植物生态学报 ›› 2008, Vol. 32 ›› Issue (3): 601-610.DOI: 10.3773/j.issn.1005-264x.2008.03.009
所属专题: 碳储量
收稿日期:
2007-03-22
接受日期:
2007-06-11
出版日期:
2008-03-22
发布日期:
2008-05-30
通讯作者:
孙建新
作者简介:
*E-mail:sunjianx@bfu.edu.cn基金资助:
TIAN Jia-Qian1,4, ZHOU Zhi-Yong2, BAO Bin3, SUN Jian-Xin2,*()
Received:
2007-03-22
Accepted:
2007-06-11
Online:
2008-03-22
Published:
2008-05-30
Contact:
SUN Jian-Xin
摘要:
以位于农牧交错带的内蒙古多伦县6种主要草地利用方式为研究对象,对0~30 cm土层的土壤颗粒组分、植物地下根系生物量、土壤有机碳(Soil organic carbon, SOC)和土壤全氮(Total nitrogen, TN)含量进行了测定分析。6种草地利用方式分别为自由放牧、刈割、围封禁牧、弃耕、人工牧草(紫花苜蓿(Medicago sativa))和青储作物(玉米(Zea mays))栽培。对土壤粒径分布的分维分析表明,自由放牧样地的土壤分维数明显低于其余5种类型的草地利用样地,表现出较大的土壤质地异质性。在土壤颗粒组分方面,弃耕样地和人工牧草样地的土壤粘粒(<0.005 mm)和粉粒(0.005~0.05 mm)含量要明显高于其它草地利用方式,而自由放牧样地呈现相反的变异趋势。除人工牧草样地和自由放牧样地之外,代表其余4种类型草地利用方式的样地的粘、粉粒含量均随土层加深而降低。6种草地利用方式中,土壤砂粒(0.05~1 mm)含量均与土壤碳氮含量呈负相关关系;除自由放牧样地和人工牧草样地外,其余4种草地利用方式的土壤粘粒与土壤碳氮含量均表现为显著正相关;植物根系生物量与土壤碳氮含量和粘、粉粒含量均呈显著正相关;地上生物量和凋落物仅与粘粒含量存在显著正相关关系。以上差异说明草地利用变化有可能通过影响植被而改变土壤物理性状,同时土壤碳氮含量和土壤颗粒组分的分布特征以及它们之间的相关关系受土地利用方式的影响较大。根系生物量和土壤粘粒含量可以共同解释土壤碳氮含量变异的70%,自变量的独立解释量约为20%。回归方程为:SOC = 1.08×[粘粒含量]+0.01×[根系生物量]-19.45,TN=0.079×[粘粒含量]+0.001×[根系生物量]-1.143。
田佳倩, 周志勇, 包彬, 孙建新. 农牧交错区草地利用方式导致的土壤颗粒组分变化及其对土壤碳氮含量的影响. 植物生态学报, 2008, 32(3): 601-610. DOI: 10.3773/j.issn.1005-264x.2008.03.009
TIAN Jia-Qian, ZHOU Zhi-Yong, BAO Bin, SUN Jian-Xin. VARIATIONS OF SOIL PARTICLE SIZE DISTRIBUTION WITH LAND-USE TYPES AND INFLUENCES ON SOIL ORGANIC CARBON AND NITROGEN. Chinese Journal of Plant Ecology, 2008, 32(3): 601-610. DOI: 10.3773/j.issn.1005-264x.2008.03.009
图1 不同土地利用方式下的土壤粒径分维 FG: 自由放牧Free grazing MW:刈割Mowing GE:围封禁牧Grazing exclusion FL:弃耕Fallow AP:人工牧草Alfalfa pasture CP:青储作物 Corn plantation
Fig.1 Fractal dimension of soil particle by land-use types
图2 不同土地利用方式下各土层土壤颗粒组分的变化 相同字母表示在0.05水平下差异不显著
Fig.2 Soil particle size distribution of three soil layers for six land-use types Same letters indicate no significant differences at 5% level among land-use types
土地利用方式 Land-use types | 土壤粘粒含量 Soil clay content (%) | 土壤粉粒含量 Soil silt content (%) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | |||||||||||||||||||||||||||||
自由放牧Free grazing | 1.701 | 0.260 | 0.108 | 0.900 | ||||||||||||||||||||||||||||
刈割Mowing | 30.901 | 0.001 | 95.781 | 0.000 | ||||||||||||||||||||||||||||
围封禁牧Grazing exclusion | 45.810 | 0.000 | 7.931 | 0.021 | ||||||||||||||||||||||||||||
弃耕地 Fallow | 6.646 | 0.030 | 11.176 | 0.009 | ||||||||||||||||||||||||||||
人工牧草地 Alfalfa pasture | 2.636 | 0.151 | 7.152 | 0.052 | ||||||||||||||||||||||||||||
青储作物Corn plantation | 4.861 | 0.056 | 2.516 | 0.161 |
表1 不同土地利用方式各土层(0~10,10~20和20~30 cm)土壤粘粒含量(%)和土壤粉粒含量(%)的方差分析
Table 1 One-way ANOVA in soil clay and silt content among three soil layers (0~10,10~20 and 20~30 cm) for six different land-use types
