植物生态学报 ›› 2021, Vol. 45 ›› Issue (11): 1263-1274.DOI: 10.17521/cjpe.2020.0401
李崇玮1, 柏新富1, 陈国忠1, 朱萍1, 张淑婷2, 侯玉平1,*(), 张兴晓1,*(
)
收稿日期:
2020-12-04
接受日期:
2021-07-05
出版日期:
2021-11-20
发布日期:
2021-08-26
通讯作者:
侯玉平,张兴晓
作者简介:
Zhang XX, zhangxingxiao@163.com)基金资助:
LI Chong-Wei1, BAI Xin-Fu1, CHEN Guo-Zhong1, ZHU Ping1, ZHANG Shu-Ting2, HOU Yu-Ping1,*(), ZHANG Xing-Xiao1,*(
)
Received:
2020-12-04
Accepted:
2021-07-05
Online:
2021-11-20
Published:
2021-08-26
Contact:
HOU Yu-Ping,ZHANG Xing-Xiao
Supported by:
摘要:
人工种植西洋参(Panax quinquefolius)具有很高的经济效益, 但连作障碍已成为其产业可持续发展的限制因子。目前对连作障碍成因的研究尚且不足。该研究以收获西洋参后恢复1、10、20年的老参地(分别记为A1、A10、A20)为研究对象, 以未种植过西洋参的土地为对照(CK), 测定和分析土壤养分及酚酸类代谢物的变化, 以期从养分和化感作用的角度解析可能造成西洋参连作障碍的关键因子。通过常规化学性质测定方法和气相色谱质谱联用(GC-MS)的方法测定土壤养分含量, 采用高效液相色谱法(HPLC)测定土壤中的酚酸类代谢物含量。结果显示, 3组收获西洋参后的老参地的土壤pH均显著降低; A1 25种有机态养分(氨基酸类、糖类和糖醇类物质)的含量显著降低, N-乙酰鸟氨酸、5-氨基戊酸、丝氨酸、亮氨酸、甘油和槐糖等的含量均在所有老参地中显著下降, 经过20年轮作后依然不能恢复到对照水平。同时, 与预期相反, 被认为具有化感自毒作用的酚酸类代谢物在收获西洋参后含量也显著下降, 其中, 香豆酸、原儿茶酸、阿魏酸和苯甲酸的含量在A1中显著低于CK, 但经过10年时间轮作后可以恢复到接近对照水平。另外, p-香豆酸和丁香酸在A1、A10、A20的含量均显著低于CK, 即经过20年轮作依然不能恢复到对照水平; 酚酸类代谢物对西洋参生长的积极意义应被重视。相关性分析显示上述有机态养分含量、pH和酚酸类代谢物含量之间大多数呈显著正相关关系, 表明各土壤特性之间存在密切的交互作用。综上所述, 种植西洋参引起的土壤酸化、有机态养分和酚酸类代谢物含量降低及各因子间的协同作用可能是西洋参连作障碍的关键因素。
李崇玮, 柏新富, 陈国忠, 朱萍, 张淑婷, 侯玉平, 张兴晓. 不同恢复年限老参地土壤养分以及酚酸类代谢物含量差异. 植物生态学报, 2021, 45(11): 1263-1274. DOI: 10.17521/cjpe.2020.0401
LI Chong-Wei, BAI Xin-Fu, CHEN Guo-Zhong, ZHU Ping, ZHANG Shu-Ting, HOU Yu-Ping, ZHANG Xing-Xiao. Differences in soil nutrients and phenolic acid metabolites contents in American ginseng cultivated soils with different restoration years. Chinese Journal of Plant Ecology, 2021, 45(11): 1263-1274. DOI: 10.17521/cjpe.2020.0401
序号 No. | CK | A1 | A10 | A20 |
---|---|---|---|---|
1 | 37.07° N, 122.12° E, 70 m, 小麦, 空地 Triticum aestivum, Blank | 37.07° N, 122.11° E, 70 m 小麦, 西洋参 T. aestivum, Panax quinquefolius | 37.07° N, 122.12° E, 50 m 小麦, 花生 T. aestivum, Arachis hypogaea | 37.07° N, 122.12° E, 40 m 空地, 花生 Blank, A. hypogaea |
2 | 37.18° N, 122.24° E, 70 m, 空地, 空地 Blank, Blank | 37.07° N, 122.12° E, 70 m, 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.12° E, 50 m 空地, 玉米 Blank, Zea mays | 37.07° N, 122.12° E, 50 m 空地, 番薯 Blank, Ipomoea batatas |
3 | 37.18° N, 122.23° E, 40 m 空地, 玉米 Blank, Zea mays | 37.07° N, 122.12° E, 70 m 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.12° E, 50 m 小麦, 花生 T. aestivum, A. hypogaea | 37.07° N, 122.12° E, 40 m 空地, 花生 Blank, A. hypogaea |
4 | 37.18° N, 122.23° E, 40 m 空地, 花生 Blank, Arachis hypogaea | 37.07° N, 122.12° E, 70 m 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.12° E, 60 m 空地, 玉米 Blank, Z. mays | 37.07° N, 122.12° E, 50 m 空地, 花生 Blank, A. hypogaea |
5 | 37.18° N, 122.23° E, 40 m 玉米, 小麦 Z. mays, T. aestivum | 37.18° N, 122.23° E, 40 m 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.12° E, 60 m 空地, 玉米 Blank, Z. mays | 37.07° N, 122.12° E, 50 m 空地, 花生 Blank, A. hypogaea |
6 | 37.18° N, 122.23° E, 40 m 空地, 空地 Blank, Blank | 37.18° N, 122.23° E, 40 m 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.11° E, 70 m 空地, 玉米 Blank, Z. mays | 37.11° N, 122.07° E, 70 m 空地, 空地 Blank, Blank |
7 | 37.19° N, 122.25° E, 40 m 小麦, 花生 T. aestivum, A. hypogaea | 37.18° N, 122.23° E, 40 m 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.11° E, 70 m 空地, 玉米 Blank, Z. mays | 37.11° N, 122.07° E, 70 m 空地, 玉米 Blank, Z mays |
8 | 37.19° N, 122.25° E, 40 m 空地, 玉米 Blank, Z. mays | 37.18° N, 122.23° E, 40 m 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.12° E, 70 m 空地, 玉米 Blank, Z. mays | 37.11° N, 122.07° E, 0 m 空地, 花生 Blank, A. hypogaea |
