植物生态学报 ›› 2007, Vol. 31 ›› Issue (4): 729-737.DOI: 10.17521/cjpe.2007.0093
收稿日期:
2005-08-26
接受日期:
2006-11-08
出版日期:
2007-08-26
发布日期:
2007-07-30
通讯作者:
强胜
作者简介:
* E-mail: wl@njau.edu.cn基金资助:
SONG Xiao-Ling, HUANGFU Chao-He, QIANG Sheng*()
Received:
2005-08-26
Accepted:
2006-11-08
Online:
2007-08-26
Published:
2007-07-30
Contact:
QIANG Sheng
摘要:
通过人工去雄授粉和田间隔行种植试验,研究了抗草丁膦和抗草甘膦转基因油菜(Brassica napus)中的bar基因和EPSPS基因向野芥菜(B. juncea var. gracilis)流动的可能性。结果表明在人工授粉的情况下,以野芥菜为母本,分别以两种转基因油菜为父本,亲和性指数都很高,达13以上,与野芥菜自交或开放授粉条件下的亲和性指数没有明显差异,说明两种转基因油菜和野芥菜的亲和性较好。经两次除草剂筛选,人工杂交获得的所有F1对相应的除草剂都表现出了明显的抗性,且经PCR检测扩增出了各自的特异性条带,说明人工杂交获得的所有F1都携带了相应的抗性基因。F1的适合度研究表明,两种F1种子萌发率和母本都没有明显差异,营养生长明显好于母本。但花粉活力和结实率明显下降,携带抗草丁膦基因F1的花粉活力和每角果粒数分别是32.4%和0.59粒,携带抗草甘膦基因F1的花粉活力和每角果粒数分别是35.1%和0.58粒。经两次除草剂筛选和PCR检测,表明野芥菜和抗草丁膦油菜或与抗草甘膦油菜田间隔行种植分别能产生0.02%和0.014%的携带抗性基因的F1杂种。以上结果表明抗除草剂转基因油菜的抗性基因具有向野芥菜流动的可能性,且bar和EPSPS基因向野芥菜流动的可能性类似,但对其可能引起的环境后果需要做进一步地深入研究。
宋小玲, 皇甫超河, 强胜. 抗草丁膦和抗草甘膦转基因油菜的抗性基因向野芥菜的流动. 植物生态学报, 2007, 31(4): 729-737. DOI: 10.17521/cjpe.2007.0093
SONG Xiao-Ling, HUANGFU Chao-He, QIANG Sheng. GENE FLOW FROM TRANSGENIC GLUFOSINATE- OR GLYPHOSATE-TOLERANT OILSEED RAPE TO WILD RAPE. Chinese Journal of Plant Ecology, 2007, 31(4): 729-737. DOI: 10.17521/cjpe.2007.0093
被测基因 Detected gene | 引物序列 Primer sequence | 预期扩增产物长度 Expected product length (bp) |
---|---|---|
EPSPS | P1:5'-GGT-CCT-TCA-TGT-TCG-GCG-GTC-3' | 931 |
P2:5'-CTC-GCC-CTC-ATC-GCA-ATC-CAC-3' | ||
bar | P1:5'-CGA-GAC-AAG-CAC-GGT-CAA-CTT-3' | 426 |
P2:5'-AAA-CCC-ACG-TCA-TGC-CAG-TTC-3' |
表1 用于EPSPS和bar基因PCR检测的引物序列和预期扩增产物长度
Table 1
被测基因 Detected gene | 引物序列 Primer sequence | 预期扩增产物长度 Expected product length (bp) |
---|---|---|
EPSPS | P1:5'-GGT-CCT-TCA-TGT-TCG-GCG-GTC-3' | 931 |
P2:5'-CTC-GCC-CTC-ATC-GCA-ATC-CAC-3' | ||
bar | P1:5'-CGA-GAC-AAG-CAC-GGT-CAA-CTT-3' | 426 |
P2:5'-AAA-CCC-ACG-TCA-TGC-CAG-TTC-3' |
杂交组合 Combination | 授粉花蕾数(个) NFP | 收获种子数(粒) NSH | 亲和性指数 IC | 角果长度 LS (cm) |
---|---|---|---|---|
野芥菜自交 Wild rape self-pollination | 201 | 2 623 | 13.05Aa | 2.80±0.31Aa |
野芥菜开放授粉 Wild rape open-pollination | 280 | 3 850 | 13.75Aa | 2.82±0.28Aa |
与抗草丁膦油菜杂交 Wild rape×glufosinate-resistant oilseed rape | 511 | 7 087 | 13.87Aa | 2.79±0.24Aa |
