植物生态学报 ›› 2012, Vol. 36 ›› Issue (3): 177-186.DOI: 10.3724/SP.J.1258.2012.00177
• 研究论文 • 下一篇
收稿日期:
2012-01-10
接受日期:
2012-02-15
出版日期:
2012-01-10
发布日期:
2012-02-28
通讯作者:
孙建新
作者简介:
* E-mail: sunjianx@bjfu.edu.cn
SU Hua1,2, LI Yong-Geng2, SU Ben-Ying3, SUN Jian-Xin1,*()
Received:
2012-01-10
Accepted:
2012-02-15
Online:
2012-01-10
Published:
2012-02-28
Contact:
SUN Jian-Xin
摘要:
以浑善达克沙地优势树种榆树(Ulmus pumila)幼苗为研究对象, 在半控制试验中设置4个地下水位梯度(U1、U2、U3和U4, 地下水位分别为距离土壤表面1、2、3和4 m)研究了不同地下水位处理对榆树光合特征及抗逆性的影响。结果表明: 1)随着地下水位下降, 榆树对强、弱光的利用能力下降, 最大光合能力降低。随着地下水位的下降, 榆树叶片光饱和点、表观量子效率及暗呼吸速率均显著下降(p < 0.05), U1最大净光合速率可达(10.81 ± 0.28) μmol·m-2·s-1, 而U4最大净光合速率降至(8.98 ± 0.08) μmol·m -2·s-1, 下降了16.9%; 2)地下水位下降使榆树的光能转化效率下降。与U1相比, U2、U3和U4的Rubisco最大羧化效率、光呼吸速率、最大电子传递效率和磷酸丙糖利用率均显著下降(p < 0.05), 而CO2补偿点显著升高(p < 0.05); 3)地下水位越低, 榆树受到的胁迫越严重。U2、U3和U4的可溶性糖及脯氨酸含量较之U1均显著升高(p < 0.05)。因此, 地下水位下降会显著降低浑善达克沙地榆树的光合性能, 造成干旱胁迫。在实践中应加强地下水管理, 这对浑善达克沙地稀树疏林生态系统的可持续发展具有重要意义。
苏华, 李永庚, 苏本营, 孙建新. 地下水位下降对浑善达克沙地榆树光合及抗逆性的影响. 植物生态学报, 2012, 36(3): 177-186. DOI: 10.3724/SP.J.1258.2012.00177
SU Hua, LI Yong-Geng, SU Ben-Ying, SUN Jian-Xin. Effects of groundwater decline on photosynthetic characteristics and stress tolerance of Ulmus pumila in Hunshandake Sandy Land, China. Chinese Journal of Plant Ecology, 2012, 36(3): 177-186. DOI: 10.3724/SP.J.1258.2012.00177
图1 实验聚氯乙烯安置侧面示意图。虚线代表水槽中水面。U1, 地下水位1 m; U2, 地下水位2 m; U3, 地下水位3 m; U4, 地下水位4 m。
Fig. 1 Illustration of PVC tubes arrangement. Dotted line indicates water surface in tank. U1, water table is 1 m; U2, water table is 2 m; U3, water table is 3 m; U4, water table is 4 m.