9 | 37.19° N, 122.25° E, 35 m 杂草, 玉米 Weeds, Z. mays | 37.18° N, 122.23° E, 40 m 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.12° E, 70 m 空地, 玉米 Blank, Z. mays | 37.13° N, 122.06° E, 60 m 空地, 玉米 Blank, Z. mays |
10 | 37.19° N, 122.25° E, 35 m 杂草, 花生 Weeds, A. hypogaea | 37.18° N, 122.23° E, 40 m 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.12° E, 70 m 小麦, 花生 T. aestivum, A. hypogaea | 37.13° N, 122.06° E, 60 m 空地, 空地 Blank, Blank |
表1 不同恢复年限样地的地理位置(经纬度与海拔高度)以及取样时地上作物和前茬作物
Table 1 Geographical location (longitude, latitude and altitude) of each plot, as well as current aboveground crops and the fore-rotating crops
序号 No. | CK | A1 | A10 | A20 |
---|---|---|---|---|
1 | 37.07° N, 122.12° E, 70 m, 小麦, 空地 Triticum aestivum, Blank | 37.07° N, 122.11° E, 70 m 小麦, 西洋参 T. aestivum, Panax quinquefolius | 37.07° N, 122.12° E, 50 m 小麦, 花生 T. aestivum, Arachis hypogaea | 37.07° N, 122.12° E, 40 m 空地, 花生 Blank, A. hypogaea |
2 | 37.18° N, 122.24° E, 70 m, 空地, 空地 Blank, Blank | 37.07° N, 122.12° E, 70 m, 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.12° E, 50 m 空地, 玉米 Blank, Zea mays | 37.07° N, 122.12° E, 50 m 空地, 番薯 Blank, Ipomoea batatas |
3 | 37.18° N, 122.23° E, 40 m 空地, 玉米 Blank, Zea mays | 37.07° N, 122.12° E, 70 m 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.12° E, 50 m 小麦, 花生 T. aestivum, A. hypogaea | 37.07° N, 122.12° E, 40 m 空地, 花生 Blank, A. hypogaea |
4 | 37.18° N, 122.23° E, 40 m 空地, 花生 Blank, Arachis hypogaea | 37.07° N, 122.12° E, 70 m 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.12° E, 60 m 空地, 玉米 Blank, Z. mays | 37.07° N, 122.12° E, 50 m 空地, 花生 Blank, A. hypogaea |
5 | 37.18° N, 122.23° E, 40 m 玉米, 小麦 Z. mays, T. aestivum | 37.18° N, 122.23° E, 40 m 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.12° E, 60 m 空地, 玉米 Blank, Z. mays | 37.07° N, 122.12° E, 50 m 空地, 花生 Blank, A. hypogaea |
6 | 37.18° N, 122.23° E, 40 m 空地, 空地 Blank, Blank | 37.18° N, 122.23° E, 40 m 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.11° E, 70 m 空地, 玉米 Blank, Z. mays | 37.11° N, 122.07° E, 70 m 空地, 空地 Blank, Blank |
7 | 37.19° N, 122.25° E, 40 m 小麦, 花生 T. aestivum, A. hypogaea | 37.18° N, 122.23° E, 40 m 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.11° E, 70 m 空地, 玉米 Blank, Z. mays | 37.11° N, 122.07° E, 70 m 空地, 玉米 Blank, Z mays |
8 | 37.19° N, 122.25° E, 40 m 空地, 玉米 Blank, Z. mays | 37.18° N, 122.23° E, 40 m 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.12° E, 70 m 空地, 玉米 Blank, Z. mays | 37.11° N, 122.07° E, 0 m 空地, 花生 Blank, A. hypogaea |
9 | 37.19° N, 122.25° E, 35 m 杂草, 玉米 Weeds, Z. mays | 37.18° N, 122.23° E, 40 m 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.12° E, 70 m 空地, 玉米 Blank, Z. mays | 37.13° N, 122.06° E, 60 m 空地, 玉米 Blank, Z. mays |
10 | 37.19° N, 122.25° E, 35 m 杂草, 花生 Weeds, A. hypogaea | 37.18° N, 122.23° E, 40 m 小麦, 西洋参 T. aestivum, P. quinquefolius | 37.07° N, 122.12° E, 70 m 小麦, 花生 T. aestivum, A. hypogaea | 37.13° N, 122.06° E, 60 m 空地, 空地 Blank, Blank |
图1 高效液相色谱法得到的酚酸标样的出峰时间和出峰面积。1, 没食子酸; 2, 香豆酸; 3, 原儿茶酸; 4, 对羟基苯甲酸; 5, 绿原酸; 6, 香草酸; 7, 咖啡酸; 8, 丁香酸; 9, 香草醛; 10, 对香豆酸; 11, 阿魏酸; 12, 苯甲酸; 13, 水杨酸; 14, 肉桂酸。
Fig. 1 Peak time and peak area of standard phenolicacids obtained by high performance liquid chromatography (HPLC). 1, gallic acid; 2, coumaric acid; 3, protocatechuic acid; 4, p-hydroxybenzonic acid; 5, chlorogenic acid; 6, vanillic acid; 7, caffeic acid; 8, syringic acid; 9, vanillin (vanillic aldehyd); 10, p-coumaric acid; 11, ferulic acid; 12, benzoic acid; 13, salicylic acid; 14, cinnamic acid.