土地利用方式 Land-use types | 土壤粘粒含量 Soil clay content (%) | 土壤粉粒含量 Soil silt content (%) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | |||||||||||||||||||||||||||||
自由放牧Free grazing | 1.701 | 0.260 | 0.108 | 0.900 | ||||||||||||||||||||||||||||
刈割Mowing | 30.901 | 0.001 | 95.781 | 0.000 | ||||||||||||||||||||||||||||
围封禁牧Grazing exclusion | 45.810 | 0.000 | 7.931 | 0.021 | ||||||||||||||||||||||||||||
弃耕地 Fallow | 6.646 | 0.030 | 11.176 | 0.009 | ||||||||||||||||||||||||||||
人工牧草地 Alfalfa pasture | 2.636 | 0.151 | 7.152 | 0.052 | ||||||||||||||||||||||||||||
青储作物Corn plantation | 4.861 | 0.056 | 2.516 | 0.161 |
土地利用方式 Land-use type | 地上生物量 Aboveground biomass (g·m-2) | 凋落物 Litter (g·m-2) | 土壤剖面深度 Soil depth (cm) | 根系生物量 Root biomass (g·m-2) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碳氮比 C∶N | 容重 Bulk density (g·cm-3) |
---|---|---|---|---|---|---|---|---|
自由放牧 Free grazing | 71.32±21.81 | - | 0~10 | 656.15±268.45 | 7.153±2.169 | 0.449±0.140 | 15.961±1.053 | 1.644 |
10~20 | 169.50±31.00 | 5.379±1.964 | 0.413±0.137 | 12.952±0.942 | 1.544 | |||
20~30 | 68.92±19.58 | 5.176±1.732 | 0.429±0.099 | 11.970±2.042 | 1.552 | |||
刈割 Mowing | 173.08±23.93 | 38.47±5.99 | 0~10 | 755.96±216.31 | 22.182±0.720 | 1.631±0.040 | 13.604±0.319 | 1.435 |
10~20 | 168.05±38.97 | 10.686±1.865 | 0.850±0.163 | 12.713±1.849 | 1.494 | |||
20~30 | 81.56±21.32 | 6.427±1.955 | 0.516±0.098 | 12.421±2.770 | 1.559 | |||
围封禁牧 Grazing exclusion | 251.61±24.18 | 30.12±15.43 | 0~10 | 779.70±53.41 | 19.073±0.678 | 1.339±0.064 | 14.273±0.831 | 1.414 |
10~20 | 189.25±19.38 | 12.217±1.075 | 0.956±0.089 | 12.809±0.843 | 1.542 | |||
20~30 | 71.65±26.86 | 7.273±1.038 | 0.533±0.100 | 13.856±2.018 | 1.589 | |||
弃耕 Fallow | 350.96±81.76 | 29.46±8.76 | 0~10 | 751.20±60.13 | 20.686±3.573 | 1.596±0.075 | 12.996±2.420 | 1.258 |
10~20 | 256.30±57.23 | 16.740±0.736 | 1.290±0.034 | 12.985±0.647 | 1.535 | |||
20~30 | 56.14±9.64 | 11.883±2.813 | 0.623±0.055 | 19.209±5.265 | 1.621 | |||
人工牧草 Alfalfa pasture | 289.69±87.5 | 77.58±7.17 | 0~10 | 612.29±84.20 | 16.120±1.144 | 1.169±0.083 | 13.821±0.94 | 1.509 |
10~20 | 258.12±60.60 | 14.151±0.737 | 1.107±0.110 | 12.916±1.687 | 1.560 | |||
20~30 | 133.37±26.00 | 11.830±1.643 | 0.853±0.187 | 14.704±4.584 | 1.581 | |||
青储作物 Corn plantation | 2197.087±209.43 | — | 0~10 | 521.24±173.0 | 14.486±2.539 | 0.942±0.066 | 15.436±2.793 | 1.478 |
10~20 | 204.27±68.00 | 15.603±1.112 | 0.988±0019 | 15.796±1.078 | 1.629 | |||
20~30 | 78.75±54.19 | 6.526±1.547 | 0.529±0.091 | 12.371±1.696 | 1.640 |
表2 不同土地利用方式植物地上生物量、凋落物、根系生物量,0~30 cm土层土壤有机碳含量、全氮含量、碳氮比和土壤容重(平均值±标准误差)
Table 2 Plant aboveground biomass, litter, root biomass, along with soil organic carbon content, total nitrogen content, C∶N ratio and soil bulk density of three soil layers (0~10 cm, 10~20 cm, 20~30 cm) in six land-use types (Mean±SE)
