植物生态学报 ›› 2016, Vol. 40 ›› Issue (10): 1077-1089.DOI: 10.17521/cjpe.2015.0451
所属专题: 生态遥感及应用
杨志青1, 陈报章1,2,,A;*(), 查天山1, 贾昕1
出版日期:
2016-10-10
发布日期:
2016-11-02
通讯作者:
陈报章
基金资助:
Zhi-Qing YANG1, Bao-Zhang CHEN1,2,*(), Tian-Shan ZHA1, Xin JIA1
Online:
2016-10-10
Published:
2016-11-02
Contact:
Bao-Zhang CHEN
摘要:
光能利用率(LUE)是陆地生态系统总初级生产力(GPP)估算的一个重要参数。LUE的准确估算对于在区域甚至全球尺度上使用LUE模型估算GPP是非常重要的。一个基于通量塔的观测视场与通量观测足迹在时空上相匹配的自动多角度遥感平台为LUE在站点尺度上的准确估算提供了一个好方法。该文基于通量塔涡度相关(EC)和自动多角度高光谱连续观测获取的连续30 min的数据, 在站点空间尺度和0.5 h与日时间尺度上, 探讨了城市绿地生态系统秋季光化学反射植被指数(PRI)与LUE之间的关系。研究发现, 反映植被叶面积和色素变化的植被绿度指数在秋季呈现逐渐下降的趋势, 表征了植被冠层的状态与结构变化, 叶片从绿色逐渐变黄凋落, 植被冠层叶片的叶绿素逐渐减少, 裸露的枝干增多; 用空气温度和代表物候过程的绝对绿度指数(2G_RB)做线性回归分析, 得到回归系数(R2)为0.60 (p < 0.001)。说明在城市绿地生态系统中, 空气温度是决定植被物候过程的主要驱动因素, 随着植被物候变化, 叶片的凋落导致的裸露土壤的增多以及随时间变化的色素含量和其比例的变化将影响PRI和LUE的关系; 采用植被生长模型(logistic曲线), 拟合时间与2G_RB, 得到曲率变化最快的点, 确定为秋季植被落叶期的初日, 即第290天。在0.5 h和日时间尺度上, PRI都可以捕捉LUE的变化。但是日尺度上不同物候期, PRI和LUE的关系发生了急剧的变化。在秋季植被正常生长期, PRI和LUE之间的关系最密切(R2 = 0.70, p < 0.001)。当土壤温度大于15 ℃、光合有效辐射(PAR)大于300 μmol·m-2·s-1以及饱和水汽压差(VPD)大于700 Pa的情况下, PRI能够更好地预测LUE。基于通 量塔尺度上时空尺度相匹配, 利用半经验的核驱动二向反射分布函数模型得到的高光谱PRI和通量观测得到的LUE在不同环境条件下的关系以及考虑到在植被的不同物候期对PRI和LUE的关系的优化, 将会更加准确地估算城市绿地生态系统的LUE。
杨志青, 陈报章, 查天山, 贾昕. 城市绿地生态系统多角度高光谱光化学反射植被指数与光能利用率的关系. 植物生态学报, 2016, 40(10): 1077-1089. DOI: 10.17521/cjpe.2015.0451
Zhi-Qing YANG, Bao-Zhang CHEN, Tian-Shan ZHA, Xin JIA. Relationship between photochemical reflectance index with multi-angle hyper-spectrum and light use efficiency in urban green-land ecosystems. Chinese Journal of Plant Ecology, 2016, 40(10): 1077-1089. DOI: 10.17521/cjpe.2015.0451
图1 2012年正午时分相同方位角(225°)和观测角度(63°)的绝对绿度指数(2G_RB)与空气温度(Ta)的时间变化。
Fig. 1 Changes of absolute greenness index (2G_RB) of viewazimuth (225°) and viewzenith (63°) at noon as well as daily mean air temperature (Ta).
图3 正午时分相同方位角(225°)和观测角(63°)的光谱曲线随时间的变化。
Fig. 3 Spectral curves of viewazimuth (225 degrees) and viewzenith (63 degrees) are changed with time at noon.
图4 光化学植被指数(PRI)随不同观测角度的变化。A, PRI随不同方位角和不同观测角度的变化。B, PRI随观测方位角和太阳方位角之间的角度的变化。A和B的数据都来源于2012年8月31日10:45-11:00的数据。
Fig. 4 Variability of photochemical reflectance index (PRI) with different view angles. A, variability of PRI with different view azimuth angles (VAA) and view zenith angles (VZA). B, Illustrated PRI variations in relation to the angle between sun and viewer. Data obtained from 10:45 to 11:00 on August 31, 2012.
