植物生态学报 ›› 2010, Vol. 34 ›› Issue (3): 263-270.DOI: 10.3773/j.issn.1005-264x.2010.03.003
所属专题: 青藏高原植物生态学:种群生态学
徐振锋1,2, 胡庭兴1,*(), 张力1, 张远彬2, 鲜骏仁1, 王开运3
收稿日期:
2009-03-02
接受日期:
2009-04-23
出版日期:
2010-03-02
发布日期:
2010-03-01
通讯作者:
胡庭兴
作者简介:
* E-mail: hutx001@yahoo.com.cn
XU Zhen-Feng1,2, HU Ting-Xing1,*(), ZHANG Li1, ZHANG Yuan-Bin2, XIAN Jun-Ren1, WANG Kai-Yun3
Received:
2009-03-02
Accepted:
2009-04-23
Online:
2010-03-02
Published:
2010-03-01
Contact:
HU Ting-Xing
摘要:
采用开顶式生长室(OTC)模拟增温对植被影响的研究方法, 研究了青藏高原东缘林线交错带糙皮桦(Betula utilis)光合特性对模拟增温的响应。结果表明: 与对照样地相比, OTC内日平均气温(1.2 m)在植物生长季中增加2.9 ℃, 5 cm土壤温度增加0.4 ℃。增温使糙皮桦幼苗叶片的净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)分别增加17.4%、21.4%和33.9%, 但对糙皮桦幼苗叶片的水分利用率(WUE)却没有明显影响, 而对糙皮桦的叶氮浓度却表现为显著的负效应。同时, 增温能显著增加糙皮桦幼苗的最大同化速率(Pnmax) (+19.6%)、暗呼吸速率(Rd) (+14.3%)、表观量子效率(AQY) (+7.9%), 但对其光补偿点(LCP)和光饱和点(LSP)却没有明显的影响。此外, 增温使糙皮桦幼苗叶片的最大羧化速率(Vcmax)和电子传递速率(J)分别增加了12.3%和11.7%, 而磷酸丙糖利用率(TPU)和CO2补偿点(CCP)对增温却并不敏感。该研究表明, 模拟增温对林线糙皮桦光合生理总体上表现为正效应, 这有可能帮助该物种对未来气候变化更快更好地适应。
徐振锋, 胡庭兴, 张力, 张远彬, 鲜骏仁, 王开运. 青藏高原东缘林线交错带糙皮桦幼苗光合特性对模拟增温的短期响应. 植物生态学报, 2010, 34(3): 263-270. DOI: 10.3773/j.issn.1005-264x.2010.03.003
XU Zhen-Feng, HU Ting-Xing, ZHANG Li, ZHANG Yuan-Bin, XIAN Jun-Ren, WANG Kai-Yun. Short-term gas exchange responses of Betula utilis to simulated global warming in a timberline ecotone, eastern Tibetan Plateau, China. Chinese Journal of Plant Ecology, 2010, 34(3): 263-270. DOI: 10.3773/j.issn.1005-264x.2010.03.003
层次 Layer (cm) | 有机质 Organic matter (g·kg-1) | 全N Total N (g·kg-1) | 全P Total P (g·kg-1) | 全K Total K (g·kg-1) | 速效N Soluble N (g·kg-1) | 速效P Soluble P (g·kg-1) | 速效K Soluble K (g·kg-1) |
---|---|---|---|---|---|---|---|
0-15 | 180.2 ± 5.5 | 4.5 ± 0.8 | 5.5 ± 0.8 | 13.7 ± 0.8 | 154.8 ± 9.1 | 18.0 ± 4.4 | 231.7 ± 6.7 |
15-30 | 99.5 ± 3.7 | 4.0 ± 0.8 | 4.1 ± 0.5 | 23.0 ± 1.7 | 64.2 ± 7.4 | 13.8 ± 3.1 | 175.0 ± 10.5 |
30-47 | 12.6 ± 1.8 | 0.6 ± 0.4 | 0.4 ± 0.1 | 18.4 ± 0.9 | 28.7 ± 4.2 | 7.5 ± 2.6 | 118.3 ± 5.3 |
表1 林线交错带土壤养分特性(平均值±标准偏差, n = 3)
Table 1 Soil nutrient properties in the timberline ecotone (mean ± SD, n = 3)
层次 Layer (cm) | 有机质 Organic matter (g·kg-1) | 全N Total N (g·kg-1) | 全P Total P (g·kg-1) | 全K Total K (g·kg-1) | 速效N Soluble N (g·kg-1) | 速效P Soluble P (g·kg-1) | 速效K Soluble K (g·kg-1) |
