植物生态学报 ›› 2016, Vol. 40 ›› Issue (10): 1090-1099.DOI: 10.17521/cjpe.2016.0172
尹明宇, 姜仲茂, 朱绪春, 包文泉, 赵罕, 乌云塔娜*()
出版日期:
2016-10-10
发布日期:
2016-11-02
通讯作者:
乌云塔娜
基金资助:
Ming-Yu YIN, Zhong-Mao JIANG, Xu-Chun ZHU, Wen-Quan BAO, Han ZHAO, Tana WUYUN*()
Online:
2016-10-10
Published:
2016-11-02
Contact:
Tana WUYUN
摘要:
为明确内蒙古山杏(Armeniaca sibirica)种群间和种群内的表型变异程度和变异规律, 以内蒙古山杏自然分布区的13个种群的23个表型性状为研究对象, 采用巢式方差分析、多重比较、变异分析、相关性分析和主成分分析等多种分析方法, 对种群间和种群内的表型多样性及其与地理生态因子的相关性进行了讨论。研究结果表明: 内蒙古山杏的表型性状在种群间和种群内均存在丰富的变异, 种群间的变异大于种群内的变异, 表型性状的平均分化系数为73.03%, 种群间变异是山杏表型变异的主要变异来源。各性状的平均变异系数为14.28%, 变异幅度为7.01%-27.23%, 其中核的变异系数最大, 果的变异系数最小。土默特左旗万家沟种群表型多样性最丰富, 科尔沁右翼前旗察尔森种群表型多样性最小。表型性状主要受经度、年降水量以及年日照时间3个主要地理生态因子影响。通过主成分分析可以把13个种源区划为四大类, 其中乌拉山种群的叶性状和阿鲁科尔沁旗种群的核性状受地理生态因子影响最大。
尹明宇, 姜仲茂, 朱绪春, 包文泉, 赵罕, 乌云塔娜. 内蒙古山杏种群表型变异. 植物生态学报, 2016, 40(10): 1090-1099. DOI: 10.17521/cjpe.2016.0172
Ming-Yu YIN, Zhong-Mao JIANG, Xu-Chun ZHU, Wen-Quan BAO, Han ZHAO, Tana WUYUN. High-level phenotypic variations in populations of Armeniaca sibirica in Nei Mongol, China. Chinese Journal of Plant Ecology, 2016, 40(10): 1090-1099. DOI: 10.17521/cjpe.2016.0172
种群 Population | 种群编号 Population ID | 纬度 Latitude (N) | 经度 Longitude (E) | 年平均气温 AMAT (℃) | 年日照时间 AMSD (h) | 海拔 Altitude (m) | 年降水量 AP (mm) | 无霜期 Frost-free season (d) |
---|---|---|---|---|---|---|---|---|
扎赉特旗 JLB | P1 | 46.59° | 122.75° | 3.2 | 2 800 | 245 | 430 | 120 |
科尔沁右翼前旗 HRFB | P2 | 46.31° | 121.92° | 2.1 | 2 900 | 350 | 420 | 127 |
科尔沁右翼中旗 HRMB | P3 | 45.06° | 121.47° | 7.2 | 3 000 | 254 | 300 | 120 |
扎鲁特旗 JUB | P4 | 44.92° | 121.45° | 6.6 | 2 883 | 224 | 380 | 130 |
科尔沁左翼后旗 HLRB | P5 | 43.62° | 122.58° | 5.8 | 2 889 | 308 | 452 | 148 |
阿鲁科尔沁旗 AB | P6 | 44.62° | 120.08° | 5.5 | 2 895 | 1 540 | 375 | 113 |
巴林右旗 BRB | P7 | 43.42° | 119.08° | 4.9 | 3 100 | 730 | 355 | 125 |
敖汉旗 AHB | P8 | 42.47° | 120.45° | 6.0 | 2 885 | 485 | 385 | 140 |
克什克腾旗 HB | P9 | 42.47° | 117.80° | 2.8 | 2 705 | 1 100 | 430 | 105 |
卓资县 ZZC | P10 | 40.87° | 112.80° | 5.0 | 2 900 | 1 750 | 403 | 130 |
和林格尔县 HC | P11 | 40.38° | 111.82° | 6.2 | 2 942 | 1 160 | 393 | 118 |
土默特左旗万家沟 WJG | P12 | 40.68° | 111.15° | 7.2 | 2 952 | 1 008 | 379 | 133 |
乌拉山 WLM | P13 | 40.70° | 109.04° | 5.6 | 3 205 | 2 083 | 188 | 129 |
表1 山杏13个种群的地理位置及主要气候因子
Table 1 Geographical locations and main climatic conditions for 13 Armeniaca sibirica populations
种群 Population | 种群编号 Population ID | 纬度 Latitude (N) | 经度 Longitude (E) | 年平均气温 AMAT (℃) | 年日照时间 AMSD (h) | 海拔 Altitude (m) | 年降水量 AP (mm) | 无霜期 Frost-free season (d) |
---|---|---|---|---|---|---|---|---|
扎赉特旗 JLB | P1 | 46.59° | 122.75° | 3.2 | 2 800 | 245 | 430 | 120 |
科尔沁右翼前旗 HRFB | P2 | 46.31° | 121.92° | 2.1 | 2 900 | 350 | 420 | 127 |