图5 浅层土壤温度Tsoil (10 cm)、饱和水汽压差(VPD)、总初级生产力(GPP)、光合有效辐射(PAR)、光化学植被指数(PRI)和光能利用率(LUE)的时间变化。PRI和LUE的测量时间为9:00-16:00。
Fig. 5 Time variations of soil temperature (Tsoil), vapour pressure deficit (VPD), gross primary productivity (GPP), photosynthetically active radiation (PAR), photochemical reflectance index (PRI) and light use efficiency (LUE). PRI and LUE are measured every half hour from 9:00 to 16:00.
图6 研究期9:00-16:00的0.5 h的环境因子(Tsoil、PAR、VPD)与光能利用率(LUE)的相关性(A-C)及与光化学植被指数(PRI)的相关性(D-F)。PAR, 光合有效辐射; Tsoil, 浅层土壤温度; VPD, 饱和水汽压差。
Fig. 6 Relationships of half-hour bioclimatic parameters (Tsoil, PAR and VPD) with light use efficiency (LUE) (A-C) and with photochemical reflectance index (PRI) (D-F) observed 9:00-16:00 each day across the autumn. PAR, photosynthetically active radiation; Tsoil, soil temperature; VPD, vapour pressure deficit.
图7 每天9:00-16:00的0.5 h的光化学植被指数(PRI)与光能利用率(LUE)之间的相关系数(r)(A)及研究期内0.5 h的降水量(B)。图A中正数代表正相关, 负值代表负相关。
Fig. 7 Correlation coefficients (r) of half-hour photochemical reflectance index (PRI) with light use efficiency (LUE) on individual days, with data acquired 9:00-16:00 (A) and half hour rainfall during the study period (B). The length of error-bars represents the p value of each linear regression. Positive indicate positive correlation, and negative indicate negative correlation in Fig. 7A.
图8 研究期9:00-16:00的数据计算的0.5 h (A)和日平均(B)的光化学植被指数(PRI)与光能利用率(LUE)之间的相关性。
Fig. 8 Relationships between half-hour (A) and daily (B) average photochemical reflectance index (PRI) and light use efficiency (LUE), calculated using data observed 9:00-16:00 each day throughout the study period.
图9 秋季植被正常生长期(A)和植被落叶期(B) 9:00-16:00的日平均光化学植被指数(PRI)与光能利用率(LUE)的线性相关性。
Fig. 9 Linear relationships between daily average photochemical reflectance index (PRI) and light use efficiency (LUE), calculated using data observed 9:00-16:00 each day in the regular growth period (A) and leaf fall period (B).
图10 在特定环境因子下光化学植被指数(PRI)与光能利用率(LUE)之间的相关性系数。
Fig. 10 Average diurnal correlation coefficients (r) of half-hourly photochemical reflectance index (PRI) with light use efficiency (LUE) in relation to individual bioclimatic factors or gross primary productivity (GPP) throughout the whole season.
图11 植被落叶期修正光化学植被指数(PRIR2)随光能利用率(LUE)的变化。
Fig. 11 Revised photochemical reflectance index (PRIR2) changes with light use efficiency (LUE) in the senescence stage.
