植物生态学报 ›› 2016, Vol. 40 ›› Issue (1): 1-12.DOI: 10.17521/cjpe.2015.0253
所属专题: 生态遥感及应用
• 研究论文 • 下一篇
闫敏, 李增元*, 田昕, 陈尔学, 谷成燕
出版日期:
2016-01-01
发布日期:
2016-01-28
通讯作者:
李增元
作者简介:
# 共同第一作者
基金资助:
YAN Min, LI Zeng-Yuan*, TIAN Xin, CHEN Er-Xue, GU Cheng-Yan
Online:
2016-01-01
Published:
2016-01-28
Contact:
Zeng-Yuan LI
About author:
# Co-first authors
摘要:
定量描述植被总初级生产力(GPP)对于全球碳循环和全球气候变化研究具有重要意义。针对MODIS MOD_17 GPP (MOD_17)产品在通量站点低估的现象, 通过3个实验依次改进了模型输入参数(气象数据和吸收的光合有效辐射吸收比例(fPAR))和模型本身的参数(最大光能利用率), 分析了各个参数对模拟结果的不确定性影响, 结果表明各参数对模拟结果都有不同程度的影响。在阿柔草地站, 最大光能利用率的重新标定对结果影响最大, GPP估算结果的提高最为明显; 在关滩森林站利用广义神经网络算法得到的GLASS fPAR代替原始MODIS fPAR产品, 比其他参数的改进效果更明显, GPP的值更接近涡动通量观测值。利用改进的MOD_17模型重新估算了黑河上游2001-2012年间植被GPP, 通过趋势分析得出该研究时段内GPP以9.58 g C·m-2·a-1的平均速率呈上升趋势。同时计算了气候因子(温度、降水和饱和水汽压差(VPD))与时间序列GPP的偏相关性, 分析了植被GPP对气候变化的响应情况, 2001-2012年平均温度和VPD与年GPP大部分区域呈正相关, 体现了温度和VPD对植被生长的促进作用; 2001-2012年的降水量与年GPP无明显相关, 且大部分区域呈负相关。
闫敏, 李增元, 田昕, 陈尔学, 谷成燕. 黑河上游植被总初级生产力遥感估算及其对气候变化的响应. 植物生态学报, 2016, 40(1): 1-12. DOI: 10.17521/cjpe.2015.0253
YAN Min, LI Zeng-Yuan, TIAN Xin, CHEN Er-Xue, GU Cheng-Yan. Remote sensing estimation of gross primary productivity and its response to climate change in the upstream of Heihe River Basin. Chinese Journal of Plant Ecology, 2016, 40(1): 1-12. DOI: 10.17521/cjpe.2015.0253
图2 阿柔站8天最低温度(Tmin)、光合有效辐射(PAR)和饱水汽压差(VPD)的季节变化。
Fig. 2 Seasonal variations of the 8-day minimum temperature (Tmin), photosynthetically active radiation (PAR), and vapor pressure deficit (VPD) at the Arou station.
图3 关滩站8天最低温度(Tmin)、光合有效辐射(PAR)和饱水汽压差(VPD)的季节变化。
Fig. 3 Seasonal variations of the 8-day minimum temperature (Tmin), photosynthetically active radiation (PAR), and vapor pressure deficit (VPD) at the Guantan Station.