---|---|---|---|---|---|---|---|
0-15 | 180.2 ± 5.5 | 4.5 ± 0.8 | 5.5 ± 0.8 | 13.7 ± 0.8 | 154.8 ± 9.1 | 18.0 ± 4.4 | 231.7 ± 6.7 |
15-30 | 99.5 ± 3.7 | 4.0 ± 0.8 | 4.1 ± 0.5 | 23.0 ± 1.7 | 64.2 ± 7.4 | 13.8 ± 3.1 | 175.0 ± 10.5 |
30-47 | 12.6 ± 1.8 | 0.6 ± 0.4 | 0.4 ± 0.1 | 18.4 ± 0.9 | 28.7 ± 4.2 | 7.5 ± 2.6 | 118.3 ± 5.3 |
月份 Month | 处理 Treatment | 气温Tair (℃) | 土壤温度Tsoil (℃) | ||
---|---|---|---|---|---|
Mean | Max | Min | |||
5 | OTC | 7.4 ± 1.9 | 11.3 ± 4.0 | 3.7 ± 2.3 | 4.7 ± 1.0 |
CK | 5.0 ± 1.7 | 7.9 ± 3.9 | 2.2 ± 1.4 | 4.4 ± 0.7 | |
6 | OTC | 12.9 ± 1.7 | 19.6 ± 2.9 | 7.9 ± 2.8 | 8.4 ± 1.2 |
CK | 10.3 ± 1.7 | 16.0 ± 2.8 | 5.6 ± 3.1 | 7.8 ± 1.1 | |
7 | OTC | 13.8 ± 1.7 | 21.0 ± 2.7 | 9.6 ± 2.1 | 10.2 ± 1.0 |
CK | 10.6 ± 1.6 | 16.9 ± 2.8 | 6.5 ± 2.6 | 9.8 ± 0.8 | |
8 | OTC | 11.7 ± 2.0 | 19.7 ± 3.3 | 7.5 ± 3.0 | 9.9 ± 1.1 |
CK | 8.2 ± 2.4 | 14.2 ± 2.5 | 4.3 ± 3.3 | 9.5 ± 0.9 |
表2 2007年5-8月OTC及CK内气温和土壤温度(平均值±标准偏差)
Table 2 Air temperature at 1.2 m aboveground (Tair), soil temperature at the depth of -5 cm (Tsoil) inside the OTC and the CK from May 1st to August 31st (mean ± SD)
月份 Month | 处理 Treatment | 气温Tair (℃) | 土壤温度Tsoil (℃) | ||
---|---|---|---|---|---|
Mean | Max | Min | |||
5 | OTC | 7.4 ± 1.9 | 11.3 ± 4.0 | 3.7 ± 2.3 | 4.7 ± 1.0 |
CK | 5.0 ± 1.7 | 7.9 ± 3.9 | 2.2 ± 1.4 | 4.4 ± 0.7 | |
6 | OTC | 12.9 ± 1.7 | 19.6 ± 2.9 | 7.9 ± 2.8 | 8.4 ± 1.2 |
CK | 10.3 ± 1.7 | 16.0 ± 2.8 | 5.6 ± 3.1 | 7.8 ± 1.1 | |
7 | OTC | 13.8 ± 1.7 | 21.0 ± 2.7 | 9.6 ± 2.1 | 10.2 ± 1.0 |
CK | 10.6 ± 1.6 | 16.9 ± 2.8 | 6.5 ± 2.6 | 9.8 ± 0.8 | |
8 | OTC | 11.7 ± 2.0 | 19.7 ± 3.3 | 7.5 ± 3.0 | 9.9 ± 1.1 |
CK | 8.2 ± 2.4 | 14.2 ± 2.5 | 4.3 ± 3.3 | 9.5 ± 0.9 |
处理 Treatment | 叶氮浓度 LN (%) | 净光合速率 Pn (μmol·m-2·s-1) | 蒸腾速率 Tr (mmol·m-2·s-1) | 气孔导度 Gs (mmol·m-2·s-1) | 水分利用率 WUE (mmol·mol-1) |
---|---|---|---|---|---|
OTC | 0.99 (0.09)a | 11.94 (0.73)a | 4.15 (0.42)a | 545.55 (14.87)a | 2.88 (0.35)a |
CK | 1.13 (0.07)b | 10.17 (0.55)b | 3.42 (0.54)b | 407.46 (17.15)b | 2.97 (0.41)a |
表3 OTC及CK内糙皮桦幼苗气体交换与叶氮浓度
Table 3 Gas exchange rates, leaf nitrogen concentrations of Betula utilis seedlings in the OTC and the CK
处理 Treatment | 叶氮浓度 LN (%) | 净光合速率 Pn (μmol·m-2·s-1) | 蒸腾速率 Tr (mmol·m-2·s-1) | 气孔导度 Gs (mmol·m-2·s-1) | 水分利用率 WUE (mmol·mol-1) |
---|---|---|---|---|---|
