
收稿日期:
2007-06-29
接受日期:
2007-08-23
出版日期:
2009-06-29
发布日期:
2009-01-30
通讯作者:
罗卫红
作者简介:
*E-mail: lwh@njau.edu.cn基金资助:
MI Xiao-Jie1, DAI Jian-Feng1, LUO Wei-Hong1,*(), DING Qi-Feng1, CHEN Yong-Shan1, ZHAO Chun-Jiang2, QIAO Xiao-Jun2, LIU Ke-Xin3
Received:
2007-06-29
Accepted:
2007-08-23
Online:
2009-06-29
Published:
2009-01-30
Contact:
LUO Wei-Hong
摘要:
为定量研究氮素对日光温室独本菊(Dendranthema morifolium)干物质分配的影响, 该研究以独本菊品种‘神马’为试验材料, 于2005年10月~2006年7月在北京日光温室内进行了不同定植期和不同氮素水平的栽培试验, 以生理辐热积为发育尺度, 定量分析了氮素对独本菊品种‘神马’干物质分配指数动态的影响, 建立了氮素对日光温室独本菊品种‘神马’干物质分配影响的模拟模型, 并用与建立模型相独立的数据对模型进行了检验。结果表明, 独本菊品种‘神马’叶片累积氮含量最大值出现在现蕾期, 现蕾期叶片累积氮含量适宜值为1.62 g·m-2。模型对日光温室独本菊品种‘神马’各器官干重预测结果较好, 茎、叶和花干重的预测值与实测值之间基于1:1线的决定系数分别为0.94、0.97和0.94, 相对预测误差分别为10.3%、5.76%和4.02%。该研究建立的模型可以根据温室内的气温、太阳辐射、日长和现蕾期叶片累积氮含量预测日光温室独本菊品种‘神马’各个器官干重随生育时期的动态变化, 从而为日光温室独本菊品种‘神马’生产中氮素的优化管理提供决策支持。
米晓洁, 戴剑锋, 罗卫红, 丁琪峰, 陈永山, 赵春江, 乔晓军, 刘克信. 氮素对日光温室独本菊品种‘神马’干物质分配影响的模拟. 植物生态学报, 2009, 33(1): 108-117. DOI: 10.3773/j.issn.1005-264x.2009.01.012
MI Xiao-Jie, DAI Jian-Feng, LUO Wei-Hong, DING Qi-Feng, CHEN Yong-Shan, ZHAO Chun-Jiang, QIAO Xiao-Jun, LIU Ke-Xin. QUANTIFYING THE EFFECTS OF NITROGEN ON DRY MATTER PARTITIONING OF STANDARD CUT CHRYSANTHEMUM ‘SHENMA’ IN SOLAR GREENHOUSE. Chinese Journal of Plant Ecology, 2009, 33(1): 108-117. DOI: 10.3773/j.issn.1005-264x.2009.01.012
项目 Item | 全氮 Total N (%) | 有机质 Organic C (%) | 速效氮 Available N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 容重 Bulk density (g·cm-3) | pH | EC (mS·cm-1) |
---|---|---|---|---|---|---|---|---|
试验一Exp1 | 0.13 | 2.69 | 25.53 | 202.1 | 138 | 1.12 | 7.74 | 0.11 |
试验二Exp2 | 0.14 | 2.47 | 33.33 | 232.7 | 155.8 | 1.12 | 7.83 | 0.25 |
表1 供试土壤的营养状况
Table 1 Nutrient content of the experimental soil
项目 Item | 全氮 Total N (%) | 有机质 Organic C (%) | 速效氮 Available N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 容重 Bulk density (g·cm-3) | pH | EC (mS·cm-1) |
---|---|---|---|---|---|---|---|---|
试验一Exp1 | 0.13 | 2.69 | 25.53 | 202.1 | 138 | 1.12 | 7.74 | 0.11 |
试验二Exp2 | 0.14 | 2.47 | 33.33 | 232.7 | 155.8 | 1.12 | 7.83 | 0.25 |
处理 Treatments | 1 | 2 | 3 | 4 |
---|---|---|---|---|
试验一 Exp1 | ||||
施氮量N applied in the experimental season (kg N·hm-2) | 0 | 34 | 69 | 103 |
定植时土壤速效氮量N content of the soil at planting date (kg N·hm-2) | 57.2 | 57.2 | 57.2 | 57.2 |
当季土壤供氮量N available in the soil during the experimental season (kg N·hm-2) | 57.2 | 91.2 | 126.2 | 160.2 |
试验二 Exp2 | ||||
施氮量N applied in the experimental season (kg N·hm-2) | 0 | 24 | 48 | 72 |
定植时土壤速效氮量N content of the soil at planting date (kg N·hm-2) | 79.1 | 79.1 | 79.1 | 79.1 |
当季土壤供氮量N available in the soil during the experimental season (kg N·hm-2) | 79.1 | 103.1 | 127.1 | 151.1 |
表2 当季土壤供氮量
Table 2 Nitrogen available in the soil during the experimental season