土地利用方式 Land-use type | 地上生物量 Aboveground biomass (g·m-2) | 凋落物 Litter (g·m-2) | 土壤剖面深度 Soil depth (cm) | 根系生物量 Root biomass (g·m-2) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碳氮比 C∶N | 容重 Bulk density (g·cm-3) |
---|---|---|---|---|---|---|---|---|
自由放牧 Free grazing | 71.32±21.81 | - | 0~10 | 656.15±268.45 | 7.153±2.169 | 0.449±0.140 | 15.961±1.053 | 1.644 |
10~20 | 169.50±31.00 | 5.379±1.964 | 0.413±0.137 | 12.952±0.942 | 1.544 | |||
20~30 | 68.92±19.58 | 5.176±1.732 | 0.429±0.099 | 11.970±2.042 | 1.552 | |||
刈割 Mowing | 173.08±23.93 | 38.47±5.99 | 0~10 | 755.96±216.31 | 22.182±0.720 | 1.631±0.040 | 13.604±0.319 | 1.435 |
10~20 | 168.05±38.97 | 10.686±1.865 | 0.850±0.163 | 12.713±1.849 | 1.494 | |||
20~30 | 81.56±21.32 | 6.427±1.955 | 0.516±0.098 | 12.421±2.770 | 1.559 | |||
围封禁牧 Grazing exclusion | 251.61±24.18 | 30.12±15.43 | 0~10 | 779.70±53.41 | 19.073±0.678 | 1.339±0.064 | 14.273±0.831 | 1.414 |
10~20 | 189.25±19.38 | 12.217±1.075 | 0.956±0.089 | 12.809±0.843 | 1.542 | |||
20~30 | 71.65±26.86 | 7.273±1.038 | 0.533±0.100 | 13.856±2.018 | 1.589 | |||
弃耕 Fallow | 350.96±81.76 | 29.46±8.76 | 0~10 | 751.20±60.13 | 20.686±3.573 | 1.596±0.075 | 12.996±2.420 | 1.258 |
10~20 | 256.30±57.23 | 16.740±0.736 | 1.290±0.034 | 12.985±0.647 | 1.535 | |||
20~30 | 56.14±9.64 | 11.883±2.813 | 0.623±0.055 | 19.209±5.265 | 1.621 | |||
人工牧草 Alfalfa pasture | 289.69±87.5 | 77.58±7.17 | 0~10 | 612.29±84.20 | 16.120±1.144 | 1.169±0.083 | 13.821±0.94 | 1.509 |
10~20 | 258.12±60.60 | 14.151±0.737 | 1.107±0.110 | 12.916±1.687 | 1.560 | |||
20~30 | 133.37±26.00 | 11.830±1.643 | 0.853±0.187 | 14.704±4.584 | 1.581 | |||
青储作物 Corn plantation | 2197.087±209.43 | — | 0~10 | 521.24±173.0 | 14.486±2.539 | 0.942±0.066 | 15.436±2.793 | 1.478 |
10~20 | 204.27±68.00 | 15.603±1.112 | 0.988±0019 | 15.796±1.078 | 1.629 | |||
20~30 | 78.75±54.19 | 6.526±1.547 | 0.529±0.091 | 12.371±1.696 | 1.640 |
土地利用方式 Land-use types | 粘粒含量 Clay (%) | 粉粒含量Silt (%) | 砂粒含量 Sand (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碳氮比 C∶N ratio | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碳氮比 C∶N ratio | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碳氮比 C∶N ratio | |
自由放牧 Free grazing | 0.653 2 | 0.792 7* | 0.060 9 | 0.305 1 | -0.005 0 | 0.551 0 | -0.788 6* | -0.913 8** | -0.119 7 |
刈割 Mowing | 0.862 2** | 0.891 5** | 0.090 6 | 0.946 0** | 0.958 0** | 0.080 2 | -0.940 7** | -0.957 4** | -0.037 0 |
围封禁牧 Grazing exclusion | 0.957 1** | 0.917 8** | 0.494 0 | -0.144 1 | -0.001 0 | -0.351 6 | -0.880 9** | -0.881 6** | -0.263 2 |
弃耕Fallow | 0.854 6** | 0.828 0** | 0.449 7 | 0.927 0** | 0.884 8** | -0.497 0 | -0.937 6** | -0.900 0** | 0.499 2 |
人工牧草Alfalfa pasture | 0.037 3 | 0.200 3 | 0.229 0 | 0.416 0 | 0.755 9* | -0.466 9 | -0.388 9 | -0.869 5** | 0.601 0 |
青储作物 Corn plantation | 0.677 3* | 0.791 7* | 0.489 2 | 0.376 2 | 0.577 5 | 0.128 7 | -0.517 9 | -0.687 2* | -0.289 2 |