化学性质 Chemical property | CK | A1 | A10 | A20 |
---|---|---|---|---|
pH | 4.69 ± 0.07a | 4.19 ± 0.04c | 4.49 ± 0.08b | 4.34 ± 0.04bc |
有机质含量 Organic matter content (g·kg-1) | 16.38 ± 0.91a | 14.43 ± 0.83a | 13.63 ± 0.80a | 15.15 ± 1.02a |
全氮含量 Total nitrogen content (g·kg-1) | 0.97 ± 0.07a | 0.99 ± 0.07a | 0.89 ± 0.05a | 1.03 ± 0.09a |
全磷含量 Total phosphorus content (g·kg-1) | 0.84 ± 0.08a | 0.70 ± 0.07a | 0.71 ± 0.05a | 0.92 ± 0.07a |
碱解氮含量 Alkaline hydrolysis nitrogen content (mg·kg-1) | 103.17 ± 13.79a | 147.84 ± 21.33a | 131.01 ± 11.50a | 117.03 ± 12.67a |
有效磷含量 Available phosphorus content (mg·kg-1) | 84.82 ± 14.10a | 88.72 ± 24.19a | 94.72 ± 14.80a | 131.70 ± 17.49a |
有效钾含量 Available potassium content (mg·kg-1) | 123.97 ± 13.76b | 208.98 ± 7.65a | 132.97 ± 13.26b | 142.87 ± 13.74b |
表2 不同恢复年限老参地土壤化学性质的比较(平均值±标准误, n = 10)
Table 2 Comparison of soil chemical properties in soils with different restoration years from the long-term cultivation of American ginseng (mean ± SE, n = 10)
化学性质 Chemical property | CK | A1 | A10 | A20 |
---|---|---|---|---|
pH | 4.69 ± 0.07a | 4.19 ± 0.04c | 4.49 ± 0.08b | 4.34 ± 0.04bc |
有机质含量 Organic matter content (g·kg-1) | 16.38 ± 0.91a | 14.43 ± 0.83a | 13.63 ± 0.80a | 15.15 ± 1.02a |
全氮含量 Total nitrogen content (g·kg-1) | 0.97 ± 0.07a | 0.99 ± 0.07a | 0.89 ± 0.05a | 1.03 ± 0.09a |
全磷含量 Total phosphorus content (g·kg-1) | 0.84 ± 0.08a | 0.70 ± 0.07a | 0.71 ± 0.05a | 0.92 ± 0.07a |
碱解氮含量 Alkaline hydrolysis nitrogen content (mg·kg-1) | 103.17 ± 13.79a | 147.84 ± 21.33a | 131.01 ± 11.50a | 117.03 ± 12.67a |
有效磷含量 Available phosphorus content (mg·kg-1) | 84.82 ± 14.10a | 88.72 ± 24.19a | 94.72 ± 14.80a | 131.70 ± 17.49a |
有效钾含量 Available potassium content (mg·kg-1) | 123.97 ± 13.76b | 208.98 ± 7.65a | 132.97 ± 13.26b | 142.87 ± 13.74b |
氨基酸类 Amino acids and amino acid analogues | CK | A1 | A10 | A20 |
---|---|---|---|---|
N-乙酰鸟氨酸 N-acetylornithine | 0.242 89a | 0.213 73b | 0.212 66b | 0.213 41b |
5-氨基戊酸 5-aminovaleric acid | 0.012 67a | 0.011 24b | 0.010 63b | 0.011 16b |
丝氨酸 Serine | 0.000 73a | 0.000 51b | 0.000 55b | 0.000 56b |
亮氨酸 Leucine | 0.000 07a | 0.000 04b | 0.000 04b | 0.000 04b |
甘氨酸 Glycine | 0.005 02a | 0.002 84c | 0.005 35a | 0.003 93b |
组氨酸 Histidine | 0.024 44a | 0.008 39b | 0.016 55ab | 0.011 67b |
焦谷氨酸 Pyroglutamic acid | 0.001 77a | 0.000 46b | 0.001 77a | 0.000 89b |
苏氨酸 Threonine | 0.000 38a | 0.000 26c | 0.000 36ab | 0.000 29bc |
鸟氨酸 Ornithine | 0.006 34a | 0.004 55b | 0.005 97a | 0.005 58a |
丙氨酸 Alanine | 0.011 65a | 0.004 62b | 0.014 57a | 0.010 09ab |
酪氨酸 Tyrosine | 0.000 16a | 0.000 07b | 0.000 23a | 0.000 16a |
谷氨酸 Glutamate | 0.001 30a | 0.001 24a | 0.001 06b | 0.001 06b |
N-氨甲酰天冬氨酸 N-carbamoylaspartate | 0.000 24a | 0.000 22ab | 0.000 19b | 0.000 20b |
β-丙氨酸 Beta-alanine | 0.007 24a | 0.006 87a | 0.005 83b | 0.005 75b |
N-甲基丙氨酸 N-methylalanine | 0.019 22a | 0.017 51ab | 0.016 96b | 0.018 00ab |
氨甲环酸 Tranexamic acid | 0.000 83a | 0.000 73ab | 0.000 74ab | 0.000 73b |
异亮氨酸 Isoleucine | 0.008 87ab | 0.005 10b | 0.013 20a | 0.008 99ab |
L-丝氨酸 L-serine | 0.002 20ab | 0.000 95b | 0.003 39a | 0.002 00ab |
L-苏氨酸 L-threonine | 0.001 81ab | 0.000 74b | 0.002 80a | 0.001 68ab |
4-氨基丁酸 4-aminobutyric acid | 0.002 22ab | 0.001 01b | 0.003 36a | 0.002 72ab |
脯氨酸 Proline | 0.002 20ab | 0.000 92b | 0.003 63a | 0.002 50ab |
天冬酰胺 Asparagine | 0.002 46a | 0.002 55a | 0.002 21b | 0.002 45ab |
天冬氨酸 Aspartate | 0.011 07b | 0.013 10a | 0.012 79a | 0.013 75a |
正缬氨酸 Norvaline | 0.002 01b | 0.005 72a | 0.002 30b | 0.003 02b |
甘油 Glycerol | 0.177 17a | 0.097 79b | 0.117 46b | 0.125 96b |
槐糖 Sophorose | 0.218 81a | 0.112 03b | 0.133 39b | 0.102 29b |
肌醇半乳糖苷 Galactinol | 0.005 07a | 0.000 73b | 0.000 97b | 0.001 65ab |
正丁醇 1-butanol | 0.003 66a | 0.003 14b | 0.003 70a | 0.003 33b |
帕拉金糖醇 Palatinitol | 0.009 99a | 0.007 41b | 0.009 59ab | 0.008 42bc |