处理 Treatments | 1 | 2 | 3 | 4 |
---|---|---|---|---|
试验一 Exp1 | ||||
施氮量N applied in the experimental season (kg N·hm-2) | 0 | 34 | 69 | 103 |
定植时土壤速效氮量N content of the soil at planting date (kg N·hm-2) | 57.2 | 57.2 | 57.2 | 57.2 |
当季土壤供氮量N available in the soil during the experimental season (kg N·hm-2) | 57.2 | 91.2 | 126.2 | 160.2 |
试验二 Exp2 | ||||
施氮量N applied in the experimental season (kg N·hm-2) | 0 | 24 | 48 | 72 |
定植时土壤速效氮量N content of the soil at planting date (kg N·hm-2) | 79.1 | 79.1 | 79.1 | 79.1 |
当季土壤供氮量N available in the soil during the experimental season (kg N·hm-2) | 79.1 | 103.1 | 127.1 | 151.1 |
图2 独本菊品种‘神马’不同氮素水平地上部干物质及其在地上部各器官间的分配指数与定植后累积生理辐热积的关系 A: 地上部干物质分配指数 The partitioning index of shoot B: 干物质在茎的分配指数 The partitioning index of stem C: 干物质在叶的分配指数 The partitioning index of leaf D: 干物质在花的分配指数 The partitioning index of flower ?: 0 kg N·hm-2, ?: 34 kg N·hm-2, □: 69 kg N·hm-2, ×: 103 kg N·hm-2
Fig. 2 Relationship between the partitioning indices of shoot and different organs of shoot of standard cut chrysanthemum ‘Shenma’ and the physiological product of thermal effectiveness and PAR (PTEP) after planting under different levels of nitrogen application rates
图3 独本菊品种‘神马’不同定植期不同氮素水平叶片累积氮含量与定植后累积生理辐热积的关系(A)和不同定植期现蕾期叶片累积氮含量与当季土壤供氮量的关系(B) 试验一观测资料 Measured value in Exp. 1: ?: 0 kg N·hm-2, ?: 34 kg N·hm-2, □: 69 kg N·hm-2, ○:103 kg N·hm-2 试验二观测资料 Measured value in Exp. 2: ? 0 kg N·hm-2, ▲: 24 kg N·hm-2, ■: 48 kg N·hm-2, ●: 72 kg N·hm-2
Fig. 3 Relationship between the accumulated leaf nitrogen content of standard cut chrysanthemum ‘Shenma’ and the physiological product of thermal effectiveness and PAR (PTEP) after planting under different planting and levels of nitrogen application rates (A) and relationship between the accumulated leaf nitrogen content at bud showing stage of standard cut chrysanthemum ‘Shenma’ and the nitrogen available in the soil during the experimental season (B)
图4 独本菊品种‘神马’现蕾期叶片累积氮含量与各器官分配指数增、降速率以及分配指数最大、最小值的关系 A: 茎分配指数增加速率 The increasing of partitioning index of stem (PIST) B: 叶分配指数下降速率The decreasing rate of partitioning index of leaf (PIL) C: 花分配指数增加速率 The increasing rate of partitioning index of flower(PIF) D: 茎分配指数最大值 The maximum value of PIST E: 叶分配指数最小值 The minimum value of PIL ——拟合曲线 Fitted curve ------ 外延线 Assumed curve
Fig. 4 Relationship between the accumulated leaf nitrogen content at bud showing stage and the increasing, decreasing rate of different partitioning indices and the maximum, the minimum value of the partitioning indices of standard cut chrysanthemum ‘Shenma’
图5 独本菊品种‘神马’不同氮素水平各器官干重模拟值与实测值比较 A: 地上部 Shoot B: 茎 Stem C: 叶 Leaf D: 花 Flower ——1:1线 Line