科尔沁右翼中旗 HRMB | P3 | 45.06° | 121.47° | 7.2 | 3 000 | 254 | 300 | 120 |
扎鲁特旗 JUB | P4 | 44.92° | 121.45° | 6.6 | 2 883 | 224 | 380 | 130 |
科尔沁左翼后旗 HLRB | P5 | 43.62° | 122.58° | 5.8 | 2 889 | 308 | 452 | 148 |
阿鲁科尔沁旗 AB | P6 | 44.62° | 120.08° | 5.5 | 2 895 | 1 540 | 375 | 113 |
巴林右旗 BRB | P7 | 43.42° | 119.08° | 4.9 | 3 100 | 730 | 355 | 125 |
敖汉旗 AHB | P8 | 42.47° | 120.45° | 6.0 | 2 885 | 485 | 385 | 140 |
克什克腾旗 HB | P9 | 42.47° | 117.80° | 2.8 | 2 705 | 1 100 | 430 | 105 |
卓资县 ZZC | P10 | 40.87° | 112.80° | 5.0 | 2 900 | 1 750 | 403 | 130 |
和林格尔县 HC | P11 | 40.38° | 111.82° | 6.2 | 2 942 | 1 160 | 393 | 118 |
土默特左旗万家沟 WJG | P12 | 40.68° | 111.15° | 7.2 | 2 952 | 1 008 | 379 | 133 |
乌拉山 WLM | P13 | 40.70° | 109.04° | 5.6 | 3 205 | 2 083 | 188 | 129 |
性状 Trait | 均方 Mean square | F值 F value | ||||
---|---|---|---|---|---|---|
种群间 Among populations | 种群内 Within population | 随机误差 Random error | 种群间 Among populations | 种群内 Within population | ||
叶长 LL (mm) | 2423.192 | 80.051 | 35.646 | 30.271** | 2.246** | |
叶宽 LW (mm) | 2062.260 | 64.959 | 27.330 | 31.747** | 2.377** | |
叶柄长 PL (mm) | 570.937 | 16.589 | 10.105 | 34.417** | 1.642** | |
叶尖长 LAL (mm) | 351.216 | 11.355 | 5.620 | 30.930** | 2.020** | |
叶形指数 LSI | 0.118 | 0.014 | 0.009 | 8.512** | 1.633** | |
果纵径 FVD (mm) | 110.291 | 4.687 | 2.498 | 23.533** | 1.876** | |
果横径 FHD (mm) | 126.519 | 3.068 | 1.635 | 41.245** | 1.877** | |
果侧径 FSD (mm) | 133.504 | 4.688 | 2.435 | 28.475** | 1.925** | |
果形指数 FSI | 0.057 | 0.009 | 0.004 | 6.575** | 2.013** | |
单果质量 SFW (g) | 106.972 | 1.444 | 1.196 | 74.088** | 1.207 | |
核纵径 NVD (mm) | 45.824 | 5.781 | 1.783 | 7.926** | 3.242** | |
核横径 NHD (mm) | 47.793 | 3.536 | 1.229 | 13.517** | 2.877** | |
核侧径 NSD (mm) | 9.934 | 1.153 | 0.392 | 8.615** | 2.945** | |
核壳厚 ST (mm) | 2.102 | 0.210 | 0.038 | 10.017** | 5.474** | |
核形指数 NSI | 0.185 | 0.019 | 0.015 | 9.744** | 1.255 | |
核干质量 NDW (g) | 0.614 | 0.038 | 0.018 | 16.132** | 2.165** | |
出核率 NR | 0.021 | 0.001 | 0.001 | 17.134** | 1.663** | |
仁纵径 KVD (mm) | 22.977 | 3.199 | 1.013 | 7.182** | 3.158** | |
仁横径 KHD (mm) | 32.419 | 2.398 | 0.594 | 13.520** | 4.035** | |
仁侧径 KSD (mm) | 12.430 | 1.190 | 0.419 | 10.444** | 2.843** | |
仁形指数 KSI | 0.649 | 0.073 | 0.018 | 8.866** | 4.007** | |
仁干质量 KDW (g) | 0.074 | 0.010 | 0.005 | 7.582** | 1.835** | |
出仁率 KR | 0.137 | 0.009 | 0.004 | 15.664** | 1.950** |
表2 山杏各种群间和种群内叶、果、核、仁表型性状的方差分析
Table 2 Variance analysis of phenotypic traits of leaf, fruit, seeds, nutlet and kernel among and within Armeniaca sibirica populations
性状 Trait | 均方 Mean square | F值 F value | ||||
---|---|---|---|---|---|---|
种群间 Among populations | 种群内 Within population | 随机误差 Random error | 种群间 Among populations | 种群内 Within population | ||