与抗草甘膦油菜杂交 Wild rape×glyphosate-resistant oilseed rape | 502 | 6 943 | 13.83Aa | 2.71±0.27Aa |
表2 野芥菜自交和开放授粉结实性及其与抗草丁膦和抗草甘膦转基因油菜杂交结实性比较
Table 2
杂交组合 Combination | 授粉花蕾数(个) NFP | 收获种子数(粒) NSH | 亲和性指数 IC | 角果长度 LS (cm) |
---|---|---|---|---|
野芥菜自交 Wild rape self-pollination | 201 | 2 623 | 13.05Aa | 2.80±0.31Aa |
野芥菜开放授粉 Wild rape open-pollination | 280 | 3 850 | 13.75Aa | 2.82±0.28Aa |
与抗草丁膦油菜杂交 Wild rape×glufosinate-resistant oilseed rape | 511 | 7 087 | 13.87Aa | 2.79±0.24Aa |
与抗草甘膦油菜杂交 Wild rape×glyphosate-resistant oilseed rape | 502 | 6 943 | 13.83Aa | 2.71±0.27Aa |
母本 Female | 萌发率 Germination rate(%) | ||
---|---|---|---|
自交 Self-pollination | × 抗草丁膦油菜 ×glufosinate-resistant | × 抗草甘膦油菜 × glyphosate-resistant | |
野芥菜 Wild rape | 100.00Aa | 98.34Aa | 98.89Aa |
表3 野芥菜和抗除草剂转基因油菜的F1的种子萌发率
Table 3
母本 Female | 萌发率 Germination rate(%) | ||
---|---|---|---|
自交 Self-pollination | × 抗草丁膦油菜 ×glufosinate-resistant | × 抗草甘膦油菜 × glyphosate-resistant | |
野芥菜 Wild rape | 100.00Aa | 98.34Aa | 98.89Aa |
母本 Female | 花粉活力 Pollen viability (%) | |||||
---|---|---|---|---|---|---|
自交 Self-pollination | × 抗草丁膦油菜 ×glufosinate-resistant | × 抗草甘膦油菜 × glyphosate-resistant | ||||
野芥菜 Wild rape | 64.6A | 32.4B | 35.1B |
表4 野芥菜和抗除草剂转基因油菜的F1的花粉活力
Table 4
母本 Female | 花粉活力 Pollen viability (%) | |||||
---|---|---|---|---|---|---|
自交 Self-pollination | × 抗草丁膦油菜 ×glufosinate-resistant | × 抗草甘膦油菜 × glyphosate-resistant | ||||
野芥菜 Wild rape | 64.6A | 32.4B | 35.1B |
母本 Female | 自交 Self-pollination | × 抗草丁膦油菜 × glufosinate-resistant | ×抗草甘膦油菜 × glyphosate-resistant | |||||
---|---|---|---|---|---|---|---|---|
NS | LS | NS | LS | NS | LS | |||
野芥菜 Wild rape | 15.87A | 3.19±0.27A | 0.59B | 2.21±0.25B | 0.58B | 2.01±0.22B |
表5 野芥菜和抗除草剂转基因油菜F1的结实性
Table 5
母本 Female | 自交 Self-pollination | × 抗草丁膦油菜 × glufosinate-resistant | ×抗草甘膦油菜 × glyphosate-resistant | |||||
---|---|---|---|---|---|---|---|---|
NS | LS | NS | LS | NS | LS | |||
野芥菜 Wild rape | 15.87A | 3.19±0.27A | 0.59B | 2.21±0.25B | 0.58B | 2.01±0.22B |
[1] |
Baranger A, Chèvre AM, Eber F, Renard M (1995). Effect of oilseed rape genotype on the spontaneous hybridization rate with a weedy species :an assessment of transgene dispersal. Theoretical and Applied Genetics, 91, 956-963.