[1] | Adamsen FG, Pinter PJ, Barnes EM, LaMorte RL, Wall GW, Leavitt SW, Kimball BA (1999). Measuring wheat senescence with a digital camera.Crop Science, 39, 719-724. |
[2] | Barton C, North P (2001). Remote sensing of canopy light use efficiency using the photochemical reflectance index: Model and sensitivity analysis.Remote Sensing of Environment, 78, 264-273. |
[3] | Chen WJ, Li CY, He GM, Wang XP, Zha TS, Jia X (2013). Dynamics of CO2 exchange and its environmental controls in an urban green-land ecosystem in Beijing Olympic Forest Park.Acta Ecologica Sinica, 33, 6712-6720.(in Chinese with English abstract)[陈文婧, 李春义, 何桂梅, 王小平, 查天山, 贾昕 (2013). 北京奥林匹克森林公园绿地碳交换动态及其环境控制因子. 生态学报, 33, 6712-6720.] |
[4] | Filella I, Porcar-Castell A, Munné-Bosch S, Bäck J, Garbulsky M, Peñuelas J (2009). PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle.International Journal of Remote Sensing, 30, 4443-4455. |
[5] | Gamon J, Serrano L, Surfus J (1997). The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels.Oecologia, 112, 492-501. |
[6] | Gamon JA, Field CB, Bilger W, Bjǒrkman O, Fredeen AL, Peňuelas J (1990). Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies.Oecologia, 85, 1-7. |
[7] | Gamon JA, Penuelas J, Field CB (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency.Remote Sensing of Environment, 41, 35-44. |
[8] | Gu LH, Wilfred MP, Dennis DB, Andy BT, Shashi BV, Timo V, Steve CW (2003). Phenology of vegetation photosystem. In: Schwartz MD ed. Phenology: An Integrative Environmental Science. Springer, New York. |
[9] | Hall FG, Hilker T, Coops NC (2011). PHOTOSYNSAT, photosynthesis from space: Theoretical foundations of a satellite concept and validation from tower and spaceborne data.Remote Sensing of Environment, 115, 1918-1925. |
[10] | Hall FG, Hilker T, Coops NC (2012). Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: I. Model formulation.Remote Sensing of Environment, 121, 301-308. |
[11] | Hall FG, Hilker T, Coops NC, Lyapustin A, Huemmrich KF, Middleton E, Margolis H, Drolet G, Black TA (2008). Multi-angle remote sensing of forest light use efficiency by observing PRI variation with canopy shadow fraction.Remote Sensing of Environment, 112, 3201-3211. |
[12] | Hilker T, Coops NC, Hall FG, Black TA, Wulder MA, Nesic Z, Krishnan P (2008). Separating physiologically and directionally induced changes in PRI using BRDF models.Remote Sensing of Environment, 112, 2777-2788. |
[13] | Hilker T, Gitelson A, Coops N, Hall F, Black T (2011). Tracking plant physiological properties from multi-angular tower-based remote sensing.Oecologia, 165, 865-876. |
[14] | Hilker T, Hall FG, Tucker CJ, Coops NC, Black TA, Nichol CJ, Sellers PJ, Barr A, Hollinger DY, Munger JW (2012a). Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: II Model implementation and validation.Remote Sensing of Environment, 121, 287-300. |
[15] | Hilker T, Lyapustin AI, Tucker CJ, Sellers PJ, Hall FG, Wang Y (2012b). Remote sensing of tropical ecosystems: Atmospheric correction and cloud masking matter.Remote Sensing of Environment, 127, 370-384. |
[16] | Hu MM (2009).Preliminary Study on Plant Landscape and Eco-efficiency of Beijing Olympic Forest Park. Master degree dissertation, Beijing Forestry University, Beijing.(in Chinese).[胡淼淼 (2009). 北京奥林匹克森林公园植物景观与生态效益初探. 硕士学位论文, 北京林业大学, 北京.] |
[17] | Lucht W, Schaaf CB, Strahler AH (2000). An algorithm for the retrieval of albedo from space using semiempirical BRDF models.IEEE Transactions on Geoscience and Remote Sensing, 38, 977-998. |
[18] | Millward AA, Sabir S (2011). Benefits of a forested urban park: What is the value of Allan Gardens to the city of Toronto, Canada?Landscape and Urban Planning, 100(3), 177-188. |
[19] | Nakaji T, Oguma H, Fujinuma Y (2006). Seasonal changes in the relationship between photochemical reflectance index and photosynthetic light use efficiency of Japanese larch needles.International Journal of Remote Sensing, 27, 493-509. |