叶长 LL (mm) | 2423.192 | 80.051 | 35.646 | 30.271** | 2.246** | |
叶宽 LW (mm) | 2062.260 | 64.959 | 27.330 | 31.747** | 2.377** | |
叶柄长 PL (mm) | 570.937 | 16.589 | 10.105 | 34.417** | 1.642** | |
叶尖长 LAL (mm) | 351.216 | 11.355 | 5.620 | 30.930** | 2.020** | |
叶形指数 LSI | 0.118 | 0.014 | 0.009 | 8.512** | 1.633** | |
果纵径 FVD (mm) | 110.291 | 4.687 | 2.498 | 23.533** | 1.876** | |
果横径 FHD (mm) | 126.519 | 3.068 | 1.635 | 41.245** | 1.877** | |
果侧径 FSD (mm) | 133.504 | 4.688 | 2.435 | 28.475** | 1.925** | |
果形指数 FSI | 0.057 | 0.009 | 0.004 | 6.575** | 2.013** | |
单果质量 SFW (g) | 106.972 | 1.444 | 1.196 | 74.088** | 1.207 | |
核纵径 NVD (mm) | 45.824 | 5.781 | 1.783 | 7.926** | 3.242** | |
核横径 NHD (mm) | 47.793 | 3.536 | 1.229 | 13.517** | 2.877** | |
核侧径 NSD (mm) | 9.934 | 1.153 | 0.392 | 8.615** | 2.945** | |
核壳厚 ST (mm) | 2.102 | 0.210 | 0.038 | 10.017** | 5.474** | |
核形指数 NSI | 0.185 | 0.019 | 0.015 | 9.744** | 1.255 | |
核干质量 NDW (g) | 0.614 | 0.038 | 0.018 | 16.132** | 2.165** | |
出核率 NR | 0.021 | 0.001 | 0.001 | 17.134** | 1.663** | |
仁纵径 KVD (mm) | 22.977 | 3.199 | 1.013 | 7.182** | 3.158** | |
仁横径 KHD (mm) | 32.419 | 2.398 | 0.594 | 13.520** | 4.035** | |
仁侧径 KSD (mm) | 12.430 | 1.190 | 0.419 | 10.444** | 2.843** | |
仁形指数 KSI | 0.649 | 0.073 | 0.018 | 8.866** | 4.007** | |
仁干质量 KDW (g) | 0.074 | 0.010 | 0.005 | 7.582** | 1.835** | |
出仁率 KR | 0.137 | 0.009 | 0.004 | 15.664** | 1.950** |
性状 Trait | 纬度 Latitude (N) | 经度 Longitude (E) | 年平均气温 AMAT | 年日照时间 AMSD | 海拔 Altitude | 年降水量 AP | 无霜期 Frost-free season |
---|---|---|---|---|---|---|---|
LL | 0.285* | 0.449 | -0.392 | -0.639* | -0.474 | 0.675* | -0.177 |
LW | 0.382 | 0.498 | -0.406 | -0.616* | -0.577* | 0.652* | -0.171 |
PL | 0.287 | 0.409 | -0.400 | -0.630* | -0.484 | 0.689** | -0.267 |
LAL | 0.397 | 0.578* | -0.361 | -0.589* | -0.426 | 0.564* | -0.013 |
LSI | -0.592 | -0.571* | 0.241 | 0.445 | 0.793** | -0.501 | 0.115 |
FVD | -0.405 | -0.424 | -0.095 | -0.011 | 0.213 | 0.058 | -0.299 |
FHD | -0.245 | -0.229 | -0.132 | -0.159 | 0.021 | 0.216 | -0.324 |
FSD | -0.184 | -0.175 | -0.344 | -0.308 | 0.014 | 0.324 | -0.372 |
FSI | -0.719** | -0.770** | 0.412 | 0.472 | 0.769** | -0.583* | 0.181 |
SFW | -0.332 | -0.295 | -0.006 | -0.147 | 0.059 | 0.208 | -0.177 |
NVD | -0.549 | -0.624* | -0.215 | 0.165 | 0.281 | -0.136 | -0.129 |
NHD | -0.151 | -0.198 | -0.428 | -0.239 | -0.085 | 0.161 | -0.186 |
NSD | -0.137 | -0.184 | -0.404 | 0.088 | -0.044 | -0.191 | -0.166 |
ST | -0.353 | -0.519 | -0.178 | 0.326 | 0.434 | -0.461 | -0.247 |
NSI | -0.146 | -0.136 | 0.097 | 0.375 | 0.290 | -0.303 | 0.002 |
NDW | -0.310 | -0.443 | -0.363 | 0.140 | 0.208 | -0.106 | -0.250 |
NR | 0.029 | -0.091 | -0.044 | 0.568* | 0.199 | -0.506 | 0.027 |