OTC | 0.99 (0.09)a | 11.94 (0.73)a | 4.15 (0.42)a | 545.55 (14.87)a | 2.88 (0.35)a |
CK | 1.13 (0.07)b | 10.17 (0.55)b | 3.42 (0.54)b | 407.46 (17.15)b | 2.97 (0.41)a |
处理 Treatment | 最大同化速率 Pnmax (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) | 表观量子效率 AQY (μmol CO2 ·μmol-1) | 光补偿点 LCP (μmol photons·m-2·s-1) | 光饱和点 LSP (μmol photons·m-2·s-1) |
---|---|---|---|---|---|
OTC | 12.28 (0.61)a | 1.52 (0.13)a | 0.0425 (0.0113)a | 21.28 (3.04) a | 1143.27 (28.12)a |
CK | 10.27 (0.56)b | 1.33 (0.11)b | 0.0394 (0.0084)b | 18.01 (2.31)a | 1131.16 (24.83)a |
表4 OTC及CK内糙皮桦幼苗的光合作用光响应参数
Table 4 Photosynthetic parameters of A-PAR curves for Betula utilis seedlings in the OTC and the CK
处理 Treatment | 最大同化速率 Pnmax (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) | 表观量子效率 AQY (μmol CO2 ·μmol-1) | 光补偿点 LCP (μmol photons·m-2·s-1) | 光饱和点 LSP (μmol photons·m-2·s-1) |
---|---|---|---|---|---|
OTC | 12.28 (0.61)a | 1.52 (0.13)a | 0.0425 (0.0113)a | 21.28 (3.04) a | 1143.27 (28.12)a |
CK | 10.27 (0.56)b | 1.33 (0.11)b | 0.0394 (0.0084)b | 18.01 (2.31)a | 1131.16 (24.83)a |
处理 Treatment | Vcmax (μmol·m-2·s-1) | J (μmol·m-2·s-1) | TPU (μmol·m-2·s-1) | CCP (μmol·mol-1) |
---|---|---|---|---|
OTC | 113.09 (17.14)a | 112.86 (18.51)a | 7.65 (1.44)a | 49.73 (7.32)a |
CK | 100.69 (15.33)b | 101.02 (12.27)b | 6.84 (1.28)a | 47.20 (5.85)a |
表5 OTC及CK内糙皮桦幼苗基于Pn-Ci曲线的最大羧化效率(Vcmax)、电子传递速率(J)、磷酸丙糖利用率(TPU)和CO2补偿点(CCK)
Table 5 The maximum rate of RuBP carboxylation (Vcmax), rate of photosynthetic election transport (J), triose phosphate use (TPU), and compensation CO2 (CCP) based on Pn-Ci curve of Betula utilis seedlings in the OTC and the CK
处理 Treatment | Vcmax (μmol·m-2·s-1) | J (μmol·m-2·s-1) | TPU (μmol·m-2·s-1) | CCP (μmol·mol-1) |
---|---|---|---|---|
OTC | 113.09 (17.14)a | 112.86 (18.51)a | 7.65 (1.44)a | 49.73 (7.32)a |
CK | 100.69 (15.33)b | 101.02 (12.27)b | 6.84 (1.28)a | 47.20 (5.85)a |
[1] | Allison SD, Treseder KK (2008). Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology, 14, 2898-2909. |
[2] |
Apple ME, Olszyk DM, Ormrod DP, Lewis J, Southworth D, Tingey DT (2000). Morphology and stomatal function of Douglas fir needles exposed to climate change: elevated CO2 and temperature. International Journal of Plant Sciences, 161, 127-132.