DOI URL PMID |
[2] |
Bing DJ, Downey RK, Rakow GFW(1996). Hybridizations among Brassica napus, B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open pollination conditions in the field. Plant Breeding, 115, 470-473.
DOI URL |
[3] | Chen LH(陈梁鸿), Wang XW(王新望), Zhang WJ(张文俊), Zhang XD(张晓东), Hu DF(胡道芬), Liu GT(刘广田)(1999). Transformation of common wheat (Triticum aestivum L.) with herbicide-resistant EPSPs gene. Acta Genetica Sinica (遗传学报), 26, 239-243. (in Chinese with English abstract) |
[4] |
Chèvre AM, Eber F, Baranger A, Renard M (1997). Gene flow from transgenic crops. Nature, 389, 924.
DOI URL |
[5] | Chèvre AM, Eber F, Darmency H, Renard M (1999). Last results concerning gene flow from transgenic oilseed rape to wild radish. Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 5. |
[6] |
Crawley MJ, Brown SL, Hails RS, Kohn DD, Rees M (2001). Transgenic crops in natural habitats. Nature, 409, 682-683.
DOI URL PMID |
[7] |
Darmency H, Fleury A(2000). Mating system in Hirschfeldia incana and hybridization to oilseed rape. Weed Research, 40, 231-238.
DOI URL |
[8] | Geng YP(耿宇鹏), Zhang WJ(张文驹), Li B(李博), Chen JK(陈家宽)(2004). Phenotypic plasticity and invasiveness of alien plants. Biodiversity Science (生物多样性), 12, 447-455. (in Chinese with English abstract) |
[9] |
Goy PA, Duesing JH (1996). Assessing the environmental impact of gene transfer to wild relatives. Biotechnology, 14, 39-40.
DOI URL PMID |
[10] | Guan CY(官春云)(2005). Breeding of rapeseed by genetic trans-formation. Chinese Journal of Oil Crop Sciences (中国油料作物学报), 27(1), 97-103. (in Chinese with English abstract) |
[11] | Guan CY(官春云), Li X(李木旬)(1997). Research and application of transgenic oilseed rape. Chinese Journal of Cell Biology (细胞生物学杂志), 19(1), 18-23. (in Chinese) |
[12] |
Gueritaine G, Sester M, Eber F, Chèvre AM, Darmency H(2002). Fitness of backcross six of hybrids between transgenic oilseed rape (Brassica napus) and wild radish (Raphanus raphamistrum). Molecular Ecology, 11, 1419-1426.
DOI URL PMID |
[13] | Guo QY(郭青云), Tu HL(涂鹤龄), Qiu XL(邱学林), Xin CY(辛存岳)(1998). The occurrence dynamics and control technique of wild rape (Brassica juncea (L.) Czern.et Coss.). Science and Technology of Qinhai Agriculture and Forestry (青海农林科技), (4), 38-41. (in Chinese) |
[14] |
Hauser TP, Jørgensen RB, Østergård H (1998). Fitness of backcross and F2 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity, 81, 436-443.
DOI URL |
[15] |
Hauser TP, Damgaard C, Jørgensen RB (2003). Frequency-dependent fitness of hybrids between oilseed rape (Brassica napus) and weedy B. rapa (Brassicaceae). American Journal of Botany, 90, 571-578.
DOI URL PMID |
[16] | Jørgensen RB, Andersen B, Hauser TP, Landbo L, Mikkelsen TR, Østerg⁈rd H (1998). Introgression of crop genes from oilseed rape ( Brassica napus) to related wild species - an avenue for the escape of engineered genes. Acta Horticulturae, 459, 211-217. |
[17] | Jørgensen RB, Anderson B, landbo L, Mikkelsen TR (1996). Spontaneous hybridization between oilseed rape ( Brassica napus) and weedy relatives. Acta Horticulturae, 407, 193-200. |
[18] |
Kerlan MC, Chèvre AM, Eber F, Baranger A, Renard M (1992). Risk assessment of outcrossing of transgenic rapeseed to related species. I. Interspecific hybrid production under optimal condition with emphasis on pollination and fertilization. Euphytica, 62, 145-153.