KVD | -0.145 | -0.262 | -0.568* | -0.115 | 0.020 | 0.052 | -0.189 |
KHD | 0.244 | 0.257 | -0.490 | -0.430 | -0.417 | 0.278 | -0.125 |
KSD | 0.506 | 0.566* | -0.360 | -0.304 | -0.656* | 0.178 | 0.201 |
KSI | -0.394 | -0.222 | 0.235 | 0.224 | 0.181 | -0.209 | 0.336 |
KDW | 0.049 | 0.060 | -0.325 | -0.262 | -0.150 | 0.461 | -0.156 |
KR | 0.316 | 0.412 | 0.204 | -0.234 | -0.274 | 0.415 | 0.194 |
总计 Total | 7.157 | 8.372 | 6.700 | 7.486 | 7.069 | 7.927 | 4.304 |
表3 山杏表型性状与地理生态因子间的相关分析
Table 3 Analysis of correlation between phenotypic traits and geo-ecological factors in Armeniaca sibirica populations
性状 Trait | 纬度 Latitude (N) | 经度 Longitude (E) | 年平均气温 AMAT | 年日照时间 AMSD | 海拔 Altitude | 年降水量 AP | 无霜期 Frost-free season |
---|---|---|---|---|---|---|---|
LL | 0.285* | 0.449 | -0.392 | -0.639* | -0.474 | 0.675* | -0.177 |
LW | 0.382 | 0.498 | -0.406 | -0.616* | -0.577* | 0.652* | -0.171 |
PL | 0.287 | 0.409 | -0.400 | -0.630* | -0.484 | 0.689** | -0.267 |
LAL | 0.397 | 0.578* | -0.361 | -0.589* | -0.426 | 0.564* | -0.013 |
LSI | -0.592 | -0.571* | 0.241 | 0.445 | 0.793** | -0.501 | 0.115 |
FVD | -0.405 | -0.424 | -0.095 | -0.011 | 0.213 | 0.058 | -0.299 |
FHD | -0.245 | -0.229 | -0.132 | -0.159 | 0.021 | 0.216 | -0.324 |
FSD | -0.184 | -0.175 | -0.344 | -0.308 | 0.014 | 0.324 | -0.372 |
FSI | -0.719** | -0.770** | 0.412 | 0.472 | 0.769** | -0.583* | 0.181 |
SFW | -0.332 | -0.295 | -0.006 | -0.147 | 0.059 | 0.208 | -0.177 |
NVD | -0.549 | -0.624* | -0.215 | 0.165 | 0.281 | -0.136 | -0.129 |
NHD | -0.151 | -0.198 | -0.428 | -0.239 | -0.085 | 0.161 | -0.186 |
NSD | -0.137 | -0.184 | -0.404 | 0.088 | -0.044 | -0.191 | -0.166 |
ST | -0.353 | -0.519 | -0.178 | 0.326 | 0.434 | -0.461 | -0.247 |
NSI | -0.146 | -0.136 | 0.097 | 0.375 | 0.290 | -0.303 | 0.002 |
NDW | -0.310 | -0.443 | -0.363 | 0.140 | 0.208 | -0.106 | -0.250 |
NR | 0.029 | -0.091 | -0.044 | 0.568* | 0.199 | -0.506 | 0.027 |
KVD | -0.145 | -0.262 | -0.568* | -0.115 | 0.020 | 0.052 | -0.189 |
KHD | 0.244 | 0.257 | -0.490 | -0.430 | -0.417 | 0.278 | -0.125 |
KSD | 0.506 | 0.566* | -0.360 | -0.304 | -0.656* | 0.178 | 0.201 |
KSI | -0.394 | -0.222 | 0.235 | 0.224 | 0.181 | -0.209 | 0.336 |
KDW | 0.049 | 0.060 | -0.325 | -0.262 | -0.150 | 0.461 | -0.156 |
KR | 0.316 | 0.412 | 0.204 | -0.234 | -0.274 | 0.415 | 0.194 |
总计 Total | 7.157 | 8.372 | 6.700 | 7.486 | 7.069 | 7.927 | 4.304 |
性状 Trait | 主成分 Principal component | ||||
---|---|---|---|---|---|
PC-1 | PC-2 | PC-3 | PC-4 | PC-5 | |
LL | 0.961 | -0.012 | 0.128 | 0.001 | 0.080 |
LW | 0.959 | 0.053 | 0.182 | -0.103 | 0.007 |
PL | 0.935 | 0.057 | 0.266 | 0.053 | -0.066 |
LAL | 0.856 | -0.252 | -0.313 | -0.096 | 0.148 |
LSI | -0.791 | -0.077 | 0.206 | -0.126 | 0.057 |
FVD | -0.721 | 0.059 | -0.182 | 0.263 | 0.354 |