植被类型 Vegetation type | 最大光能利用率 Maximum light use efficiency (g·(MJ·APAR)-1) | 最低温度最小值 Lowest minimum temperature, Tminmin (℃) | 最低温度最大值 Highest minimum temperature, Tminmax (℃) | 饱和水汽压差最大值 Maximum vapor pressure deficit (VPDmax) (Pa) | 饱和水汽压差最小值 Minimum vapor pressure deficit (VPDmin) (Pa) |
---|---|---|---|---|---|
常绿针叶林 Evergreen needle-leaved forest | 1.008 | -8 | 8.31 | 2 500 | 650 |
常绿阔叶林 Evergreen broad-leaved forest | 1.159 | -8 | 9.09 | 3 900 | 1 100 |
落叶针叶林 Deciduous needle-leaved forest | 1.103 | -8 | 10.44 | 3 100 | 650 |
落叶阔叶林 Deciduous broad-leaved forest | 1.044 | -8 | 7.94 | 2 500 | 650 |
混交林 Mixed forest | 1.116 | -8 | 8.50 | 2 500 | 650 |
多树草原 Grassy woodland | 0.800 | -8 | 11.39 | 3 100 | 930 |
稀树草原 Savanna | 0.768 | -8 | 11.39 | 3 100 | 650 |
郁闭灌丛 Closed shrubland | 0.888 | -8 | 8.61 | 3 100 | 650 |
开放灌丛 Open shrubland | 0.774 | -8 | 8.80 | 3 600 | 650 |
草原 Grassland | 0.680 | -8 | 12.02 | 3 500 | 650 |
农田 Cropland | 0.680 | -8 | 12.02 | 4 100 | 650 |
表1 MOD_17模型查找表
Table 1 The lookup table of MOD_17 model
植被类型 Vegetation type | 最大光能利用率 Maximum light use efficiency (g·(MJ·APAR)-1) | 最低温度最小值 Lowest minimum temperature, Tminmin (℃) | 最低温度最大值 Highest minimum temperature, Tminmax (℃) | 饱和水汽压差最大值 Maximum vapor pressure deficit (VPDmax) (Pa) | 饱和水汽压差最小值 Minimum vapor pressure deficit (VPDmin) (Pa) |
---|---|---|---|---|---|
常绿针叶林 Evergreen needle-leaved forest | 1.008 | -8 | 8.31 | 2 500 | 650 |
常绿阔叶林 Evergreen broad-leaved forest | 1.159 | -8 | 9.09 | 3 900 | 1 100 |
落叶针叶林 Deciduous needle-leaved forest | 1.103 | -8 | 10.44 | 3 100 | 650 |
落叶阔叶林 Deciduous broad-leaved forest | 1.044 | -8 | 7.94 | 2 500 | 650 |
混交林 Mixed forest | 1.116 | -8 | 8.50 | 2 500 | 650 |
多树草原 Grassy woodland | 0.800 | -8 | 11.39 | 3 100 | 930 |
稀树草原 Savanna | 0.768 | -8 | 11.39 | 3 100 | 650 |
郁闭灌丛 Closed shrubland | 0.888 | -8 | 8.61 | 3 100 | 650 |
开放灌丛 Open shrubland | 0.774 | -8 | 8.80 | 3 600 | 650 |
草原 Grassland | 0.680 | -8 | 12.02 | 3 500 | 650 |
农田 Cropland | 0.680 | -8 | 12.02 | 4 100 | 650 |
图4 阿柔(A)和关滩站(B)中分辨率成像光谱仪吸收的光合有效辐射吸收比例(fPAR)和全球陆表参量吸收的光合有效辐射吸收比例产品对比图。MOD_fPAR, 中分辨率成像光谱仪光合有效辐射吸收比例; GLASS_ fPAR, 全球陆表参量光合有效辐射吸收比例。
Fig. 4 Comparisons between the moderate-resolution imaging spectroradiometer fraction of absorbed photosynthetically active radiation (MOD_fPAR) and the Global Land Surface Satellite fraction of absorbed photosynthetically active radiation (GLASS_ fPAR) at the Arou Station (A) and the Guantan Station (B).
图5 阿柔站(A、C)和关滩站(B、D)原始中分辨率成像光谱仪总初级生产力(GPP)产品以及改进后结果对比图。GPP_Default, 原始中分辨率成像光谱仪总初级生产力产品; GPP_MOD1、GPP_MOD2、GPP_MOD3分别为文中介绍的3个对比实验。
Fig. 5 Comparisons of original and optimized gross primary productivity products at the Arou Station (A, C) and the Guantan Station (B, D). GPP_EC, eddy covariance measurements; GPP_Default, original MODIS GPP products; GPP_MOD1, GPP_MOD2, and GPP_MOD3 are the three comparative experiments described in the study.
图6 2001-2012年平均总初级生产力(GPP, g C·m-2·a-1)空间分布(A)和总初级生产力变化趋势(B)。
Fig. 6 Maps of the spatial distribution of annual mean gross primary productivity (GPP, g C·m-2·a-1) (A) and the trend of changes (B) between 2001 and 2012.