URL PMID |
[3] | Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Laine K, Levesque E, Marion GM, Molgaard P, Raszhivin V, Robiuson CH, Starr G, Totoland Q, Welker JM, Wookey PM (1999). Responses of tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecological Monographs, 69, 491-511. |
[4] |
Atkin OK, Evans JR, Ball MC, Lambers H, Pons TL (2000). Leaf respiration of snow gum in the light and dark: interactions between temperature and irradiance. Plant Physiology, 122, 915-923.
DOI URL PMID |
[5] | Baker WL, Hongaker JJ, Weisberg PJ (1995). Using aerial photography and GIS to map the forest-tundra ecotone in Rocky Mountain national park, Colorado, for global change research. Photogrammetric Engineering and Remote Sensing, 61, 313-320. |
[6] | Berry J, Björkman O (1980). Photosynthetic response and adaptation to temperature in higher mountain plants. Annual Review of Plant Physiology and Plant Molecular Biology, 31, 491-543. |
[7] | Chapin FS III, Jefferies RL, Reynolds JF, Svoboda J (1992). Arctic plant physiological ecology in an ecosystem context. In: Chapin FS III, Jefferies RL, Reynolds JF eds. Arctic Ecosystems in a Changing Climate: an Ecophysiological Perspective. Academic Press, San Diego, USA. 441-452. |
[8] | Chapin FS III, Shaver GR (1985). Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology, 66, 564-576. |
[9] | Chapin FS III, Shaver GR (1996). Physiological and growth responses of arctic plants to a field experiment simulating climate change. Ecology, 77, 822-840. |
[10] | Chapin FS III, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995). Responses of arctic tundra to experimental and observed changes in climate. Ecology, 76, 694-711. |
[11] | Danby RK, Hik DS (2007). Responses of white spruce ( Picea glauca) to experimental warming at a subarctic alpine treeline. Global Change Biology, 13, 437-451. |
[12] | Dewar RC, Medlyn BE, McMutrie RE (1999). Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model. Global Change Biology, 5, 615-622. |
[13] |
Farquhar GD, Caemmerer VS, Berry JA (1980). A biochemical model of photosynthetic (CO2) assimilation in leaves of C3 species. Planta, 149, 78-90.
DOI URL PMID |
[14] |
Grabherr G, Gottfried M, Pauli H (1994). Climate effects of mountain plants. Nature, 369, 448-450.
DOI URL PMID |
[15] | Havstrom M, Callaghan TV, Jonasson S (1993). Differential growth responses of Cassiope tetragona, an arctic dwarf-shrub, to environmental perturbations among three contrasting high and sub-arctic sites. Oikos, 66, 389-402. |
[16] | He WM, Dong M (2003). Plasticity in physiology and growth of Salix matsudana in response to simulated atmospheric temperature rise in the Mu Us sandland. Photosynthetica, 41, 297-300. |
[17] | Henry GHR, Molau U (1997). Tundra plants and climate change: the International Tundra Experiment (ITEX). Global Change Biology, 3, 1-9. |
[18] | IPCC (Intergovernmental Panel on Climate Change) (2007). The Physical Science Basis. The Fourth Assessment Report of Working Group. http://www.ipcc.ch/. Cited 14 May 2007. |
[19] | Klein JA, Harte J, Zhao XQ (2004). Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters, 7, 1170-1179. |
[20] |
Klein JA, Harte J, Zhao XQ (2007). Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecological Applications, 17, 541-557.