FHD | 0.699 | 0.544 | 0.003 | -0.247 | -0.153 |
FSD | 0.698 | 0.189 | 0.277 | 0.525 | -0.244 |
FSI | -0.677 | -0.072 | -0.378 | 0.372 | 0.295 |
SFW | 0.130 | 0.913 | 0.145 | -0.215 | 0.041 |
NVD | 0.236 | 0.904 | 0.215 | -0.041 | 0.020 |
NHD | 0.071 | 0.878 | 0.342 | 0.233 | -0.016 |
NSD | -0.125 | 0.865 | 0.287 | 0.175 | 0.133 |
ST | 0.548 | 0.797 | 0.131 | 0.096 | -0.003 |
NSI | 0.415 | -0.773 | -0.067 | 0.311 | -0.192 |
NDW | -0.553 | 0.744 | 0.102 | -0.086 | -0.092 |
NR | -0.002 | 0.344 | 0.918 | 0.102 | 0.100 |
KVD | 0.057 | 0.431 | 0.888 | 0.099 | -0.020 |
KHD | -0.108 | 0.517 | 0.821 | 0.187 | 0.035 |
KSD | -0.215 | 0.133 | -0.812 | 0.157 | -0.138 |
KSI | 0.251 | 0.538 | 0.771 | 0.151 | -0.034 |
KDW | 0.530 | 0.212 | -0.410 | -0.656 | -0.063 |
KR | -0.092 | 0.131 | 0.184 | -0.016 | 0.903 |
特征值 Eigen value | 8.868 | 6.850 | 2.832 | 1.166 | 1.095 |
贡献率 Contributive percentage (%) | 38.557 | 29.782 | 12.313 | 5.072 | 4.759 |
累计贡献率 Total percentage (%) | 38.557 | 68.340 | 80.653 | 85.725 | 90.484 |
表4 山杏表型性状的主成分分析
Table 4 Principal component analysis of phenotypic traits of Armeniaca sibirica populations
性状 Trait | 主成分 Principal component | ||||
---|---|---|---|---|---|
PC-1 | PC-2 | PC-3 | PC-4 | PC-5 | |
LL | 0.961 | -0.012 | 0.128 | 0.001 | 0.080 |
LW | 0.959 | 0.053 | 0.182 | -0.103 | 0.007 |
PL | 0.935 | 0.057 | 0.266 | 0.053 | -0.066 |
LAL | 0.856 | -0.252 | -0.313 | -0.096 | 0.148 |
LSI | -0.791 | -0.077 | 0.206 | -0.126 | 0.057 |
FVD | -0.721 | 0.059 | -0.182 | 0.263 | 0.354 |
FHD | 0.699 | 0.544 | 0.003 | -0.247 | -0.153 |
FSD | 0.698 | 0.189 | 0.277 | 0.525 | -0.244 |
FSI | -0.677 | -0.072 | -0.378 | 0.372 | 0.295 |
SFW | 0.130 | 0.913 | 0.145 | -0.215 | 0.041 |
NVD | 0.236 | 0.904 | 0.215 | -0.041 | 0.020 |
NHD | 0.071 | 0.878 | 0.342 | 0.233 | -0.016 |
NSD | -0.125 | 0.865 | 0.287 | 0.175 | 0.133 |
ST | 0.548 | 0.797 | 0.131 | 0.096 | -0.003 |
NSI | 0.415 | -0.773 | -0.067 | 0.311 | -0.192 |
NDW | -0.553 | 0.744 | 0.102 | -0.086 | -0.092 |
NR | -0.002 | 0.344 | 0.918 | 0.102 | 0.100 |
KVD | 0.057 | 0.431 | 0.888 | 0.099 | -0.020 |
KHD | -0.108 | 0.517 | 0.821 | 0.187 | 0.035 |
KSD | -0.215 | 0.133 | -0.812 | 0.157 | -0.138 |
KSI | 0.251 | 0.538 | 0.771 | 0.151 | -0.034 |
KDW | 0.530 | 0.212 | -0.410 | -0.656 | -0.063 |
KR | -0.092 | 0.131 | 0.184 | -0.016 | 0.903 |
特征值 Eigen value | 8.868 | 6.850 | 2.832 | 1.166 | 1.095 |
贡献率 Contributive percentage (%) | 38.557 | 29.782 | 12.313 | 5.072 | 4.759 |
累计贡献率 Total percentage (%) | 38.557 | 68.340 | 80.653 | 85.725 | 90.484 |
图1 基于表型性状(PC-1, PC-2)的山杏种群关系。种群代码见表1。
Fig. 1 The relationship among different Armeniaca sibirica populations based on PC-1 and PC-2. Population code see Table 1.