表3 不同利用方式下土壤颗粒组分与土壤有机碳(SOC)及全氮(TN)含量之间的Pearson相关性分析
Table 3 Pearson correlation analysis for relationships of soil particle size distribution with soil organic carbon (SOC) and total nitrogen (TN) content in six land-use types
土地利用方式 Land-use types | 粘粒含量 Clay (%) | 粉粒含量Silt (%) | 砂粒含量 Sand (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碳氮比 C∶N ratio | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碳氮比 C∶N ratio | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碳氮比 C∶N ratio | |
自由放牧 Free grazing | 0.653 2 | 0.792 7* | 0.060 9 | 0.305 1 | -0.005 0 | 0.551 0 | -0.788 6* | -0.913 8** | -0.119 7 |
刈割 Mowing | 0.862 2** | 0.891 5** | 0.090 6 | 0.946 0** | 0.958 0** | 0.080 2 | -0.940 7** | -0.957 4** | -0.037 0 |
围封禁牧 Grazing exclusion | 0.957 1** | 0.917 8** | 0.494 0 | -0.144 1 | -0.001 0 | -0.351 6 | -0.880 9** | -0.881 6** | -0.263 2 |
弃耕Fallow | 0.854 6** | 0.828 0** | 0.449 7 | 0.927 0** | 0.884 8** | -0.497 0 | -0.937 6** | -0.900 0** | 0.499 2 |
人工牧草Alfalfa pasture | 0.037 3 | 0.200 3 | 0.229 0 | 0.416 0 | 0.755 9* | -0.466 9 | -0.388 9 | -0.869 5** | 0.601 0 |
青储作物 Corn plantation | 0.677 3* | 0.791 7* | 0.489 2 | 0.376 2 | 0.577 5 | 0.128 7 | -0.517 9 | -0.687 2* | -0.289 2 |
植物生物量 Plant biomass (g·m-2) | 土壤剖面深度 Soil depth (cm) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碳氮比 C∶N ratio | 粘粒 Clay content (%) | 粉粒 Silt content (%) |
---|---|---|---|---|---|---|
地上生物量 Aboveground biomass | 0~30 | 0.426 | 0.232 | 0.302 | 0.561* | 0.410 |
(-0.078) | (-0.354) | (-0.223) | (-0.015 3) | (-0.091) | ||
凋落物 Litter | 0~30 | -0.161 | -0.035 | -0.056 | 0.599* | 0.315 |
(-0.618) | (-0.914) | (-0.863) | (-0.040) | (-0.318) | ||
根系生物量 Root biomass | 0~10 | 0.657 | 0.657 | -0.371 | -0.371 | 0.406 |
(-0.156) | (-0.156) | (-0.468) | (-0.468) | (-0.425) | ||
10~20 | 0.771 | 0.886* | 0.314 | 0.829* | 0.886* | |
(-0.072) | (-0.019) | (-0.554) | (-0.042) | (-0.019) | ||
20~30 | 0.200 | 0.200 | -0.029 | -0.029 | -0.086 | |
(-0.704) | (-0.704) | (-0.957) | (-0.957) | (-0.872) | ||
0~30 | 0.750** | 0.701** | 0.302 | 0.505* | 0.700** | |
(0.000) | (-0.001) | (-0.223) | (-0.033) | (-0.001) |
表4 不同土层植物生物量与(地上、根系以及凋落物)土壤碳氮含量及土壤颗粒组分之间的秩相关分析
Table 4 Rank correlation analysis between plant biomass (aboveground, root and litter) and soil nutrient content, as well as soil particle size distribution in different soil layers
植物生物量 Plant biomass (g·m-2) | 土壤剖面深度 Soil depth (cm) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碳氮比 C∶N ratio | 粘粒 Clay content (%) | 粉粒 Silt content (%) |
---|---|---|---|---|---|---|
地上生物量 Aboveground biomass | 0~30 | 0.426 | 0.232 | 0.302 | 0.561* | 0.410 |
(-0.078) | (-0.354) | (-0.223) | (-0.015 3) | (-0.091) | ||
凋落物 Litter | 0~30 | -0.161 | -0.035 | -0.056 | 0.599* | 0.315 |
(-0.618) | (-0.914) | (-0.863) | (-0.040) | (-0.318) | ||
根系生物量 Root biomass | 0~10 | 0.657 | 0.657 | -0.371 | -0.371 | 0.406 |