处理 Treatment | LSP (μmol·m-2·s-1) | ΔLSP (%) | LCP (μmol·m-2·s-1) | ΔLCP (%) | AQY (mol·mol-1) | ΔAQY (%) | Rd (μmol·m-2·s-1) | ΔRd (%) | Pmax (μmol·m-2·s-1) | ΔPmax (%) |
---|---|---|---|---|---|---|---|---|---|---|
U1 | 1412.28 ± 12.11d | - | 9.40 ± 0.97a | - | 0.021 ± 0.000c | - | 1.15 ± 0.05d | - | 10.81 ± 0.28d | - |
U2 | 1048.94 ± 19.26c | 25.7 | 11.85 ± 1.05b | -26.1 | 0.015 ± 0.001b | 28.6 | 0.55 ± 0.13c | 52.2 | 9.95 ± 0.12c | 8.0 |
U3 | 920.46 ± 12.77b | 34.8 | 26.09 ± 1.30c | -177.6 | 0.013 ± 0.001a | 38.1 | 0.45 ± 0.11b | 60.9 | 9.37 ± 0.22b | 13.3 |
U4 | 696.84 ± 15.03a | 50.7 | 36.25 ± 1.77d | -285.6 | 0.012 ± 0.001a | 42.9 | 0.29 ± 0.06a | 74.8 | 8.98 ± 0.08a | 16.9 |
表1 不同地下水位对浑善达克沙地榆树幼苗叶片光饱和点(LSP)、光补偿点(LCP)、表观量子效率(AQY)、暗呼吸速率(Rd)及最大净光合速率(Pmax)的影响(平均值±标准偏差, n = 9)。
Table 1 Effects of different water table on light saturation point (LSP), light compensation point (LCP), apparent quantum yield (AQY), dark respiration rate (Rd) and maximum net photosynthetic rate (Pmax) in Ulmus pumila leaf in Hunshandake Sandy Land (mean ± SD, n = 9)
处理 Treatment | LSP (μmol·m-2·s-1) | ΔLSP (%) | LCP (μmol·m-2·s-1) | ΔLCP (%) | AQY (mol·mol-1) | ΔAQY (%) | Rd (μmol·m-2·s-1) | ΔRd (%) | Pmax (μmol·m-2·s-1) | ΔPmax (%) |
---|---|---|---|---|---|---|---|---|---|---|
U1 | 1412.28 ± 12.11d | - | 9.40 ± 0.97a | - | 0.021 ± 0.000c | - | 1.15 ± 0.05d | - | 10.81 ± 0.28d | - |
U2 | 1048.94 ± 19.26c | 25.7 | 11.85 ± 1.05b | -26.1 | 0.015 ± 0.001b | 28.6 | 0.55 ± 0.13c | 52.2 | 9.95 ± 0.12c | 8.0 |
U3 | 920.46 ± 12.77b | 34.8 | 26.09 ± 1.30c | -177.6 | 0.013 ± 0.001a | 38.1 | 0.45 ± 0.11b | 60.9 | 9.37 ± 0.22b | 13.3 |
U4 | 696.84 ± 15.03a | 50.7 | 36.25 ± 1.77d | -285.6 | 0.012 ± 0.001a | 42.9 | 0.29 ± 0.06a | 74.8 | 8.98 ± 0.08a | 16.9 |
图2 浑善达克沙地榆树幼苗叶片最大净光合速率(Pmax)与暗呼吸速率(Rd)、表观量子效率(AQY)、光补偿点(LCP)和光饱和点(LSP)的相关关系(平均值±标准偏差, n = 9)。
Fig. 2 Relationships of the maximum net photosynthetic rate (Pmax) and dark respiration rate (Rd), apparent quantum yield (AQY), light compensation point (LCP), light saturation point (LSP) in Ulmus pumila leaf in Hunshandake Sandy Land (mean ± SD, n = 9).