[1] | Bao WQ (2013). Evaluation of Important Genetic Variation on Armeniaca sibirica in Inner Mongolia and Its Excellent Plant Screening. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. 32-40.(in Chinese)[包文泉 (2013). 内蒙古地区山杏重要性状遗传变异评价及优株选择. 硕士学位论文, 内蒙古农业大学, 呼和浩特. 32-40.] |
[2] | Bao WQ, Wuyun TN, Yin MY (2014). Genetic variation of fine individual plants’ seed characteristics of wild apricot in Inner Mongolia.Nonwood Forest Research, 32(4), 13-17, 72.(in Chinese with English abstract)[包文泉, 乌云塔娜, 尹明宇 (2014). 内蒙古野生山杏优良单株果核性状的遗传变异分析. 经济林研究,32(4), 13-17, 72.] |
[3] | Cao Y (2014). Analysis preservation of Armeniaca sibirica germplasm resources in Inner Mongolia.Inner Mongolia Forestry Investigation and Design, 37(3), 103-105.(in Chinese with English abstract)[曹扬 (2014). 内蒙古自治区山杏种质资源保存库建设分析. 内蒙古林业调查设计,37(3), 103-105. |
[4] | Diao SF, Shao WH, Jiang JM, Dong RX, Sun HG (2014). Phenotypic diversity in natural populations of Sapindus mukorossi based on fruit and seed traits.Acta Ecologica Sinica, 34, 1451-1460.(in Chinese with English abstract)[刁松锋, 邵文豪, 姜景民, 董汝湘, 孙洪刚 (2014). 基于种实性状的无患子天然群体表型多样性研究. 生态学报,34, 1451-1460.] |
[5] | Ge S, Wang MX, Chen YW (1988). An analysis of population genetic structure of masson pine by isozyme technique.Scientia Silvae Sinicae, 24, 399-410.(in Chinese with English abstract)[葛颂, 王明庥, 陈岳武 (1988). 用同工酶研究马尾松种群的遗传结构. 林业科学,24, 399-410.] |
[6] | Gu YJ, Luo JX, Wu YW, Cao XJ (2009). Phenotypic diversity in natural populations of Picea balfouriana in Sichuan, China.Chinese Journal of Plant Ecology, 33, 291-301.(in Chinese with English abstract)[辜云杰, 罗建勋, 吴远伟, 曾小军 (2009). 川西云杉天然种群表型多样性. 植物生态学报,33, 291-301.] |
[7] | Hamrick JL, Godt NJW (1990). Allozyme Diversity in Plant Species. Sinauer Association, Sunderland, USA. 43-63. |
[8] | Jing ZH, Li H, Shao WH, Yue HF, Jiang JM (2010). Phenotypic diversity of natural populations in Diospyros glaucifolia.Bulletin of Botanical Research, 30, 325-331.(in Chinese with English abstract)[井振华, 李皓, 邵文豪, 岳华峰, 姜景民 (2010). 浙江柿天然群体表型多样性研究. 植物研究,30, 325-331.] |
[9] | Jin ZX, Gu JJ, Li JM (2012). Genetic variation among populations of the endangered Sinocalycanthus chinensis based on morphological traits and ISSR profiles.Acta Ecologica Sinica, 2012, 32, 3849-3858.(in Chinese with English abstract)[金则新, 顾婧婧, 李钧敏 (2012). 基于形态及分子标记的濒危植物夏蜡梅自然居群的遗传变异研究. 生态学报,32, 3849-3858.] |
[10] | Ji ZF, Gao YH, Li L, Mao SX, Zhao L, Geng QY, Wang YL (2012). Phenotypic diversity of populations of Acer mono in Huoshan mountain of Shanxi at different altitude.Acta Horticulturae Sinica, 39, 2217-2228.(in Chinese with English abstract)[姬志峰, 高亚卉, 李乐, 毛思雪, 赵亮, 耿全英, 王祎玲 (2012). 山西霍山五角枫不同海拔种群的表型多样性研究. 园艺学报,39, 2217-2228.] |
[11] | Kang YX, Zhao BX, Yun YJ, Chen M (2011). Study on phenotypic diversity of seeds and fruits’ characteristics in Cornus walteri. Journal of Northwest A & F University (Nature Science Edition), 39(9), 107-117.(in Chinese with English abstract)[康永祥, 赵宝鑫, 贠玉洁, 陈绵 (2011). 毛梾天然群体种实表型多样性研究. 西北农林科技大学学报(自然科学版),39 (9), 107-117.] |
[12] | Li B, Gu WC, Lu BM (2002). A study on phenotypic diversity of seeds and cones characteristics in Pinus bungeana.Biodiversity Science, 10, 181-188.(in Chinese with English abstract)[李斌, 顾万春, 卢宝明 (2002). 白皮松天然种群种实性状表型多样性研究. 生物多样性,10, 181-188.] |
[13] | Li M, Zhao Z, Yang JA, Lu B (2011). Genetic diversity analysis on germplasm of Armeniaca sibirica in different counties in Loess Plateau. Journal of Northwest A & F University (Nature Science Edition), 39(2), 143-149, 156(in Chinese with English abstract).[李明, 赵忠, 杨吉安, 卢斌 (2011). 黄土高原不同县域山杏种质遗传多样性研究. 西北农林科技大学学报(自然科学版),39(2), 143-149, 156.] |