Fig. 5 Comparison between the predicted and the observed dry weight of different organs, levels of nitrogen application rates of standard cut chrysanthemum ‘Shenma’
[1] | Bao SD (鲍士旦) (1996). Soil Agriculture and Chemistry Analysis (土壤农化分析). Agricuture Press, Beijing, 50-100. (in Chinese) |
[2] | Goudriaan J, Van Laar HH (1994). Modeling Potential Crop Growth Processes. Kluwer Academic Publishers, the Netherlands, 32. |
[3] | Hanan JJ, Holley WD, Goldsberry KL (1978). Greenhouse Management. Springer-Verlag, New York, 294-300. |
[4] |
Heuvelink E (1996). Dry matter partitioning in tomato: validation of a dynamic simulation model. Annals of Botany, 77, 71-80
DOI URL |
[5] | Joiner J N (1987). Nutrition and fertilization of ornamental greenhouse crops. Agricultural Research Center, 317-403. |
[6] | Jouko K, Matti T, Tuomo K (1998). Modelling crop growth and biomass partitioning to shoots and roots in relation to nitrogen and water availability, using a maximization principle.Ⅱ. Simulation of crop nitrogen balance. European Journal of Agronomy, 81, 191-204. |
[7] | Li Y (李悦), Zhang T (张涛), Qi XL (齐秀兰) (2005). Research progress of chrysanthemum N, P and K nutrition uptaken characteristic. Journal of Anhui Agricultural Sciences (安徽农业科学), 33, 1486-1487. (in Chinese with English abstract) |
[8] | Li YX (李永秀), Luo WH (罗卫红), Ni JH (倪纪恒), Chen YS (陈永山), Xu GB (许国彬), Jin L (金亮), Dai JF (戴剑锋), Chen CH (陈春宏), Bu CX (卜崇兴) (2006). Simulation of greenhouse cucumber leaf area based on radiation and thermal effectiveness. Journal Plant Ecology (Chinese Version) (植物生态学报), 30, 861-867. (in Chinese with English abstract) |
[9] | Li XM (李向茂), Dai JF (戴剑锋), Luo WH (罗卫红), Chen FD (陈发棣), Gu JJ (顾俊杰), Lu JH (陆锦华) (2007). Effects of transplanting date and density on appearance quality of greenhouse single-flower cut chrysanthemum. Chinese Journal of Applied Ecology (应用生态学报), 18, 1055-1060. (in Chinese with English abstract) |
[10] | Luo WH (罗卫红), Wang XL (汪小旵), Dai JF (戴剑锋), Ding WM (丁为民), Guo SR (郭世荣), Li SJ (李式军) (2004). Measurement and simulation of cucumber canopy transpiration in a subtropical modern greenhouse under winter climate conditions. Acta Phytoecologica Sinica (植物生态学报), 28, 59-65. (in Chinese with English abstract) |
[11] | Ma YJ (马亚教) (2007). Providing cut chrysanthemum a year is the key accelerating export to Japan. China Flowers & Horticulture (中国花卉园艺), 5, 20-21. (in Chinese) |
[12] | Meng YL (孟亚利), Cao WX (曹卫星), Liu XW (柳新伟), Zhou ZG (周治国), Jing Q (荆奇) (2004). A preliminary study of simulation on shoot dry matter partitioning in rice. Acta Agronomica Sinica (作物学报), 30, 376-381. (in Chinese with English abstract) |
[13] |
Michael D (1996). Modelling concepts for the phenotypic plasticity of dry matter and nitrogen partitioning in rice. Agricultural Systems, 52, 383-397.