图8 2001-2012年黑河上游总初级生产力与气候因子偏相关性分析结果图。
Fig. 8 The maps of partial correlations between gross primary productivity and climatic factors in the upstream of Heihe River Basin between 2001 and 2012.
1 | Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Lan Woodward F, Papale D (2010). Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate.Science, 329, 834-838. |
2 | Birkes D, Dodge Y (1993). Alternative Methods of Regression. John Wiley & Sons, New York. 228. |
3 | Chen ZH, Ma QY, Wang J, Qi Y, Li J, Huang CL, Ma MG, Yang GJ (2008). Estimation of Heihe Basin net primary productivity using the CASA model.Journal of Natural Resources, 23, 263-273. |
(in Chinese with English abstract) [陈正华, 麻清源, 王建, 祁元, 李净, 黄春林, 马明国, 杨国靖 (2008). 利用CASA模型估算黑河流域净第一性生产力. 自然资源学报, 23, 263-273.] | |
4 | Coops NC, Black TA, Jassal RS, Trofymow JA, Morgenstern K (2007). Comparison of MODIS, eddy covariance determined and physiologically modelled gross primary production (GPP) in a Douglas-fir forest stand.Remote Sensing of Environment, 107, 385-401. |
5 | Coops NC, Ferster CJ, Waring RH, Nightingale J (2009). Comparison of three models for predicting gross primary production across and within forested ecoregions in the contiguous United States.Remote Sensing of Environment, 113, 680-690. |
6 | Dai ZH, Birdsey RA, Johnson KD, Dupuy JM, Hernandez- Stefanoni JL, Richardson K (2014). Modeling carbon stocks in a secondary tropical dry forest in the Yucatan Peninsula, Mexico.Water, Air, & Soil Pollution, 225, 1925. |
7 | Desai AR, Richardson AD, Moffat AM, Kattge J, Hollinger DY, Barr A, Falge E, Noormets A, Papale D, Reichstein M, Stauch VJ (2008). Cross-site evaluation of eddy covariance GPP and RE decomposition techniques.Agricultural and Forest Meteorology, 148, 821-838. |
8 | Dury M, Hambuckers A, Warnant P, Henrot A, Favre E, Ouberdous M, François L (2011). Responses of European forest ecosystems to 21st century climate: Assessing changes in interannual variability and fire intensity.Forest-Biogeosciences and Forestry, 4, 82-99. |
9 | Guo Y, Li ZY, Chen EX, Tian X, Ling FL (2015). Estimating forest above-ground biomass in the upper reaches of Heihe River Basin using multi-spectral remote sensing.Scientia Silvae Sinicae, 51(1), 140-149. |
(in Chinese with English abstract) [郭云, 李增元, 陈尔学, 田昕, 凌飞龙 (2015). 甘肃黑河流域上游森林地上生物量的多光谱遥感估测. 林业科学, 51(1), 140-149.] | |
10 | Heinsch FA, Reeves M, Votava P, Kang SY, Milesi C, Zhao MS, Glassy J, Jolly WM, Loehman R, Bowker CF, Kim- ball JS, Nemani RR, Running SW (. |
11 | Cited:2003-12-02. |
12 | Jarvis PG, Leverenz JW (1983). Productivity of temperate, deciduous and evergreen forests. In: Lange OL, Nobel PS, Osmond CB, Ziegler H eds. Physiological Plant Ecology IV. Springer-Verlag, New York. 233-280. |
13 | Jin BW (2007). Measurement and Study on Climatical and Hydrological Effect and Ecological Function of Water Conservation Forest in Qilian Mountains. PhD dissertation, Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences, Beijing. 41-48. |
(in Chinese with English abstract) [金博文 (2007). 祁连山水源涵养林的气候和水文效应及生态功能试验研究. 博士学位论文, 中国科学院寒区旱区环境与工程研究所, 北京. 41-48.] | |