DOI URL |
[19] |
Kerlan MC, Chèvre AM, Eber F (1993). Interspecific hybrids between a transgenic rapeseed ( Brassica napus) and related species: cytogenetical characterization and detection of the transgene. Genome, 36, 1099-1106.
DOI URL PMID |
[20] |
Kling J (1996). Could transgenic super crops one day breed super weeds? Science, 274, 180-181.
DOI URL |
[21] |
Lefol E, Danielou V, Darmency H(1996). Predicting hybridization between transgenic oilseed rape and wild mustard. Field Crops Research, 45, 153-161
DOI URL |
[22] |
Lefol E, Seguin-Swartz G, Downey RK (1997). Sexual hybridisation in crosses of cultivated Brassica species with the crucifers Erucatrum gallicum and Raphanus raphanistrum: potential for gene introgression. Euphytica, 95, 127-139.
DOI URL |
[23] | Lu CM (卢长明), Xiao L (肖玲), Wu YH (武玉花) (2005). Ecological risk assessment of transgenic rapeseed in China. Journal of Agricultural Biotechnology (农业生物技术学报), 13, 267-275. (in Chinese with English abstract) |
[24] |
Metz PLJ, Jacobsen E, Nap JP, Pereira A, Stiekema WJ (1997). The impact on biosafety of the phosphinothricin-tolerance transgene in inter-specific B. rapa×B. napus hybrids and their successive backcrosses. Theoretical and Applied Genetics, 95, 442-450.
DOI URL |
[25] | Pan LW (潘良文), Chen JH (陈家华), Shen YF (沈禹飞), Hu YQ (胡永强), Tao J (陶军), Han W (韩伟) (2001). Detection comparison of CP4-EPSPS gene from genetically modified Roundup-Ready rapeseed and soyabean. Letters in Biothechnology (生物技术通讯), 12, 175-177, 207. (in Chinese with English abstract) |
[26] | Pu HM (蒲惠明), Qi CK (戚存扣), Fu SZ (傅寿仲) (1991). A new method for estimating pollen viability of rapeseed-exosmosis of metabolic products. Chinese Journal of Oil Crop Sciences (中国油料作物学报), (2), 79-81. (in Chinese with English abstract) |
[27] | Pu HM(浦惠明), Zhang JF(张洁夫), Qi CK(戚存扣), Gao JQ(高建芹), Chen XJ(陈新军) (2003). Inheritance of herbicide resistance in Brassica napus and its utilization. Jiangsu Journal of Agricultural Sciences (江苏农业科学), 19(2), 81-86. (in Chinese with English abstract) |
[28] | Pu HM(浦惠明), Qi CK(戚存扣), Zhang JF(张洁夫), Fu SZ(傅寿仲), Gao JQ(高建芹), Chen XJ(陈新军), Chen S(陈松), Zhao XX(赵祥祥) (2005). The studies on gene flow from GM herbicide-tolerant rapeseed to cruciferous weeds. Acta Ecologica Sinica (生态学报), 25, 910-916. (in Chinese with English abstract) |
[29] | Qian YQ (钱迎倩), Wei W (魏伟), Tian Y (田彦), Ma KP (马克平) (1999). Application and potential problems of transgenic crops. Chinese Journal of Applied and Environmental Biology (应用与环境生物学报), 5, 427-433. (in Chinese with English abstract) |
[30] | Qiang S (强胜) (2001). The opportunities and challenges of weed science facing to the bioscience era. World Agriculture (世界农业), 264(4), 37-39. (in Chinese) |
[31] |
Rieger MA, Potter TD, Preston C, Powles SB(2001), Hybridisation between Brassica napus L. and Raphanus raphanistrum L. under agronomic field conditions. Theoretical and Applied Genetics, 103, 555-560.
DOI URL |
[32] |
Schefler JA, Dale PJ (1994). Opportunities for gene transfer from transgenic oilseed rape ( Brassica napus) to related species. Transgenic Research, 3, 263-278.
DOI URL |
[33] |
Snow AA, Palma PM (1997). Commercialization of transgenic plants: potential ecological risks. BioScience, 47, 86-96.