[20] | Nakaji T, Reiko I, Kentaro T, Yoshiko K, Shinjiro O, Kenlo NN, Nobuko S, Hiroyuki O (2008). Utility of spectral vegetation indices for estimation of light conversion efficiency in coniferous forests in Japan.Agricultural and Forest Meteorology, 148, 776-787. |
[21] | Nichol CJ, Lloyd J, Shibistova O (2002). Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest.Tellus, 54B, 677-687. |
[22] | Nightingale JM, Coops NC, Waring RH, Hargrove WW (2007). Comparison of MODIS gross primary production estimates for forests across the U.S.A. with those generated by a simple process model, 3-PGS.Remote Sensing of Environment, 109, 500-509. |
[23] | Peng T, Yao G, Gao HY, Li PM, Wang WW, Sun S, Zhao SJ (2009). Relationship between xanthophyll cycle and photochemical reflectance index measured at leaf or canopy level in two field-grown plant species. Acta Ecologica Sinica, 29, 1987-1993.(in Chinese with English abstract)[彭涛, 姚广, 高辉远, 李鹏民, 王未未, 孙山, 赵世杰 (2009). 植物叶片和冠层光化学反射指数与叶黄素循环的关系. 生态学报,29, 1987-1993.] |
[24] | Penuelas J, Gamon JA, Griffin KL, Field CB (1993). Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance.Remote Sensing of Environment, 46, 110-118. |
[25] | Penuelas J, Garbulsky MF, Gamon J, Inoue Y, Filella I (2011b). The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis.Remote Sensing of Environment, 115, 281-297. |
[26] | Porcar-Castell A, Garcia-Plazaola JI, Nichol CJ, Kolari P, Olascoaga B, Kuusinen N, Fernández-Marín B, Pulkkinen M, Juurola E, Nikinmaa E (2012). Physiology of the seasonal relationship between the photochemical reflectance index and photosynthetic light use efficiency.Oecologia, 1-11. |
[27] | Rahman A, Cordova V, Gamon J, Schmid H, Sims D (2004). Potential of MODIS ocean bands for estimating CO2 flux from terrestrial vegetation: A novel approach. Geophysical Research Letters, 31, L10503. |
[28] | Richardson AD, Braswell BH, Hollinger DY, Jenkins JP, Ollinger SV (2009). Near-surface remote sensing of spatial and temporal variation in canopy phenology.Ecological Applications, 19, 1417-1428. |
[29] | Richardson AD, Jenkins JP, Braswell BH, Hollinger DY, Ollinger SV, Smith ML (2007). Use of digital webcam images to track spring green-up in a deciduous broadleaf forest.Oecologia, 152, 323-334. |
[30] | Wang LW, Wei YX (2015). A review on inversion of vegetation light use efficiency by hyper spectral remote sensing.Geomatics & Spatial Information Technology, 38(6), 15-22, 38.(in Chinese with English abstract)[王莉雯, 卫亚星 (2015). 植被光能利用率高光谱遥感反演研究进展. 测绘与空间地理信息,38(6), 15-22, 38.] |
[31] | Wong CY, Gamon JA (2015). Three causes of variation in the photochemical reflectance index (PRI) in evergreen conifers.The New Phytologist, 206, 187-195. |
[32] | Wu CY, Chen JM, Ankur RD, David YH, Altaf M, Hank AM, Christopher MG, Ralf MS (2012). Remote sensing of canopy light use efficiency in temperate and boreal forests of North America using MODIS imagery.Remote Sensing of Environment, 118, 60-72. |
[33] | Wu CY, Niu Z, Tang Q, Huang WJ (2010). Revised photochemical reflectance index (PRI) for predicting light use efficiency of wheat in a growth cycle: Validation and comparison.International Journal of Remote Sensing, 311)2911-2924. |
[34] | Zhou L, He HL, Zhang L, Sun XM, Shi PL, Ren XL, Yu GR (2012). Simulations of phenology in alpine grassland communities in Damxung, Xizang, based on digital camera images.Chinese Journal of Plant Ecology, 36, 1125-1135.(in Chinese with English abstract)[周磊, 何洪林, 张黎, 孙晓敏, 石培礼, 任小丽, 于贵瑞 (2012). 基于数字相机图像的西藏当雄高寒草地群落物候模拟. 植物生态学报,36, 1125-1135.] |
[1] | 张雷明, 曹沛雨, 朱亚平, 李庆康, 张军辉, 王晓凌, 戴冠华, 李金功. 长白山阔叶红松林生态系统光能利用率的动态变化及其主控因子[J]. 植物生态学报, 2015, 39(12): 1156-1165. |
[2] | 周磊, 何洪林, 张黎, 孙晓敏, 石培礼, 任小丽, 于贵瑞. 基于数字相机图像的西藏当雄高寒草地群落物候模拟[J]. 植物生态学报, 2012, 36(11): 1125-1135. |
[3] | 吴朝阳, 牛铮. 光化学植被指数估算植物光能利用率的研究进展[J]. 植物生态学报, 2008, 32(3): 734-740. |
[4] | 张娜, 于贵瑞, 于振良, 赵士洞. 基于3S的自然植被光能利用率的时空分布特征的模拟[J]. 植物生态学报, 2003, 27(3): 325-336. |
[5] | 张祝平, 何道泉, 敖惠修. 任豆林的生物量和光能利用率[J]. 植物生态学报, 1996, 20(6): 502-509. |
[6] | 张祝平. 鼎湖山森林群落的光能利用效率[J]. 植物生态学报, 1990, 14(2): 139-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19