(-0.156) | (-0.156) | (-0.468) | (-0.468) | (-0.425) | ||
10~20 | 0.771 | 0.886* | 0.314 | 0.829* | 0.886* | |
(-0.072) | (-0.019) | (-0.554) | (-0.042) | (-0.019) | ||
20~30 | 0.200 | 0.200 | -0.029 | -0.029 | -0.086 | |
(-0.704) | (-0.704) | (-0.957) | (-0.957) | (-0.872) | ||
0~30 | 0.750** | 0.701** | 0.302 | 0.505* | 0.700** | |
(0.000) | (-0.001) | (-0.223) | (-0.033) | (-0.001) |
因变量 Dependent variable | 自变量 Independent variable | (复)相关系数 (Multiple) correlation coefficient (R) | 判定系数 Determination coefficient (R2) | 调整的判定系数 Adjusted determination coefficient ( | p | 自变量独立解释量 Independent explanation (%) |
---|---|---|---|---|---|---|
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 粘粒含量 Clay content (%) | 0.839 | 0.703 | 0.664 | 0.000 | 20.79 |
根系生物量 Root biomass (g·m-2) | 20.70 | |||||
土壤全氮含量 Soil total nitrogen content (g·kg-1) | 粘粒含量 Silt content (%) | 0.823 | 0.678 | 0.635 | 0.000 | 20.61 |
根系生物量 Root biomass (g·m-2) | 19.54 |
表5 土壤粘粒含量及根系生物量对土壤碳氮含量影响的线性回归分析
Table 5 Statistics of regression for SOC and total N content with given factors by stepwise elimination
因变量 Dependent variable | 自变量 Independent variable | (复)相关系数 (Multiple) correlation coefficient (R) | 判定系数 Determination coefficient (R2) | 调整的判定系数 Adjusted determination coefficient ( | p | 自变量独立解释量 Independent explanation (%) |
---|---|---|---|---|---|---|
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 粘粒含量 Clay content (%) | 0.839 | 0.703 | 0.664 | 0.000 | 20.79 |
根系生物量 Root biomass (g·m-2) | 20.70 | |||||
土壤全氮含量 Soil total nitrogen content (g·kg-1) | 粘粒含量 Silt content (%) | 0.823 | 0.678 | 0.635 | 0.000 | 20.61 |
根系生物量 Root biomass (g·m-2) | 19.54 |
[1] | Anderson DW, Saggar S, Bettany JR, Stewart JWB (1981). Particle size fractions and their use in studies of soil organic matter. Ⅰ. The nature and distribution of forms of carbon, nitrogen, and sulfur. Soil Science Society of America Journal, 45,767-772. |
[2] | Angers DA, Caron J (1998). Plant-induced changes in soil structure: process and feedbacks. Biogeochemistry, 42,55-72. |
[3] | Alvarez R, Lavado RS (1998). Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina. Geoderma, 83,127-141. |
[4] | Armesto JJ, Pickett STA, McDonell MJ (1991). Spatial heterogeneity during succession: A cyclic model of invasion and exclusion. In: Kosole J, Pickett STA eds. Ecological Heterogeneity. Springer-Verlag, New York,256-269. |
[5] | Arrouays D, Vion I, Kicin JL (1995). Spatial analysis and modelling of topsoil carbon storage in temperate forest humicloamy soils of France. Soil Science, 159,191-198. |
[6] | Bouma TJ, Bryla DR (2000). On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations. Plant and Soil, 227,215-221. |
[7] | Christensen BT (1987). Decomposability of organic matter in particle size fractions from field soils with straw incorporation. Soil Biology and Biochemistry, 19,429-435. |