DOI URL |
[34] | Song XL (宋小玲), Qiang S (强胜) (2003). Sexual compatibility of three species of oilseed rapes (Brassica spp.) with wild rapes (B. juncea var. gracilis Tsenet Lee) and the fitness of F1-potential for gene transfer. Chines Journal of Applied and Environmental Biology (应用与环境生物学报), 9, 357-361. (in Chinese with English abstract) |
[35] |
Song ZP, Lu BR, Wang B, Chen JK (2004). Fitness estimation through permance comparison of F1 hybrids with their parental species Oryza rufipogon and O. sativa. Annals of Botany, 93, 311-316.
DOI URL PMID |
[36] | Su SQ (苏少泉) (2005). Glufosinate review. Chinese Journal of Pesticides (农药), 44, 529-532. (in Chinese with English abstract) |
[37] |
Vacher C, Weis AE, Hermann D, Kossler T, Young C, Hochberg ME (2004). Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa). Theoretical and Applied Genetics, 109, 806-814.
DOI URL |
[38] | Wang XF (王新发), Wang HZ (王汉中), Liu GH (刘贵华), Hu ZM (胡赞民), Zheng YB (郑元本)(2005). Transgenic hybrid parents in Brassica napus transformed with bivalent genes for resistance to Sclerotinia sclerotiorum. Chinese Bulletin of Botany (植物学通报), 22, 292-301. (in Chinese with English abstract) |
[39] |
Warwick SI, Simard MJ, Legere A, Beckie HJ, braun L, Zhu B, Mason P, Segain-Swartz G, Stewart CN Jr (2003). Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L.,Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O. E. Schulz. Theoretical and Applied Genetics, 107, 528-539.
DOI URL PMID |
[40] | Wei W (魏伟), Qian YQ (钱迎倩), Ma KP (马克平)(1999). Gene flow between transgenic crops and their wild related species. Acta Botanica Sinica (植物学报), 41, 343-348. (in Chinese with English abstract) |
[41] | Yang FY (杨逢玉), Zhang HJ (张宏军), Ni HW (倪汉文) (2002). Mechanism and application of non-selective herbicide gluphosinate. Journal of Beijing Agricultural College (北京农学院学报), 17(4), 100-105. (in Chinese) |
[1] | 谭小梅, 周志春, 金国庆, 张一. 马尾松二代无性系种子园子代父本分析及花粉散布[J]. 植物生态学报, 2011, 35(9): 937-945. |
[2] | 汪洋, 杜国祯, 郭淑青, 赵志刚. 风毛菊花序、种子大小和数量之间的权衡:资源条件的影响[J]. 植物生态学报, 2009, 33(4): 681-688. |
[3] | 高江云, 杨自辉, 李庆军. 毛姜花原变种花寿命对两性适合度的影响[J]. 植物生态学报, 2009, 33(1): 89-96. |
[4] | 赵学杰, 谭敦炎. 种子植物的选择性败育及其进化生态意义[J]. 植物生态学报, 2007, 31(6): 1007-1018. |
[5] | 朱志红, 刘建秀, 王孝安. 克隆植物的表型可塑性与等级选择[J]. 植物生态学报, 2007, 31(4): 588-598. |
[6] | 张彦文, 王勇, 郭友好. 盗蜜行为在植物繁殖生态学中的意义[J]. 植物生态学报, 2006, 30(4): 695-702. |
[7] | 王英, 康明, 黄宏文. 用分子标记揭示植物随机大居群中亚居群的遗传结构——茅栗自然居群空间遗传结构的SSR分析[J]. 植物生态学报, 2006, 30(1): 147-156. |
[8] | 刘占林, 宋颐, 李珊, 赵桂仿. 华山新麦草开花物候期观测和自然种群基因流的间接估测[J]. 植物生态学报, 2001, 25(4): 426-430. |
[9] | 何田华, 葛颂. 植物种群交配系统、亲本分析以及基因流动研究[J]. 植物生态学报, 2001, 25(2): 144-154. |
[10] | 孙凡, 钟章成. 缙云山四川大茶种群繁殖适应性的数量特征研究[J]. 植物生态学报, 1997, 21(1): 1-8. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2534
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 5448
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La