[14] | Li SF, Su JR, Liu WD, Lang XD, Zhang ZJ, Su L, Jia CXZ, Yang HJ (2013). Phenotypic variations in cones and seeds of natural Pinus kesiya var. langbianensis populations in Yunnan Province, China.Chinese Journal of Plant Ecology, 37, 998-1009.(in Chinese with English abstract)[李帅锋, 苏建荣, 刘万德, 郎学东, 张志钧, 苏磊, 贾呈鑫卓, 杨华景 (2013). 思茅松天然群体种实表型变异. 植物生态学报,37, 998-1009.] |
[15] | Li YG, Liu XH, Ma JW, Shi CG, Zhu GQ (2014). Phenotypic variations in populations of Phoebe chekiangensis.Chinese Journal of Plant Ecology, 38, 1315-1324.(in Chinese with English abstract)[李因刚, 柳新红, 马俊伟, 石从广, 朱光权 (2014). 浙江楠种群表型变异. 植物生态学报,38, 1315-1324.] |
[16] | Liang YQ, Han WJ, Zhang JJ, Sun P, Liang JJ, Fu JM (2015). Phenotypic diversity of persimmon germplasms in Henan Province.Journal of China Agricultural University, 20(1), 74-85.(in Chinese with English abstract)[梁玉琴, 韩卫娟, 张嘉嘉, 孙鹏, 梁晋军, 傅建敏 (2015). 河南省柿种质资源表型多样性研究. 中国农业大学学报,20(1), 74-85.] |
[17] | Liu J, Liao K, Mansur N, Zhao SR, Liu H, Jia Y (2014). Research on phenotypic diversity of apricot germplasm resources in Xinjiang.Journal of Fruit Science, 31, 1047-1056.(in Chinese with English abstract)[刘娟, 廖康, 曼苏尔·那斯尔, 赵世荣, 刘欢, 贾杨 (2014). 新疆杏种质资源表型多样性研究. 果树学报,31, 1047-1056.] |
[18] | Liu MP, Du HY, Fu JM, Zhu GP, Zhao H, Liu HM, Wuyun TN (2014). Reproductive ecology of Armeniaca sibirica with cold resistant in in Inner Mongolia.Acta Botanica Boreali-Occidentalia Sinica, 34, 1143-1151.(in Chinese with English abstract)[刘梦培, 杜红岩, 傅建敏, 朱高浦, 赵罕, 刘慧敏, 乌云塔娜 (2014). 内蒙古居群抗寒山杏繁殖生态学研究. 西北植物学报,34, 1143-1151.] |
[19] | Liu MP (2015). Study on Pollination Pharacteristic and S Genotype Identification of Self-incompatibility of Kernel- apricot. PhD dissertation, Chinese Academy of Forestry, Beijing. 56-86.(in Chinese)[刘梦培 (2015). 仁用杏自交不亲和的授粉特性和S基因型鉴定研究. 博士学位论文, 中国林业科学研究院, 北京. 56-58.] |
[20] | Liu N, Liu WS (2006). Descriptors and Data Standard for Apricot (Armeniaca Mill.). China Agriculture Press, Beijing.(in Chinese) [刘宁, 刘威生 (2006). 杏种质资源描述规范和数据标准. 中国农业出版社, 北京.] |
[21] | Ma T, Wuyun TN, Deng WT, Kang X, Luo J (2011). Investigation on wild Pyrus ussuriensis Maxim resources of Chifeng area in Inner Mongolia.Guangdong Agricultural Sciences, 38(2), 45-47.(in Chinese with English abstract)[马腾, 乌云塔娜, 邓文韬, 康秀, 罗健 (2011). 内蒙古赤峰地区野生秋子梨调查研究. 广东农业科学,38(2), 45-47.] |
[22] | Ma YH, Zhao Z, Li KY, Ma XH, Guo CJ, Shi QH, Zhu HL (2007). Oil content and composition of almond from different producing area.Journal of the Chinese Cereals and Oils Association, 23(4), 272-275.(in Chinese with English abstract)[马玉花, 赵忠, 李科友, 马希汉, 郭婵娟, 史清华, 朱海兰 (2007). 超临界CO2流体萃取杏仁油工艺研究. 农业工程学报,23(4), 272-275.] |
[23] | Mou HX, Hou XC, Liu QZ (2007). Study on the phenotype diversity of woody energy plant Xanthoceras sorbifolia.Forest Research, 20, 350-355.(in Chinese with English abstract) [牟洪香, 侯新村, 刘巧哲 (2007). 木本能源植物文冠果的表型多样性研究. 林业科学研究,20, 350-355.] |
[24] | Tian SP, Wang YD, Chen YC, Han XJ (2012). Phenotypic diversity of natural Litsea cubeba populations leaf and fruit traits.Chinese Journal of Ecology, 31, 1665-1672.(in Chinese with English abstract)[田胜平, 汪阳东, 陈益存, 韩小娇 (2012). 山苍子天然种群叶片和种实性状的表型多样性. 生态学杂志,31, 1665-1672.] |
[25] | Wang YL, Li Y (2008). Study on phenotypic diversity of cone and seed in natural populations of Picea crassifolia in Qilian Mountain, China. Journal of Plant Ecology (Chinese Version), 32, 355-362.(in Chinese with English abstract)[王娅丽, 李毅 (2008). 祁连山青海云杉天然群体的种实性状表型多样性. 植物生态学报,32, 355-362.] |