松三糖 Melezitose | 0.036 72a | 0.013 83b | 0.028 28ab | 0.019 30bc |
葡萄糖 Glucose | 0.008 27a | 0.003 69b | 0.007 58a | 0.006 65ab |
双半乳糖醛酸 Digalacturonic acid | 0.006 84a | 0.002 20b | 0.007 78a | 0.005 30ab |
麦芽三糖 Maltotriose | 0.032 44a | 0.003 75b | 0.007 49ab | 0.008 01ab |
葡萄糖-1-磷酸 Glucose-1-phosphate | 0.006 10a | 0.002 89b | 0.005 98a | 0.004 97ab |
麦芽三醇 Maltotriitol | 0.007 87a | 0.003 62b | 0.009 20a | 0.005 87ab |
Udp-N-乙酰氨基葡萄糖 Udp-N-acetylglucosamine | 0.006 06a | 0.001 73b | 0.003 87ab | 0.003 78ab |
D7葡萄糖 D7-glucose | 0.002 09a | 0.002 01a | 0.001 55b | 0.001 58b |
己六醇 Hexitol | 0.002 40a | 0.002 13ab | 0.001 95b | 0.002 03b |
D-木糖醇 D-xylitol | 0.004 85ab | 0.003 63b | 0.012 68a | 0.008 61ab |
3-脱氧葡萄糖醇 3-deoxyhexitol | 0.000 74ab | 0.000 08b | 0.000 98a | 0.000 46ab |
山梨醇 Sorbitol | 0.834 54ab | 0.363 63b | 1.198 04a | 1.234 67a |
乙二醇 Ethylene glycol | 0.025 64a | 0.021 76ab | 0.015 39b | 0.021 35ab |
甲基β-d-吡喃葡萄糖苷 Methyl beta-d-glucopyranoside | 0.042 22ab | 0.011 58b | 0.062 45a | 0.027 06b |
1,5-脱水葡萄糖醇 1,5-anhydroglucitol | 0.000 23b | 0.000 43a | 0.000 25b | 0.000 27b |
表3 不同恢复年限老参地土壤小分子有机态养分相对含量的比较(平均值±标准误, n = 10)
Table 3 Comparison of relative content of small molecular organic nutrients in soils with different restoration years from the long-term cultivation of American ginseng (mean ± SE, n = 10)
氨基酸类 Amino acids and amino acid analogues | CK | A1 | A10 | A20 |
---|---|---|---|---|
N-乙酰鸟氨酸 N-acetylornithine | 0.242 89a | 0.213 73b | 0.212 66b | 0.213 41b |
5-氨基戊酸 5-aminovaleric acid | 0.012 67a | 0.011 24b | 0.010 63b | 0.011 16b |
丝氨酸 Serine | 0.000 73a | 0.000 51b | 0.000 55b | 0.000 56b |
亮氨酸 Leucine | 0.000 07a | 0.000 04b | 0.000 04b | 0.000 04b |
甘氨酸 Glycine | 0.005 02a | 0.002 84c | 0.005 35a | 0.003 93b |
组氨酸 Histidine | 0.024 44a | 0.008 39b | 0.016 55ab | 0.011 67b |
焦谷氨酸 Pyroglutamic acid | 0.001 77a | 0.000 46b | 0.001 77a | 0.000 89b |
苏氨酸 Threonine | 0.000 38a | 0.000 26c | 0.000 36ab | 0.000 29bc |
鸟氨酸 Ornithine | 0.006 34a | 0.004 55b | 0.005 97a | 0.005 58a |
丙氨酸 Alanine | 0.011 65a | 0.004 62b | 0.014 57a | 0.010 09ab |
酪氨酸 Tyrosine | 0.000 16a | 0.000 07b | 0.000 23a | 0.000 16a |
谷氨酸 Glutamate | 0.001 30a | 0.001 24a | 0.001 06b | 0.001 06b |
N-氨甲酰天冬氨酸 N-carbamoylaspartate | 0.000 24a | 0.000 22ab | 0.000 19b | 0.000 20b |
β-丙氨酸 Beta-alanine | 0.007 24a | 0.006 87a | 0.005 83b | 0.005 75b |
N-甲基丙氨酸 N-methylalanine | 0.019 22a | 0.017 51ab | 0.016 96b | 0.018 00ab |
氨甲环酸 Tranexamic acid | 0.000 83a | 0.000 73ab | 0.000 74ab | 0.000 73b |
异亮氨酸 Isoleucine | 0.008 87ab | 0.005 10b | 0.013 20a | 0.008 99ab |
L-丝氨酸 L-serine | 0.002 20ab | 0.000 95b | 0.003 39a | 0.002 00ab |
L-苏氨酸 L-threonine | 0.001 81ab | 0.000 74b | 0.002 80a | 0.001 68ab |
4-氨基丁酸 4-aminobutyric acid | 0.002 22ab | 0.001 01b | 0.003 36a | 0.002 72ab |
脯氨酸 Proline | 0.002 20ab | 0.000 92b | 0.003 63a | 0.002 50ab |
天冬酰胺 Asparagine | 0.002 46a | 0.002 55a | 0.002 21b | 0.002 45ab |
天冬氨酸 Aspartate | 0.011 07b | 0.013 10a | 0.012 79a | 0.013 75a |
正缬氨酸 Norvaline | 0.002 01b | 0.005 72a | 0.002 30b | 0.003 02b |
甘油 Glycerol | 0.177 17a | 0.097 79b | 0.117 46b | 0.125 96b |
槐糖 Sophorose | 0.218 81a | 0.112 03b | 0.133 39b | 0.102 29b |
肌醇半乳糖苷 Galactinol | 0.005 07a | 0.000 73b | 0.000 97b | 0.001 65ab |
正丁醇 1-butanol | 0.003 66a | 0.003 14b | 0.003 70a | 0.003 33b |
帕拉金糖醇 Palatinitol | 0.009 99a | 0.007 41b | 0.009 59ab | 0.008 42bc |
松三糖 Melezitose | 0.036 72a | 0.013 83b | 0.028 28ab | 0.019 30bc |
葡萄糖 Glucose | 0.008 27a | 0.003 69b | 0.007 58a | 0.006 65ab |
双半乳糖醛酸 Digalacturonic acid | 0.006 84a | 0.002 20b | 0.007 78a | 0.005 30ab |
麦芽三糖 Maltotriose | 0.032 44a | 0.003 75b | 0.007 49ab | 0.008 01ab |
葡萄糖-1-磷酸 Glucose-1-phosphate | 0.006 10a | 0.002 89b | 0.005 98a | 0.004 97ab |
麦芽三醇 Maltotriitol | 0.007 87a | 0.003 62b | 0.009 20a | 0.005 87ab |