处理 Treatment | Rp (μmol·m-2·s-1) | ΔRp (%) | Vcmax (μmol·m-2·s-1) | ΔVcmax (%) | Jmax (μmol·m-2·s-1) | ΔJmax (%) | VTPU (μmol·m-2·s-1) | ΔVTPU (%) | CCP (μmol·m-2·s-1) | ΔCCP (%) |
---|---|---|---|---|---|---|---|---|---|---|
U1 | 6.73 ± 0.16d | - | 68.19 ± 0.10d | - | 69.46 ± 0.05d | - | 15.53 ± 0.77d | - | 45.37 ± 7.62a | - |
U2 | 4.94 ± 0.21c | 26.6 | 34.15 ± 0.04c | 49.9 | 32.90 ± 0.13c | 52.6 | 7.53 ± 0.30c | 51.5 | 108.27 ± 12.45b | -138.6 |
U3 | 1.48 ± 0.19b | 78.0 | 21.53 ± 0.10b | 68.4 | 18.89 ± 0.11b | 72.8 | 4.41 ± 0.07b | 71.6 | 120.22 ± 11.85c | -165.0 |
U4 | 0.19 ± 0.15a | 97.2 | 17.91 ± 0.42a | 73.7 | 16.90 ± 0.10a | 75.7 | 3.79 ± 0.26a | 75.6 | 162.21 ± 9.40d | -257.5 |
表2 不同地下水位对浑善达克沙地榆树幼苗叶片光呼吸速率(Rp)、Rubisco最大羧化效率(Vcmax)、最大电子传递效率(Jmax)、磷酸丙糖利用率(VTPU)及CO2补偿点(CCP)的影响(平均值±标准偏差, n = 9)。
Table 2 Effects of different water table on photorespiratory rate (Rp), maximum RuBP saturated rate of carboxylation (Vcmax), maximum rate of electron transport (Jmax), rate of triose-phosphate utilization (VTPU) and CO2 compensation point (CCP) in Ulmus pumila leaf in Hunshandake Sandy Land (mean ± SD, n = 9)
处理 Treatment | Rp (μmol·m-2·s-1) | ΔRp (%) | Vcmax (μmol·m-2·s-1) | ΔVcmax (%) | Jmax (μmol·m-2·s-1) | ΔJmax (%) | VTPU (μmol·m-2·s-1) | ΔVTPU (%) | CCP (μmol·m-2·s-1) | ΔCCP (%) |
---|---|---|---|---|---|---|---|---|---|---|
U1 | 6.73 ± 0.16d | - | 68.19 ± 0.10d | - | 69.46 ± 0.05d | - | 15.53 ± 0.77d | - | 45.37 ± 7.62a | - |
U2 | 4.94 ± 0.21c | 26.6 | 34.15 ± 0.04c | 49.9 | 32.90 ± 0.13c | 52.6 | 7.53 ± 0.30c | 51.5 | 108.27 ± 12.45b | -138.6 |
U3 | 1.48 ± 0.19b | 78.0 | 21.53 ± 0.10b | 68.4 | 18.89 ± 0.11b | 72.8 | 4.41 ± 0.07b | 71.6 | 120.22 ± 11.85c | -165.0 |
U4 | 0.19 ± 0.15a | 97.2 | 17.91 ± 0.42a | 73.7 | 16.90 ± 0.10a | 75.7 | 3.79 ± 0.26a | 75.6 | 162.21 ± 9.40d | -257.5 |
处理 Treatment | 叶绿素a Chlorophyll a (mg·g-1 DW) | ΔChl a (%) | 叶绿素b Chlorophyll b (mg·g-1 DW) | ΔChl b (%) | 叶绿素a + b Chlorophyll a+b (mg·g-1 DW) | ΔChl a + b (%) | 类胡萝卜素 Carotenoid (mg·g-1 DW) | ΔCar (%) |
---|---|---|---|---|---|---|---|---|
U1 | 0.195 ± 0.004b | - | 0.065 ± 0.022a | - | 0.260 ± 0.006d | - | 0.055 ± 0.018a | - |
U2 | 0.191 ± 0.029b | 2.1 | 0.061 ± 0.010a | 6.2 | 0.252 ± 0.039c | 3.1 | 0.054 ± 0.009a | 1.8 |
U3 | 0.180 ± 0.024a | 7.7 | 0.058 ± 0.010b | 10.8 | 0.238 ± 0.034b | 8.5 | 0.067 ± 0.009b | -21.8 |
U4 | 0.170 ± 0.060a | 12.8 | 0.056 ± 0.003b | 13.8 | 0.226 ± 0.082a | 13.1 | 0.066 ± 0.001b | -20.0 |
表3 不同地下水位对浑善达克沙地榆树幼苗叶片光合色素含量的影响(平均值±标准偏差, n = 3)。
Table 3 Effects of different water table on photosynthesis pigments content in Ulmus pumila leaf in Hunshandake Sandy Land (mean ± SD, n = 3)
处理 Treatment | 叶绿素a Chlorophyll a (mg·g-1 DW) | ΔChl a (%) | 叶绿素b Chlorophyll b (mg·g-1 DW) | ΔChl b (%) | 叶绿素a + b Chlorophyll a+b (mg·g-1 DW) | ΔChl a + b (%) | 类胡萝卜素 Carotenoid (mg·g-1 DW) | ΔCar (%) |
---|---|---|---|---|---|---|---|---|