DOI URL PMID |
[21] |
Körner C (1998). A reassessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459.
DOI URL PMID |
[22] |
Lewis JD, Olszyk D, Tingey DT (1999). Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO2 and temperature. Tree Physiology, 19, 243-252.
DOI URL PMID |
[23] | Llorens L, Penuelas J, Beier C, Emmett B, Estiarte M, Tietema A (2004). Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrubs species along a North-South European gradient. Ecosystems, 7, 613-624. |
[24] | Llorens L, Penuelas J, Estiarte M (2003). Ecophysiological responses of two Mediterranean shrubs, Erica multiflora and Globularia alypum, to experimentally drier and warmer conditions. Physiology Plantarum, 119, 231-243. |
[25] | Loik ME, Redar SP, Harte J (2000). Photosynthetic responses to a climate-warming manipulation for contrasting meadow species in the Rocky Mountains, Colorado, USA. Functional Ecology, 14, 166-175. |
[26] |
Long SP, Ainsworth EA, Rogers A, Ort DR (2004). Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology, 55, 591-628.
DOI URL PMID |
[27] | Niu SL (牛书丽), Han XG (韩兴国), Ma KP (马克平), Wan SQ (万师强) (2007). Field facilities in global warming and terrestrial ecosystem research. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 262-271. (in Chinese with English abstract). |
[28] | Niu SL, Li ZX, Xia JY, Han Y, Wu MY, Wan SQ (2008). Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China. Environmental and Experimental Botany, 63, 91-101. |
[29] | Parsons AN, Welker JM, Wookey PA, Press MC, Callaghan TV, Lee JA (1994). Growth responses of four sub-arctic dwarf shrubs to simulated environmental change. Journal of Ecology, 82, 307-318. |
[30] | Pearson RG, Dawson TP (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371. |
[31] |
Roden JS, Ball MC (1996). The effect of elevated [CO2] on growth and photosynthesis of two eucalyptus species exposed to high temperature and water deficits. Plant Physiology, 111, 909-919.
URL PMID |
[32] | Rodin JW (1992). Reconciling water use efficiencies of cotton in field and laboratory. Crop Science, 32, 13-18. |
[33] | Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001). Tree and forest functioning in response to global warming. New Phytologist, 149, 369-400. |
[34] | Seppl K, Wang KY (1997). Effects of long-term CO2 and temperature on crown nitrogen distribution and daily photosynthetic performance of Scots pine. Forest Ecology and Management, 15, 309-326. |
[35] |
Sharkey T, Bernacchi CJ, Farquhar G, Singsaas EL (2007). Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell & Environment, 30, 1035-1040.
URL PMID |
[36] | Suzuki S, Kudo G (2000). Responses of alpine shrubs to simulated environmental change during three years in the mid-latitude mountain, northern Japan. Ecography, 23, 553-564. |
[37] | Tingey D, Mchane R, Olszyk DM, Johnson MG, Rygiewica PT, Lee EH (2003). Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir. Global Change Biology, 9, 1038-1050. |
[38] | Tumbull MH, Murthy R, Griffin KL (2002). The relative impacts of daytime and nighttime warming on photosynthetic capacity in Populus deltoids. Plant, Cell & Environment, 25, 1729-1737. |
[39] | Wada N, Shimoni M, Miyamoto M, Kojima S (2002). Warming effects on shoot development growth and biomass production in sympatric evergreen alpine dwarf shrubs Empetrum nigrum and Loiseleuria procumbens. Ecological Research, 17, 125-132. |
[40] |
Wang KY, Kellomaki S, Laitinen M (1995). Effects of needle age, long-term temperature and CO2 treatment on the photosynthesis of Scots pine. Tree Physiology, 15, 211-218.