Udp-N-乙酰氨基葡萄糖 Udp-N-acetylglucosamine | 0.006 06a | 0.001 73b | 0.003 87ab | 0.003 78ab |
D7葡萄糖 D7-glucose | 0.002 09a | 0.002 01a | 0.001 55b | 0.001 58b |
己六醇 Hexitol | 0.002 40a | 0.002 13ab | 0.001 95b | 0.002 03b |
D-木糖醇 D-xylitol | 0.004 85ab | 0.003 63b | 0.012 68a | 0.008 61ab |
3-脱氧葡萄糖醇 3-deoxyhexitol | 0.000 74ab | 0.000 08b | 0.000 98a | 0.000 46ab |
山梨醇 Sorbitol | 0.834 54ab | 0.363 63b | 1.198 04a | 1.234 67a |
乙二醇 Ethylene glycol | 0.025 64a | 0.021 76ab | 0.015 39b | 0.021 35ab |
甲基β-d-吡喃葡萄糖苷 Methyl beta-d-glucopyranoside | 0.042 22ab | 0.011 58b | 0.062 45a | 0.027 06b |
1,5-脱水葡萄糖醇 1,5-anhydroglucitol | 0.000 23b | 0.000 43a | 0.000 25b | 0.000 27b |
酚酸类代谢物 Phenolic acid metabolites | CK | A1 | A10 | A20 |
---|---|---|---|---|
香豆酸 Coumalic acid | 0.97 ± 0.07a | 0.31 ± 0.04c | 0.59 ± 0.15bc | 0.78 ± 0.12ab |
原儿茶酸 Protocatechuic acid | 0.99 ± 0.06a | 0.58 ± 0.08b | 0.72 ± 0.09ab | 0.82 ± 0.11ab |
对羟基苯甲酸 p-Hydroxybenzonic acid | 2.59 ± 0.07a | 2.17 ± 0.14a | 2.31 ± 0.13a | 2.24 ± 0.18a |
香草酸 Vanillic acid | 1.61 ± 0.09a | 1.46 ± 0.08a | 1.47 ± 0.04a | 1.49 ± 0.10a |
咖啡酸 Caffeic acid | 0.02 ± 0.01b | 0.23 ± 0.15b | 0.01 ± 0.01b | 0.74 ± 0.22a |
丁香酸 Syringic acid | 2.33 ± 0.14a | 1.55 ± 0.13b | 1.66 ± 0.14b | 1.48 ± 0.17b |
香草醛 Vanillin | 0.87 ± 0.06a | 1.00 ± 0.12a | 0.89 ± 0.06a | 0.87 ± 0.07a |
对香豆酸 p-Coumaric acid | 3.52 ± 0.22a | 2.06 ± 0.35b | 2.43 ± 0.15b | 2.71 ± 0.21b |
阿魏酸 Ferulic acid | 1.51 ± 0.12a | 0.85 ± 0.16b | 1.19 ± 0.08ab | 1.34 ± 0.09ab |
苯甲酸 Benzoic acid | 2.35 ± 0.37a | 1.29 ± 0.37b | 2.28 ± 0.27a | 2.91 ± 0.34a |
表4 不同恢复年限老参地土壤酚酸类代谢物含量(mg·kg-1)差异比较(平均值±标准误, n = 10)
Table 4 Comparison of phenolic acid metabolites content (mg·kg-1) in soils with different restoration years from the long-term cultivation of American ginseng (mean ± SE, n = 10)
酚酸类代谢物 Phenolic acid metabolites | CK | A1 | A10 | A20 |
---|---|---|---|---|
香豆酸 Coumalic acid | 0.97 ± 0.07a | 0.31 ± 0.04c | 0.59 ± 0.15bc | 0.78 ± 0.12ab |
原儿茶酸 Protocatechuic acid | 0.99 ± 0.06a | 0.58 ± 0.08b | 0.72 ± 0.09ab | 0.82 ± 0.11ab |
对羟基苯甲酸 p-Hydroxybenzonic acid | 2.59 ± 0.07a | 2.17 ± 0.14a | 2.31 ± 0.13a | 2.24 ± 0.18a |
香草酸 Vanillic acid | 1.61 ± 0.09a | 1.46 ± 0.08a | 1.47 ± 0.04a | 1.49 ± 0.10a |
咖啡酸 Caffeic acid | 0.02 ± 0.01b | 0.23 ± 0.15b | 0.01 ± 0.01b | 0.74 ± 0.22a |
丁香酸 Syringic acid | 2.33 ± 0.14a | 1.55 ± 0.13b | 1.66 ± 0.14b | 1.48 ± 0.17b |
香草醛 Vanillin | 0.87 ± 0.06a | 1.00 ± 0.12a | 0.89 ± 0.06a | 0.87 ± 0.07a |
对香豆酸 p-Coumaric acid | 3.52 ± 0.22a | 2.06 ± 0.35b | 2.43 ± 0.15b | 2.71 ± 0.21b |
阿魏酸 Ferulic acid | 1.51 ± 0.12a | 0.85 ± 0.16b | 1.19 ± 0.08ab | 1.34 ± 0.09ab |
苯甲酸 Benzoic acid | 2.35 ± 0.37a | 1.29 ± 0.37b | 2.28 ± 0.27a | 2.91 ± 0.34a |
图2 不同恢复年限老参地土壤中显著变化指标的Pearson相关性热图。左下方为Pearson相关性热图, 格子内数字表示相关性(r); 右上方为相关显著性热图, 将其中p > 0.05的数值在格子中标出, 表示两种指标的Pearson相关不显著。1, 甘油; 2, 槐糖; 3, 正丁醇; 4, 麦芽三醇; 5, 帕拉金糖醇; 6, 松三糖; 7, pH; 8, 香豆酸; 9, 原儿茶酸; 10, 丁香酸; 11, 对香豆酸; 12, 阿魏酸; 13, 苯甲酸; 14, 甘氨酸; 15, N-乙酰鸟氨酸; 16, 天冬氨酸; 17, 苏氨酸; 18, 丝氨酸; 19, 组氨酸; 20, 谷氨酸; 21, 焦谷氨酸; 22, 亮氨酸。
Fig. 2 Pearson correlation heat map of significant changed indices in soils with different restoration years from the long-term cultivation of American ginseng. The lower left is the Pearson correlation heat map, and the number in the grid represents the correlation coefficient (r); the top right is the correlation significance heat map, in which the value of p > 0.05 is marked, indicating that the Pearson correlation of the two indicators is non-significant. 1, glycerol; 2, sophorose; 3, 1-butanol; 4, maltotriitol; 5, palatinitol; 6, melezitose; 7, pH; 8, coumaric acid; 9, protocatechuic acid; 10, syringic acid; 11, p-coumaric acid; 12, ferulic acid; 13, benzoic acid; 14, glycine; 15, N-acetylornithine; 16, aspartate; 17, threonine; 18, serine; 19, histidine; 20, glutamate; 21, pyroglutamic acid; 22, leucine.