14 | Li X, Ma MG, Wang J, Liu Q, Che T, Hu ZY, Xiao Q, Liu QH, Su PX, Chu RZ, Jin R, Wang WZ, Ran YH (2008). Si- multaneous remote sensing and ground-based experiment in the Heihe River Basin: Scientific objectives and experiment design.Advances in Earth Science, 23, 897-914. |
(in Chinese with English abstract) [李新, 马明国, 王建, 刘强, 车涛, 胡泽勇, 肖青, 柳钦火, 苏培玺, 楚荣忠, 晋锐, 王维真, 冉有华 (2008). 黑河流域遥感—地面观测同步试验: 科学目标与试验方案. 地球科学进展, 23, 897-914.] | |
15 | Li XP (2013). The Simulation of NPP Based on Remote Sensing and Its Temporal-Spatial Analysis Over Heihe River Basin. Master degree dissertation, Shaanxi Normal University, Xi’an. 46-48. |
(in Chinese with English abstract) [李旭谱 (2013). 黑河流域NPP遥感估算及其时空变化特征分析. 硕士学位论文, 陕西师范大学, 西安. 46-48.] | |
16 | Long HL, Li XB, Huang LM, Wang H, Wei DD (2010). Net primary productivity in grassland ecosystem in Inner Mongolia and its relationship with climate.Chinese Journal of Plant Ecology, 34, 781-791. |
(in Chinese with English abstract) [龙慧灵, 李晓兵, 黄玲梅, 王宏, 魏丹丹 (2010). 内蒙古草原生态系统净初级生产力及其与气候的关系. 植物生态学报, 34, 781-791.] | |
17 | Lu L, Li X, Veroustraete F (2005). Estimation of net primary productivity of Heihe River Basin using remote sensing.Journal of Desert Research, 25, 823-830. |
(in Chinese with English abstract) [卢玲, 李新, Veroustraete F (2005). 黑河流域植被净初级生产力的遥感估算. 中国沙漠, 25, 823-830.] | |
18 | Lu L, Li X, Veroustraete F, Kang E, Wang J (2009). Analysing the forcing mechanisms for net primary productivity changes in the Heihe River Basin, northwest China.International Journal of Remote Sensing, 30, 793-816. |
19 | Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003). Climate- driven increases in global terrestrial net primary production from 1982 to 1999.Science, 300, 1560-1563. |
20 | Pan XD (2012). Development of High Spatial and Temporal Resolution Meteorological Forcing Data in the Heihe River Basin: Model Simulation and Data Assimilation. PhD dissertation, Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou. 2-8. |
(in Chinese with English abstract) [潘小多 (2012). 黑河流域高分辨率大气驱动数据的制备: 模拟与数据同化. 博士学位论文, 中国科学院寒区旱区环境与工程研究所, 兰州. 2-8.] | |
21 | Piao SL, Wang XH, Ciais P, Zhu B, Wang T, Liu J (2011). Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006.Global Change Biology, 17, 3228-3239. |
22 | Plummer S (2006). On validation of the MODIS gross primary production product.IEEE Transactions on Geoscience and Remote Sensing, 44, 1936-1938. |
23 | Ran YH, Li X, Lu L, Li ZY (2012). Large-scale land cover mapping with the integration of multi-source information based on the Dempster-Shafer theory.International Jour- nal of Geographical Information Science, 26, 169-191. doi: 10.1080/13658816.2011.577745. |
24 | Running SW, Nemani R, Glassy JM, Thornton PE (. |
25 | Cited:2015-07-03. |
26 | Running SW, Thornton PE, Nemani R, Glassy J (2000). Global terrestrial gross and net primary productivity from the earth observing system. In: Sala OE, Jackson RB, Mooney H eds. Methods in Ecosystem Science. Springer-Verlag, New York. 44-57. |