U1 | 0.195 ± 0.004b | - | 0.065 ± 0.022a | - | 0.260 ± 0.006d | - | 0.055 ± 0.018a | - |
U2 | 0.191 ± 0.029b | 2.1 | 0.061 ± 0.010a | 6.2 | 0.252 ± 0.039c | 3.1 | 0.054 ± 0.009a | 1.8 |
U3 | 0.180 ± 0.024a | 7.7 | 0.058 ± 0.010b | 10.8 | 0.238 ± 0.034b | 8.5 | 0.067 ± 0.009b | -21.8 |
U4 | 0.170 ± 0.060a | 12.8 | 0.056 ± 0.003b | 13.8 | 0.226 ± 0.082a | 13.1 | 0.066 ± 0.001b | -20.0 |
图3 不同地下水位对浑善达克沙地榆树叶片水势(ψp)的影响(平均值±标准偏差, n = 3)。不同字母表示单因素方差分析差异显著(p < 0.05)。U1、U2、U3和U4同图1。
Fig. 3 Effects of different water tables on the leaf water potential (ψp) in Ulmus pumila leaf in Hunshandake Sandy Land (mean ± SD, n = 3). Values with different letters indicate significant difference (p < 0.05) according to one-way ANOVA. U1, U2, U3 and U4 see Fig. 1.
图4 不同地下水位对浑善达克沙地榆树叶片可溶性糖含量的影响(平均值±标准偏差, n = 3)。不同字母表示单因素方差分析差异显著(p < 0.05)。U1、U2、U3和U4同图1。
Fig. 4 Effects of different water table on the soluble sugar content in Ulmus pumila leaf in Hunshandake Sandy Land (mean ± SD, n = 3). Values with different letters indicate significant difference (p < 0.05) according to one-way ANOVA. U1, U2, U3 and U4 see Fig. 1.
图5 不同地下水位对浑善达克沙地榆树叶片脯氨酸含量的影响(平均值±标准偏差, n = 3)。不同字母表示单因素方差分析差异显著(p < 0.05)。U1、U2、U3和U4同图1。
Fig. 5 Effects of different water table on proline content in Ulmus pumila leaf in Hunshandake Sandy Land (mean ± SD, n = 3). Values with different letters indicate significant difference (p < 0.05) according to one-way ANOVA. U1, U2, U3 and U4 see Fig. 1.
[1] | Björkman O, Badger MR, Armond PA (1980). Response and adaptation of photosynthesis to high temperatures. In: Turner NC, Kramer PJ eds. Adaptation of Plants to Water and High Temperature Stress. Wiley-Inter- Science, New York. |
[2] |
Chen XW (2005). Ecophysiological and growth responses of elm, Ulmus pumila, to different water tables. Journal of Biological Sciences, 5, 813-819.
DOI URL |
[3] |
Dai WR (代薇然), Ren J (任健), Bi YF (毕玉芬) (2010). Effect of drought stress on light-response curves of centipedegrass. Acta Prataculturae Sinica (草业学报), 19, 251-254. (in Chinese with English abstract)
DOI URL |
[4] | Dong ZX (董志新), Han QF (韩清芳), Jia ZK (贾志宽), Ren GX (任广鑫) (2007). Photosynthesis rate in response to light intensity and CO2 concentration in different alfalfa varieties. Acta Ecologica Sinica (生态学报), 27, 2272-2277. (in Chinese with English abstract) |
[5] | Ethier GJ, Livingston NJ (2004). On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant, Cell & Environment, 27, 137-153. |
[6] |
Ewanchuk PJ, Bertness MD (2004). The role of waterlogging in maintaining forb pannes in northern New England salt marshes. Ecology, 85, 1568-1574.
DOI URL |
[7] |
Gomes FP, Oliva MA, Mielke MS, de Almeida AAF, Leite HG (2006). Photosynthetic irradiance-response in leaves of dwarf coconut palm ( Cocos nucifera L. ‘nana’ Arecaceae): comparison of three models. Scientia Horticulturae, 109, 101-105.