图3 不同恢复年限老参地土壤氨基酸类和糖醇类养分含量的主成分分析(PCA)。A1, 收获西洋参后轮作1年的土壤; A10, 收获西洋参后轮作10年的土壤; A20, 收获西洋参后轮作20年的土壤; CK, 未种植过西洋参的土壤。两点之间的距离越短, 表明两组养分含量组成的相似性越高; 反之, 两点之间的距离越远, 两组养分含量的差异性越大; 置信椭圆也具有相同的含义。
Fig. 3 Principal component analysis (PCA) of soil amino acids and sugar alcohols contents in soils with different restoration years from the long-term cultivation of American ginseng. A1, 1-year post-ginseng rotation soil; A10, 10-year post-ginseng rotation soil; A20, 20-year post-ginseng rotation soil; CK, no ginseng cultivation history. The shorter the distance between the two points, the higher the similarity of nutrient content between the two groups; on the contrary, the farther the distance between the two points, the greater the difference of nutrient content between the two groups; the confidence ellipse has the same meaning.
[1] | Bao SD (2000). Soil Agrochemical Analysis. 3rd ed. China Agriculture Press, Beijing.25-108. |
[ 鲍士旦 (2000) 土壤农化分析. 3版. 中国农业出版社, 北京, 25-108.] | |
[2] | Bi W (2008). Identification of the Pathogens Causing the Root Rot and Their Pathogenicity on American Ginseng in Beijing. Master degree dissertation, Peking Union Medical College, Beijing, 32-56. |
[ 毕武 (2008). 北京地区西洋参根腐病相关真菌的研究. 硕士学位论文, 北京协和医学院, 北京. 32-56.] | |
[3] | Bi XB, Yang JX, Gao WW (2010). Autotoxicity of phenolic compounds from the soil of American ginseng ( Panax quinquefolium L.). Allelopathy Journal, 25, 115-121. |
[4] | Cai HM, Zang AX, Xia C, Cai JM (2007). Study on the relationships between Panax quinquefolius L. output and soil fertility, microorganism and enzyme activity. Journal of Anhui Agricultural Sciences, 26, 8267-8268. |
[ 蔡荟梅, 臧爱香, 夏春, 蔡敬民 (2007). 西洋参产量与土壤肥力·微生物和酶活性关系的研究. 安徽农业科学, 26, 8267-8268.] | |
[5] | Chapin III FS, Matson PA, Mooney HA (2011). Principles of Terrestrial Ecosystem Ecology. 2nd ed. Springer, Berlin,586-623. |
[6] |
Chen CF, Chiou WF, Zhang JT (2008). Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolium. Acta Pharmacologica Sinica, 29, 1103-1108.
DOI URL |
[7] | Chen SL, Zhou YQ, Xie CX, Zhao RH, Sun CZ, Wei JH, Liu ZQ, Gao WW (2008). Suitability evaluation of Panax quinquefolium’s producing area based on TCMGIS-I. China Journal of Chinese Materia Medica, 33, 741-745. |
[ 陈士林, 周应群, 谢彩香, 赵润怀, 孙成忠, 魏建和, 刘召芹, 高微微 (2008). 基于TCMGIS-I的西洋参生态适宜性分析. 中国中药杂志, 33, 741-745.] | |
[8] | Ding SS, Li YT, Yuan L, Zhao BQ, Lin ZA, Yang XD, Li J, Zhang JJ (2016). Effects of sugar alcohols and amino acids on growth, quality and calcium nutrition of Chinese cabbage. Journal of Plant Nutrition and Fertilizer, 22, 744-751. |
[ 丁双双, 李燕婷, 袁亮, 赵秉强, 林治安, 杨相东, 李娟, 张建君 (2016). 糖醇和氨基酸对小白菜钙营养及生长、品质的影响. 植物营养与肥料学报, 22, 744-751.] | |
[9] | Dong LL, Xu J, Zhang LJ, Yang J, Liao BS, Li XW, Chen SL (2017). High-throughput sequencing technology reveals that continuous cropping of American ginseng results in changes in the microbial community in arable soil. Chinese Medicine, 12, 1-11. |
[10] | Du W, Zhao BQ, Lin ZA, Yuan L, Li YT (2015). Study on the enhancement and mechanism of organic-inorganic compound fertilizer on inorganic fertilizer utilization III. Effect of potassium sulfate combined with organic material on maize yield and K fertilizer utilization. Journal of Plant Nutrition and Fertilizer, 21, 58-63. |
[ 杜伟, 赵秉强, 林治安, 袁亮, 李燕婷 (2015). 有机无机复混肥优化化肥养分利用的效应与机理研究III. 有机物料与钾肥复混对玉米产量及肥料养分吸收利用的影响. 植物营养与肥料学报, 21, 58-63.] | |
[11] |
Farh MEA, Kim YJ, Yang DC (2018). Cylindrocarpon destructans/Ilyonectria radicicola-species complex: causative agent of ginseng root-rot disease and rusty symptoms. Journal of Ginseng Research, 42, 9-15.
DOI URL |
[12] |
Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW, Lemly AD, McNulty SG, Ryan DF, Stottlemyer R (1998). Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecological Applications, 8, 706-733.