27 | Turner DP, Ritts WD, Cohen WB, Gower ST, Running SW, Zhao MS, Costa MH, Kirschbaum AA, Ham JM, Saleska SR, Ahl DE (2006b). Evaluation of MODIS NPP and GPP products across multiple biomes.Remote Sensing of Environment, 102, 282-292. |
28 | Wang XF (2012). Terrestrial Ecosystem Productivity Simulation over Heihe River Basin. PhD dissertation, Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences, Beijing. 2-8. |
(in Chinese with English abstract) [王旭峰 (2012). 黑河流域陆地生态系统生产力模拟研究. 博士学位论文, 中国科学院寒区旱区环境与工程研究所, 北京. 2-8.] | |
29 | Wang XF, Ma MG, Li X, Song Y, Tan JL, Huang GH, Zhang ZH, Zhao TB, Feng JM, Ma ZG, Wei W, Bai YF (2013). Validation of MODIS-GPP product at 10 flux sites in northern China.International Journal of Remote Sensing, 34, 587-599. |
30 | Wang XF, Ma MG, Song Y, Tan JL, Wang HB (2014). Cou- pling of a biogeochemical model with a simultaneous heat and water model and its evaluation at an alpine meadow site.Environmental Earth Sciences, 72, 4085-4096. |
31 | Xiao ZQ, Liang SL, Wang JD, Chen P, Yin XJ, Zhang LQ, Song JL (2014). Use of general regression neural networks for generating the GLASS Leaf Area Index Product from time-series MODIS surface reflectance.IEEE Transactions on Geoscience and Remote Sensing, 52, 209-223. |
32 | Yang FH, Lchii K, White MA, Hashimoto H, Michaelis AR, Votava P, Zhu AX, Huete A, Running SW, Nemani RR (2007). Developing a continental-scale measure of gross primary production by combining MODIS and AmeriFlux data through support vector machine approach.Remote Sensing of Environment, 110, 109-122. |
33 | Zhang YQ, Yu Q, Jiang J, Tang YH (2008). Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau.Global Change Biology, 14, 757-767. |
34 | Zhou GS, Wang YH, Jiang YL, Yang LM (2002). Conversion of terrestrial ecosystems and carbon cycling.Acta Phytoecologica Sinica, 26, 250-254. |
(in Chinese with English abstract) [周广胜, 王玉辉, 蒋延玲, 杨利民 (2002). 陆地生态系统类型转变与碳循环. 植物生态学报, 26, 250-254.] |
[1] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[2] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[3] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[4] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[5] | 张央, 安明态, 武建勇, 刘锋, 汪伟. 中国兜兰属宽瓣亚属植物地理分布格局及其主导气候因子[J]. 植物生态学报, 2022, 46(1): 40-50. |
[6] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[7] | 徐光来, 李爱娟, 徐晓华, 杨先成, 杨强强. 中国生态功能保护区归一化植被指数动态及气候因子驱动[J]. 植物生态学报, 2021, 45(3): 213-223. |
[8] | 王兆鹏, 张同文, 袁玉江, 张瑞波, 喻树龙, 刘蕊, 石仁娜•加汗, 郭冬, 王勇辉. 罗霄山南部4个针叶树种生长特征及其气候响应对比分析[J]. 植物生态学报, 2021, 45(12): 1303-1313. |
[9] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[10] | 杨继鸿, 李亚楠, 卜海燕, 张世挺, 齐威. 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 863-876. |
[11] | 孙元丰, 万宏伟, 赵玉金, 陈世苹, 白永飞. 中国草地生态系统根系周转的空间格局和驱动因子[J]. 植物生态学报, 2018, 42(3): 337-348. |
[12] | 朱弘, 朱淑霞, 李涌福, 伊贤贵, 段一凡, 王贤荣. 尾叶樱桃天然种群叶表型性状变异研究[J]. 植物生态学报, 2018, 42(12): 1168-1178. |
[13] | 王甜, 徐姗, 赵梦颖, 李贺, 寇丹, 方精云, 胡会峰. 内蒙古不同类型草原土壤团聚体含量的分配及其稳定性[J]. 植物生态学报, 2017, 41(11): 1168-1176. |
[14] | 李东胜, 史作民, 冯秋红, 刘峰. 中国东部南北样带暖温带区栎属树种叶片形态性状对气候条件的响应[J]. 植物生态学报, 2013, 37(9): 793-802. |
[15] | 周旋,何正飚,康宏樟,孙逍,刘春江. 温带-亚热带栓皮栎种子形态的变异及其与环境因子的关系[J]. 植物生态学报, 2013, 37(6): 481-491. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19