DOI URL |
[8] | Guo K (郭柯), Liu HJ (刘海江) (2004). A comparative researches on the development of elm seedlings in four habitats in the Hunshandak Sandland, Inner Mongolia, China. Acta Ecologica Sinica (生态学报), 24, 2024-2028. (in Chinese with English abstract) |
[9] | Guo LW (郭连旺), Shen YG (沈允钢) (1996). Protective mechanisms against photodamage in photosynthetic apparatus of higher plants. Plant Physiology Communications (植物生理学通讯), 32, 1-8. (in Chinese with English abstract) |
[10] |
Herrick JD, Thomas RB (1999). Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum ( Liquidambar styraciflua) in a forest ecosystem. Tree Physiology, 19, 779-786.
DOI URL PMID |
[11] |
Horton JL, Hart SC, Kolb TE (2003). Physiological condition and water source use of Sonoran desert riparian trees at the Bill Williams River, Arizona, USA. Isotopes in Environmental and Health Studies, 39, 69-82.
DOI URL PMID |
[12] | Institute of Botany, Chinese Academy of Sciences (中国科学院植物研究所) (1972). Iconographia Cormophytorum Sinicorum (中国高等植物图鉴). Science Press, Beijing. (in Chinese) |
[13] |
Jiao JY (焦娟玉), Yin CY (尹春英), Chen K (陈珂) (2011). Effects of soil water and nitrogen supply on the photosynthetic characteristics of Jatropha curcas seedlings. Chinese Journal of Plant Ecology (植物生态学报), 35, 91-99. (in Chinese with English abstract)
DOI URL |
[14] | Johansson S, Tuomela K (1996). Growth of 16 provenances of Eucalyptus microtheca in a regularly irrigated plantation in eastern Kenya. Forest Ecology and Management, 82, 11-18. |
[15] | Li GT (李钢铁), Zhao RG (昭日格), Yu XX (余新晓), Yue YJ (岳永杰) (2011). Life history characteristics of natural elm populations in Hunshandak Sandland. Journal of Arid Land Resources and Environment (干旱区资源与环境), 25, 161-165. (in Chinese with English abstract) |
[16] | Li HL (李红丽), Dong Z (董智), Wang LH (王林和), Hao YL (郝云龙) (2002). Study on the root distribution characteristic and biomass of Ulmus pumila in Hunshandake Sands. Journal of Arid Land Resources and Environment (干旱区资源与环境), 16, 99-105. (in Chinese with English abstract) |
[17] | Li Y (李彧) (2009). Responses of photosynthesis characteristics and transpiration characteristics of Ulmus pumila species to the light under the water stress conditions. Forest Engineering (森林工程), 25(3), 26-29. (in Chinese with English abstract) |
[18] | Lichtenthaler HK (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Academic Press, London. |
[19] | Liu GH (刘果厚), Jia BL (贾宝丽) (2003). The study of genetic diversity of Ulmus pumila var. sabulosa. Journal of Arid Land Resources and Environment (干旱区资源与环境), 17, 123-128. (in Chinese with English abstract) |
[20] | Liu J (刘建), Liu FH (刘凤红), Dong M (董鸣), Wang RQ (王仁卿) (2005). Size structure and neighbor pattern of Ulmus pumila L. population at southern edge of the Otindag Sandy Land. Journal of Desert Research (中国沙漠), 25, 75-80. (in Chinese with English abstract) |
[21] | Liu JX (刘建新), Wang X (王鑫), Wang FQ (王凤琴) (2005). Effect of water stress on osmotic adjustment and activity of protective enzymes in alfalfa seedlings. Pratacultural Science (草业科学), 22(3), 18-21. (in Chinese with English abstract) |
[22] |
Nilsson C, Jansson R, Zinko U (1997). Long-term responses of river-margin vegetation to water-level regulation. Science, 276, 798-800.