DOI URL |
[13] | Gao WW, Tong JM, Guo SX (2006a). Research progress on ecological functions of plant secondary metabolites. Chinese Pharmaceutical Journal, 41, 961-964. |
[ 高微微, 佟建明, 郭顺星 (2006a). 植物次生代谢产物的生态学功能研究进展. 中国药学杂志, 41, 961-964.] | |
[14] | Gao WW, Zhao YJ, Wang YP, Chen SL (2006b). A review of research on sustainable utilization of medicinal plant cultivated land in China. China Journal of Chinese Materia Medica, 31, 1665-1669. |
[ 高微微, 赵杨景, 王玉萍, 陈士林 (2006b). 我国药用植物栽培地的可持续利用研究. 中国中药杂志, 31, 1665-1669.] | |
[15] | Gao ZQ, Zhang SX (1998). Continuous cropping obstacle and rhizospheric microecology I. Root exudates and their ecological effects. Chinese Journal of Applied Ecology, 9, 3-5. |
[ 高子勤, 张淑香 (1998). 连作障碍与根际微生态研究I. 根系分泌物及其生态效应. 应用生态学报, 9, 3-5.] | |
[16] |
Guo WJ, Zhang ZL, Liu Q, Xiao J, Yin HJ (2020). Seasonal variations in plant nitrogen acquisition in an ectomycorrhizal alpine forest on the eastern Tibetan Plateau, China. Plant and Soil, 459, 79-91.
DOI URL |
[17] |
Hartley RD, Buchan H (1979). High-performance liquid chromatography of phenolic acids and aldehydes derived from plants or from the decomposition of organic matter in soil. Journal of Chromatography A, 180, 139-143.
DOI URL |
[18] |
He CN, Gao WW, Yang JX, Bi W, Zhang XS, Zhao YJ (2009). Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L. Plant and Soil, 318, 63-72.
DOI URL |
[19] | He ZG (2019). Mechanism of Continuous Cropping Obstacles and Crop Rotation Restoration in Pinellia ternate. PhD dissertation, Northwest A&F University, Yangling, Shaanxi, 38-49. |
[ 何志贵 (2019). 半夏连作障碍发生机制与轮作修复研究. 博士学位论文, 西北农林科技大学, 陕西杨凌. 38-49.] | |
[20] | Jia CH, Wang P, Zhao XQ (2004). Change of phenolic acids concentration in soil under wheat straw mulch and the effect of phenolic acids on early growth stage of summer maize. Acta Agriculturae Boreali-Sinica, 4, 84-87. |
[21] | Jian ZY, Wang WQ, Meng L, Zhang ZL (2008). Research progress on continuous cropping obstacles of Panax medicinal plants. Modem Chinese Medicine, 10, 3-5. |
[ 简在友, 王文全, 孟丽, 张子龙 (2008). 人参属药用植物连作障碍研究进展. 中国现代中药, 10, 3-5.] | |
[22] | Jiao XL, Bi XB, Gao WW (2015a). Allelopathic effect of p-coumaric acid on American ginseng and its physiological mechanism. Acta Ecologica Sinica, 35, 3006-3013. |
[ 焦晓林, 毕晓宝, 高微微 (2015a). p-香豆酸对西洋参的化感作用及生理机制. 生态学报, 35, 3006-3013.] | |
[23] | Jiao XL, Du J, Bi XB, Gao WW (2015b). Effect of phenolic acid and ginsenosides in American ginseng on the growth of pathogenic fungi. Chinese Agricultural Science Bulletin, 31, 105-110. |
[ 焦晓林, 杜静, 毕晓宝, 高微微 (2015b). 西洋参中酚酸及皂苷成分对病原菌的作用. 中国农学通报, 31, 105-110.] | |
[24] |
Jiao XL, Du J, Gao WW (2012). Autotoxicity and promoting: dual effects of root litter on American ginseng growth. Acta Ecologica Sinica, 32, 3128-3135.
DOI URL |
[25] |
Kuzyakov Y, Jones DL (2006). Glucose uptake by maize roots and its transformation in the rhizosphere. Soil Biology & Biochemistry, 38, 851-860.
DOI URL |
[26] | Lei FJ, Zhang AH, Zhang QJ, Zhang LX (2010). Advances in research on allelopathy of ginseng and American ginseng. China Journal of Chinese Materia Medica, 35, 2221-2226. |
[ 雷锋杰, 张爱华, 张秋菊, 张连学 (2010). 人参、西洋参化感作用研究进展. 中国中药杂志, 35, 2221-2226.] | |
[27] |
Li CW, Chen GX, Zhang JL, Zhu P, Bai XF, Hou YP, Zhang XX (2021). The comprehensive changes in soil properties are continuous cropping obstacles associated with American ginseng ( Panax quinquefolius) cultivation. Scientific Reports, 11, 5068. DOI: 10.1038/s41598-021-84436-x.
DOI URL |
[28] | Li JF, Shao HH, Bi YM, Jiao XL, Zhang XM, Gao WW (2020). Effects of nutrients deficiency on growth and saponin accumulation of American ginseng. China Journal of Chinese Materia Medica, 45, 1866-1872. |
[29] | Li L, Jiang JL (2018). Research advances in allelopathic autotoxicity and continuous cropping obstacle of American ginseng. Molecular Plant Breeding, 16, 4436-4443. |
[ 李丽, 蒋景龙 (2018). 西洋参化感自毒作用与连作障碍研究进展. 分子植物育种, 16, 4436-4443.] | |
[30] | Li XF, Wang J, Hu J, Ye XY, Zhang XT (2019). Research progress on allelopathy of melon vegetables. North Horticulture, 16, 136-145. |
[ 李雪枫, 王坚, 胡坚, 叶晓园, 张秀婷 (2019). 瓜类蔬菜化感作用研究进展. 北方园艺, 16, 136-145.] | |
[31] | Li ZB, Zhou RJ, Xie YJ, Fu JF (2016). Allelopathic effects of phenolic compounds of ginseng root rhizosphere on Cylindrocarpon destructans. Chinese Journal of Applied Ecology, 27, 3616-3622. |
[ 李自博, 周如军, 解宇娇, 傅俊范 (2016). 人参连作根际土壤中酚酸物质对人参锈腐病菌的化感效应. 应用生态学报, 27, 3616-3622.] | |
[32] | Liu ZF, Zhang GB, Yu JH, Yang HX, Shi GY, Ma YX, Li J (2013). Effects of different nitrogen forms and their ratios on broccoli yield, quality, and nutrient absorption. Chinese Journal of Applied Ecology, 24, 1923-1930. |
[ 刘赵帆, 张国斌, 郁继华, 杨海兴, 师桂英, 马彦霞, 李杰 (2013). 氮肥形态及配比对花椰菜产量、品质和养分吸收的影响. 应用生态学报, 24, 1923-1930.] | |
[33] | Lu RK (2000). Soil Agricultural Chemical Analysis Method. China Agricultural Science and Technology Press, Beijing. 23-145. |
[ 鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京. 23-145.] | |
[34] | Ma BL, Qin XH, Shi ZX, Liu CY (2011). The research progress of American ginseng clinical pharmacology. Journal of Jiangxi University of Traditional Chinese Medicine, 23, 88-29. |
[ 马宝兰, 秦绪花, 史载祥, 刘春援 (2011). 西洋参临床药理研究进展(2004-2010). 江西中医学院学报, 23, 88-92.] | |
[35] |
Momoshima N, Tjahaja PI, Takashima Y (1991). Root uptake of 14C-labeled glucose by radish seedling. Radioisotopes, 40, 64-66.