DOI URL |
[14] | Qi HF (戚海峰), Sun SJ (孙淑君), Bi YN (毕英娜) (2003). The research of cultivation technology of cutting chrysanthemum. Contemporary Eco-Agriculture (当代生态农业), 1, 73-74. (in Chinese) |
[15] | Wilhelm WW (1998). Dry-matter partitioning and leaf area of winter wheat grown in a long-term fallow tillage comparisons in the US Central Great Plains. Soil & Tillage Research, 49, 49-56. |
[16] | Yang ZQ (杨再强), Luo WH (罗卫红), Chen FD (陈发棣), Gu JJ (顾俊杰), Li XM (李向茂), Ding QF (丁琪峰), Zhao CB (赵才标), Lu YF (陆亚凡) (2007). A simulation model for predicting the development stage and harvesting date of standard cut chrysanthemum in greenhouse. Scientia Agricultura Sinica (中国农业科学), 40, 1229-1235. (in Chinese with English abstract) |
[17] | Yang YD (杨迎东), Su JW (苏君伟), Qu LW (屈连伟), Wang WD (王伟东), Cui NN (崔楠楠), Guo SM (郭升民) (2006). The elementary research of relation between bud polarizating and environment factor of ‘shenma’. Liaoning Agricultural Sciences (辽宁农业科学), 1, 45-46. (in Chinese) |
[18] | Yuan CM (袁昌梅), Luo WH (罗卫红), Tai X (邰翔), Zhang SF (张生飞), Jin L (金亮), Chen YS (陈永山), Bu CX (卜崇兴), Xu G (许刚) (2006). Simulation of dry matter partitioning, yield formation and fruit harvest date of greenhouse muskmelon. Scientia Agricultura Sinica (中国农业科学), 39, 353-360. (in Chinese with English abstract) |
[19] | Yuan CM (袁昌梅), Luo WH (罗卫红), Zhang SF (张生飞), Dai JF (戴剑锋), Jin L (金亮) (2005). Simulation of the development of greenhouse muskmelon. Acta Horticulturae Sinica (园艺学报), 32, 262-267. (in Chinese with English abstract) |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[4] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[5] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[6] | 王复标, 叶子飘. 植物电子传递速率光响应模型的研究进展[J]. 植物生态学报, 2024, 48(3): 287-305. |
[7] | 祖姆热提•于苏甫江, 董正武, 成鹏, 叶茂, 刘隋赟昊, 李生宇, 赵晓英. 多枝柽柳水分利用策略对沙堆堆积过程的响应[J]. 植物生态学报, 2024, 48(1): 113-126. |
[8] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[9] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[10] | 钟姣, 姜超, 刘世荣, 龙文兴, 孙建新. 海南长臂猿食源植物的潜在物种丰富度分布格局[J]. 植物生态学报, 2023, 47(4): 491-505. |
[11] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[12] | 陈奕竹, 郎伟光, 陈效逑. 中国北方树木秋季物候的过程模拟及其区域分异归因[J]. 植物生态学报, 2022, 46(7): 753-765. |
[13] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
[14] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[15] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19