[26] | Xu JS, Wuyun TN, Wang GJ (2015). Study on morphological variation of Chinese wild Pyrus ussuriensis Maxim.Journal of Central South University of Forestry & Technology, 35(8), 64-68.(in Chinese with English abstract)[许靖诗, 乌云塔娜, 王广军 (2015). 中国野生秋子梨果实形态变异研究. 中南林业科技大学学报,35(8), 64-68.] |
[27] | Yang J (1991). Infraspecific variation in plant and the exploring methods,Journal of Wuhan Botanical Research, 9, 185-195.(in Chinese with English abstract)[杨继 (1991). 植物种内形态变异的机制及其研究方法. 武汉植物学研究, 9, 185-195.] |
[28] | Yang WZ, Jin H, Yang MQ, Zhao ZL, Zhang ZH, Wang YZ, Zhang JY (2011). Phenotypic diversity and environment relations in Gentiana rigescens of Yunnan. Aata Botanica Boreali-Occidentalia Sinica, 32, 1326-1334.(in Chinese with English abstract)[杨维泽, 金航, 杨美权, 赵振玲, 张智慧, 王元忠, 张金渝 (2011). 云南滇龙胆居群表型多样性及其与环境关系研究. 西北植物学报,32, 1326-1334.] |
[29] | Yu DX (1986). Flora of China. Vol. 38. Science Press, Beijing. 24-31.(in Chinese)[俞德浚 (1986). 中国植物志. 第三十八卷. 科学出版社, 北京. 24-31.] |
[30] | Zeng J, Zheng HS, Gan SM, Bai JY (2005). Phenotypic variation in natural populations of Betula alnoides in Guangxi, China.Scientia Silvae Sinicae, 41(2), 59-65.(in Chinese with English abstract)[曾杰, 郑海水, 甘四明, 白嘉雨 (2005). 广西西南桦天然居群的表型变异. 林业科学,41(2), 59-65.] |
[31] | Zhang CQ, Ji ZF, Lin LL, Zhao RH, Wang YL (2015). Phenotypic diversity of Acer mono Maxim population.Acta Ecologica Sinica, 35, 5343-5352.(in Chinese with English abstract)[张翠琴, 姬志峰, 林丽丽, 赵瑞华, 王祎玲 (2015). 五角枫种群表型多样性. 生态学报,35, 5343-5352.] |
[32] | Zhang JY, Zhang Z (2003). Chinese Fruit Tree, Apricot. China Forestry Publishing House,Beijing. 93-559.(in Chinese)[张加延, 张钊 (2003). 中国果树志, 杏卷. 中国林业出版社, 北京. 93-559.] |
[33] | Zhang R, Wei AZ, Yang H, Yang TX, Sa WQ, Yang XN (2005). Cold resistances of the young fruits of well- performing apricot varieties with sweet almonds.Acta Botanica Boreali-Occidentalia Sinica, 12, 2510-2513.(in Chinese with English abstract)[张睿, 魏安智, 杨恒, 杨途熙, 撒文清, 杨向纳 (2005). 甜山杏优株幼果抗寒性研究. 西北植物学报,12, 2510-2513.] |
[1] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[2] | 徐光来, 李爱娟, 徐晓华, 杨先成, 杨强强. 中国生态功能保护区归一化植被指数动态及气候因子驱动[J]. 植物生态学报, 2021, 45(3): 213-223. |
[3] | 何庆海, 杨少宗, 李因刚, 沈鑫, 柳新红. 枫香树种群种子与果实表型性状变异分析[J]. 植物生态学报, 2018, 42(7): 752-763. |
[4] | 朱弘, 朱淑霞, 李涌福, 伊贤贵, 段一凡, 王贤荣. 尾叶樱桃天然种群叶表型性状变异研究[J]. 植物生态学报, 2018, 42(12): 1168-1178. |
[5] | 柳江群, 尹明宇, 左丝雨, 杨绍斌, 乌云塔娜. 长柄扁桃天然种群表型变异[J]. 植物生态学报, 2017, 41(10): 1091-1102. |
[6] | 闫敏, 李增元, 田昕, 陈尔学, 谷成燕. 黑河上游植被总初级生产力遥感估算及其对气候变化的响应[J]. 植物生态学报, 2016, 40(1): 1-12. |
[7] | 李因刚, 柳新红, 马俊伟, 石从广, 朱光权. 浙江楠种群表型变异[J]. 植物生态学报, 2014, 38(12): 1315-1324. |
[8] | 陈天翌, 刘增辉, 娄安如. 刺萼龙葵种群在中国不同分布地区的表型变异[J]. 植物生态学报, 2013, 37(4): 344-353. |
[9] | 李帅锋,苏建荣,刘万德,郎学东,张志钧,苏磊,贾呈鑫卓,杨华景. 思茅松天然群体种实表型变异[J]. 植物生态学报, 2013, 37(11): 998-1009. |
[10] | 彭兴民, 吴疆翀, 郑益兴, 张燕平, 李根前. 云南引种印楝实生种群的表型变异[J]. 植物生态学报, 2012, 36(6): 560-571. |
[11] | 夏江宝, 张光灿, 孙景宽, 刘霞. 山杏叶片光合生理参数对土壤水分和光照强度的阈值效应[J]. 植物生态学报, 2011, 35(3): 322-329. |
[12] | 杜加强, 舒俭民, 张林波, 郭杨. 黄河上游不同干湿气候区植被对气候变化的响应[J]. 植物生态学报, 2011, 35(11): 1192-1201. |
[13] | 田佳倩, 周志勇, 包彬, 孙建新. 农牧交错区草地利用方式导致的土壤颗粒组分变化及其对土壤碳氮含量的影响[J]. 植物生态学报, 2008, 32(3): 601-610. |
[14] | 郭铌, 朱燕君, 王介民, 邓朝平. 近22年来西北不同类型植被NDVI变化与气候因子的关系[J]. 植物生态学报, 2008, 32(2): 319-327. |
[15] | 杨娟, 葛剑平, 刘丽娟, 丁易, 谭迎春. 卧龙自然保护区针阔混交林林隙更新规律[J]. 植物生态学报, 2007, 31(3): 425-430. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19