URL PMID |
[41] | Welker JM, Molau U, Parsons AN, Robinson CH, Wookey PA (1997). Responses of Dryas octopetala to ITEX environmental manipulations: a synthesis with circumpolar comparisons. Global Change Biology, 3, 61-73. |
[42] | Wookey PA, Welker JM, Parsons AN, Press MC, Callaghan TV, Lee JA (1994). Differential growth, allocation and photosynthetic responses of Polygonum viviparum to simulated environmental change at a high arctic polar semi-desert. Oikos, 70, 131-139. |
[43] | XU ZF (徐振锋), Hu TX (胡庭兴), Zhang YB (张远彬), Xian JR (鲜骏仁), Wang KY (王开运) (2008). Responses of phenology and growth of Betula utilis and Abies faxoniana in a sub-alpine timberline ecotone to simulated global warming, Western Sichuan, China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 1061-1071. (in Chinese with English abstract). |
[44] | Ye ZP (2007). A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45, 637-640. |
[45] | Yordanov I, Velikova V, Tsonev T (2000). Plant responses to drought, acclimation, and stress tolerance. Photosynthetica, 38, 171-186. |
[46] | Zhao CZ, Liu Q (2008). Growth and photosynthetic responses of two coniferous species to experimental warming and nitrogen fertilization. Canadian Journal of Forest Research, 38, 1-12. |
[47] | Zhao P (赵平), Sun GC (孙谷畴), Cai XA (蔡锡安), Rao XQ (饶兴权), Zeng XP (曾小平) (2005). Night-time warming increases photosynthetic capacity of sapling leaf of Cinnamomum burmanni grown with different nitrogen supplies. Acta Ecologica Sinica (生态学报), 25, 2703-2708. (in Chinese with English abstract). |
[48] | Zhou HK (周华坤), Zhou XM (周兴民), Zhao XQ (赵新全) (2000). A preliminary study of the influence of simulated greenhouse effect on a Kobresia humilis meadow. Acta Phytoecologica Sinica (植物生态学报), 24, 547-553. (in Chinese with English abstract). |
[49] | Zhou XH, Liu XZ, Wallace LL, Luo YQ (2007). Photosynthetic and respiratory acclimation to experimental warming for four species in a tallgrass prairie ecosystem. Journal of Integrative Plant Biology, 49, 270-281. |
[1] | 陈亚梅, 和润莲, 邓长春, 刘洋, 杨万勤, 张健. 川西高山林线交错带凋落物纤维素分解酶活性研究[J]. 植物生态学报, 2014, 38(4): 334-342. |
[2] | 罗辅燕,陈卫英,陈真勇. 指数改进模型在大麦光合-CO2响应曲线中的适用性[J]. 植物生态学报, 2013, 37(7): 650-655. |
[3] | 苏华, 李永庚, 苏本营, 孙建新. 地下水位下降对浑善达克沙地榆树光合及抗逆性的影响[J]. 植物生态学报, 2012, 36(3): 177-186. |
[4] | 陈卫英, 陈真勇, 罗辅燕, 彭正松, 余懋群. 光响应曲线的指数改进模型与常用模型比较[J]. 植物生态学报, 2012, 36(12): 1277-1285. |
[5] | 焦娟玉, 尹春英, 陈珂. 土壤水、氮供应对麻疯树幼苗光合特性的影响[J]. 植物生态学报, 2011, 35(1): 91-99. |
[6] | 简在友, 王文全, 孟丽, 许桂芳, 王秋玲, 李卫东, 俞敬波. 芍药组内不同类群间光合特性及叶绿素荧光特性比较[J]. 植物生态学报, 2010, 34(12): 1463-1471. |
[7] | 徐振锋, 胡庭兴, 张远彬, 鲜骏仁, 王开运. 川西亚高山林线交错带糙皮桦和岷江冷杉幼苗物候与生长对模拟增温的响应[J]. 植物生态学报, 2008, 32(5): 1061-1071. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19