[8] | Davidson EA (1995). Spatial covariation of soil organic carbon, clay content, and drainage class at a regional scale. Landscape Ecology, 10,349-362. |
[9] | Dormaar JF (1992). Decomposition as a process in natural grasslands. In: Coupland RT ed. Natural Grasslands: Introduction and Western Hemisphere. Elsevier, New York,121-136. |
[10] | Frank DA, Groffman PM (1998). Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park. Ecology, 79,2229-2241. |
[11] | Harry JP, Roger LP, Neal AS (2000). Factors controlling soil carbon levels in New Zealand grasslands: is clay content important? Soil Science Society of America Journal, 64,1623-1630. |
[12] | Hu YF (胡云锋), Liu JY (刘纪远), Zhuang DF (庄大方), Cao HX (曹红霞), Yan HM (闫慧敏) (2005). Fractal dimension of soil particle size distribution under different land use/land coverage. Acta Pedologica Sinica (土壤学报), 42,336-339. (in Chinese with English abstract) |
[13] | Hu YL (胡亚林), Wang SL (汪思龙), Yan SK (颜绍馗) (2006). Research advances on the factors influencing the activity and community structure of soil microorganism. Chinese Journal of Soil Science (土壤通报), 37,170-176. (in Chinese with English abstract) |
[14] | Huang CY (黄昌勇) (2000). Pedology (土壤学). China Agriculture Press, Beijing. (in Chinese) |
[15] | Institute of Soil Science of the Chinese Academy of Sciences (中国科学院南京土壤研究所) (1978). Physical and Chemical Analysis Methods of Soils (土壤理化分析). Shanghai Scientific and Technical Publisher, Shanghai. (in Chinese) |
[16] | Islam KR, Weil RR (2000). Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture, Ecosystems and Environment, 79,9-16. |
[17] | Nichols JD (1984). Relation of organic carbon to soil properties and climate in the southern Great Plains. Soil Science Society of America Journal, 48,1382-1384. |
[18] | Oades JM (1984). Soil organic matter and structural stability: mechanisms and implications for management. Plant and Soil, 76,319-337. |
[19] | Peng PQ (彭佩钦), Zhang WJ (张文菊), Tong CL (童成立), Qiu SJ (仇少君), Zhang WC (张文超) (2005). Soil C, N and P contents and their relationships with soil physical properties in wetlands of Dongling Lake floodplain. Chinese Journal of Applied Ecology (应用生态学报), 16,1872-1878. (in Chinese with English abstract) |
[20] | Schuman GE, Booth DT, Waggoner JW (1990). Grazing reclaimed mined lands seeded to native grasses in Wyoming. Journal of Soil and Water Conservation, 45,653-657. |
[21] | Scott NA, Cole CV, Elliott ET, Huffman SA (1996). Soil textural control on decomposition and soil organic matter dynamics. Soil Science Society of America Journal, 60,1102-1109. |
[22] | Sims ZR, Nielsen GA (1986). Organic carbon in Montana soils as related to clay content and climate. Soil Science Society of America Journal, 50,1269-1272. |