DOI URL |
[36] |
Rahman M, Punja ZK (2005). Factors influencing development of root rot on ginseng caused by Cylindrocarpon destructans. Phytopathology, 95, 1381-1390.
DOI URL |
[37] |
Shen H, Dong SK, Li S, Xiao JN, Han YH, Yang MY, Zhang J, Gao XX, Xu YD, Li Y, Zhi YL, Liu SL, Dong QM, Zhou HK, Yeomans JC (2019). Effects of simulated N deposition on photosynthesis and productivity of key plants from different functional groups of alpine meadow on Qinghai- Tibetan Plateau. Environmental Pollution, 251, 731-737.
DOI PMID |
[38] | Sun H (2008). The Research of Panax quinquefolium Linne’s Nutrient Accumulation Rule. Master degree dissertation, Jilin Agricultural University, Changchun. |
[ 孙贺 (2008). 西洋参养分积累规律的研究. 硕士学位论文, 吉林农业大学, 长春.] | |
[39] | Sun WQ (2017). Identification of Phenolic Acids in Processing Tomato Andeffects on Growth of Phenolic Acids. Master degree dissertation, Shihezi University, Shihezi, Xinjiang. 8-30. |
[ 孙文庆 (2017). 加工番茄酚酸类化感物质的鉴定及对幼苗生长的影响. 硕士学位论文, 石河子大学, 新疆石河子. 8-30.] | |
[40] |
Vitousek PM, Matson PA (1988). Nitrogen transformations in a range of tropical forest soils. Soil Biology & Biochemistry, 20, 361-367.
DOI URL |
[41] | Xu HL (2014). Preliminary study on soil pH and continuous cropping obstacles. Chinese Medicine Modern Distance Education of China, 12(3), 148. |
[ 徐厚来 (2014). 参地土壤pH值与连作障碍问题初探. 中国中医药现代远程教育, 12(3), 148.] | |
[42] | Yang JX (2009). Allelopathy of Phenolic Acids from Panax quinquefolium and its Influencing Factors. Master degree dissertation, China Union Medical College, Beijing. |
[ 杨家学 (2009). 西洋参酚酸类化合物的化感作用及影响因子研究. 硕士学位论文, 中国协和医科大学, 北京.] | |
[43] | Yang JX, Gao WW (2009). Effects of phenolic allelochemicals on the pathogen of Panax quiquefolium L. Chinese Agricultural Science Bulletin, 25, 207-211. |
[44] | Yu HL, Lin ZA, Li YT, Yuan L, Zhao BQ (2014). Effects of spraying low molecular organic compounds on growth and nutrients uptake of rape ( Brassica chinensis L.). Journal of Plant Nutrition and Fertilizer, 20, 1560-1568. |
[ 于会丽, 林治安, 李燕婷, 袁亮, 赵秉强 (2014). 喷施小分子有机物对小油菜生长发育和养分吸收的影响. 植物营养与肥料学报, 20, 1560-1568.] | |
[45] |
Yuan SZ, Li WS, Li QQ, Wang LM, Cao JK, Jiang WB (2019). Defense responses, induced by p-coumaric acid and methyl p-coumarate, of jujube (Ziziphus jujuba Mill.) fruit against black spot rot caused by Alternaria alternata. Journal of Agricultural and Food Chemistry, 67, 2801-2810.
DOI URL |
[46] | Zhang FS, Cao YP (1992). Rhizosphere dynamics and plant nutrition. Acta Pedologica Sinica, 29, 239-250. |
[ 张福锁, 曹一平 (1992). 根际动态过程与植物营养. 土壤学报, 29, 239-250.] | |
[47] | Zhang GZ, Zhang SF (2004). Pathogenicity of fungi isolated from American ginseng seeds and bioassay of fungicides against the pathogenic fungi. China Journal of Chinese Materia Medica, (2), 47-50. |
[ 张国珍, 张树峰 (2004). 西洋参种子分离真菌的致病性测定及杀菌剂对种传病原真菌的生物测定. 中国中药杂志, (2), 47-50.] | |
[48] | Zhang XS (2013). Abatement Effect of Crop Rotation on Replant Problem of Panax quinquefolium L. PhD dissertation, Peking Union Medical College, Beijing. |
[ 张雪松 (2013). 轮作对西洋参连作障碍消减作用的研究. 博士学位论文, 北京协和医学院, 北京.] | |
[49] | Zhen WC, Wang XY, Kong JY, Cao KQ (2004). Determination of phenolic acids in root exudates and decomposing products of strawberry and their allelopathy. Journal of Agricultural University of Hebei, 27, 74-78. |
[ 甄文超, 王晓燕, 孔俊英, 曹克强 (2004). 草莓根系分泌物和腐解物中的酚酸类物质及其化感作用. 河北农业大学学报, 27, 74-78.] | |
[50] | Zheng HH, Hu XJ, Jia JY, Wu E, Xing JJ (2001). Changes in phenolic acid in plough layer and its effects on the growth and yield of summer corn with returning wheat straw. Chinese Journal of Eco-Agriculture, (4), 83-85. |
[ 郑皓皓, 胡晓军, 贾敬业, 吴萼, 邢建军 (2001). 麦秸还田耕层酚酸变化及其对夏玉米生长的影响. 中国生态农业学报, (4), 83-85.] |
[1] | 郝尚华 罗梦香 曹宏丽 张森 王明道. 草酸青霉C11对地黄生长的影响及其代谢产物分析[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张重义, 尹文佳, 李娟, 杜家方, 杨艳会, 陈新建, 林文雄. 地黄连作的生理生态特性[J]. 植物生态学报, 2010, 34(5): 547-554. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19