[23] | Singer MJ, Munns DN (1987). Soils, An Introduction. MacMillan Publishing Company, New York, USA. |
[24] | Sollins P, Homann P, Caldwell B (1996). Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74,65-105. |
[25] | Spain AV (1990). Influence of environmental conditions and some soil chemical properties on the carbon and nitrogen contents of some tropical Australian rainforest soils. Australian Journal of Soil Research, 28,825-839. |
[26] | Su YZ (苏永中), Zhao HL (赵哈林), Wen HY (文海燕) (2002). Cultivation and enclosure effects on soil physicochemical properties of degrade sandy grassland. Journal of Soil and Water Conservation (水土保持学报), 16 (4),5-8, 126. (in Chinese with English abstract) |
[27] | van Veen JA, Ladd JN, Frissel MJ (1984). Modelling C and N turnover through the microbial biomass in soil. Plant and Soil, 76,257-274. |
[28] | van Veen JA, Ladd JN, Amato M (1985). Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with [14C (U)] glucose and [15N] (NH4)2SO4 under different moisture regimes Soil Biology and Biochemistry, 17,747-756. |
[29] | Xiong SG (熊顺贵) (2001). Basal Pedology (基础土壤学). China Agricultural University Press, Beijing. (in Chinese) |
[30] | Yang PL (杨培岭), Luo YP (罗远培), Shi YC (石元春) (1993). Express fractal dimension of soil with the weight distribution of soil particle size. Chinese Science Bulletin (科学通报), 38,1896-1899. (in Chinese) |
[31] | Zhang TH (张铜会), Zhao HL (赵哈林), Toshiya O (大黑俊哉), Yasuhito S (白户康人) (2003). Soil characteristics and spatial pattern of vegetation after successive grazing in Horqin sandy land, Inner Mongolia. Journal of Arid Land Resources and Environment (干旱区资源与环境), 17 (4),117-121. (in Chinese with English abstract) |
[32] | Zhou Z, Sun OJ, Huang J, Gao Y, Han X (2006). Land-use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem. Functional Ecology, 20,753-762. |
[33] | Zhou Z, Sun OJ, Huang J, Liu P, Han X (2007). Soil carbon and nitrogen stores and storage potential as affected by land-use in an agro-pastoral ecotone of northern China. Biogeochemistry, 82,127-138. |
[1] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[4] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[5] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[6] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[7] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[8] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[9] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[10] | 缪丽娟, 张宇阳, 揣小伟, 包刚, 何昱, 朱敬雯. 亚洲旱区草地NDVI对气候变化的响应及滞后效应[J]. 植物生态学报, 2023, 47(10): 1375-1385. |
[11] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[12] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[13] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[14] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[15] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19