DOI URL PMID |
[23] | Peng Y (彭羽), Jiang GM (蒋高明), Li YG (李永庚), Liu MZ (刘美珍), Niu SL (牛书丽), Yu SL (于顺利), Yang DB (杨道斌) (2005). Determination of the primary core zone of the planned Hunshandak Nature Reserve. Acta Phytoecologica Sinica (植物生态学报), 29, 775-780. (in Chinese with English abstract) |
[24] |
Rohde P, Hincha DK, Heyer AG (2004). Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance. The Plant Journal, 38, 790-799.
DOI URL PMID |
[25] |
Rood SB, Zanewich K, Stefura C, Mahoney JM (2000). Influence of water table decline on growth allocation and endogenous gibberellins in black cottonwood. Tree Physiology, 20, 831-836.
DOI URL PMID |
[26] |
Shao HB, Liang ZS, Shao MA (2006). Osmotic regulation of 10 wheat ( Triticum aestivum L.) genotypes at soil water deficits. Colloids and Surfaces B: Biointerfaces, 47, 132-139.
DOI URL PMID |
[27] |
Sobrado MA, Turner NC (1983). A comparison of the water relations characteristics of Helianthus annuus and Helianthus petiolaris when subjected to water deficits. Oecologia, 58, 309-313.
DOI URL PMID |
[28] |
Su H, Li YG, Lan ZJ, Xu H, Liu W, Wang BX, Biswas DK, Jiang GM (2009). Leaf-level plasticity of Salix gordejevii in fixed dunes compared with lowlands in Hunshandake Sandland, North China. Journal of Plant Research, 122, 611-622.
DOI URL PMID |
[29] | Sun TX (孙同兴) (2008). Characters of leaf epidermis in 9 species of Ulmaceae from China. Subtropical Plant Science (亚热带植物科学), 37(4), 1-8. (in Chinese with English abstract) |
[30] |
Tanaka-Oda A, Kenzo T, Kashimura S, Ninomiya I, Wang LH, Yoshikawa K, Fukuda K (2010). Physiological and morphological differences in the heterophylly of Sabina vulgaris Ant. in the semi-arid environment of Mu Us Desert, Inner Mongolia, China. Journal of Arid Environments, 74, 43-48.
DOI URL |
[31] |
Tartachnyk II, Blanke MM (2004). Effect of delayed fruit harvest on photosynthesis, transpiration and nutrient remobilization of apple leaves. New Phytologist, 164, 441-450.
DOI URL |
[32] |
Vinson JA, Hao Y, Su XH, Zubik L (1998). Phenol antioxidant quantity and quality in foods: vegetables. Journal of Agricultural and Food Chemistry, 46, 3630-3634.
DOI URL |
[33] | Wang X (王雪), Hu CY (胡春元), Li GT (李钢铁), Zuo HJ (左合君) (2011). Analysis on the factors affecting seed dispersal and seedling survival rate of Ulmus pumila var. sabulosa in the Otindag Sandy Land. Arid Zone Research (干旱区研究), 28, 542-547. (in Chinese with English abstract) |
[34] | Xu DQ (许大全), Shen YG (沈允钢) (1997). Diurnal variations in the photosynthetic efficiency in plants. Acta Photophysiologica Sinica (植物生理学报), 23, 410-416. (in Chinese with English abstract) |
[35] | Xu HL (徐海量), Song YD (宋郁东), Wang Q (王强), Aihe MT (艾合买提) (2004). The effect of groundwater level on vegetation in the middle and lower reaches of the Tarim River, Xinjiang, China. Acta Phytoecologica Sinica (植物生态学报), 28, 400-405. (in Chinese with English abstract) |
[36] | Zhao GD (赵广东), Liu SL (刘世林), Ma QL (马全林) (2003). Ecophysiological responses of two xerophytes Atraphaxis frutescens and Elaeagnus angustifolia to the change of groundwater depth in arid area I: changes in leaf nutrient, chlorophyll, soluble sugar and starch contents. Acta Phytoecologica Sinica (植物生态学报), 27, 228-234. (in Chinese with English abstract) |
[37] | Zhang HX (张红霞), Liu GH (刘果厚), Cui XP (崔秀萍) (2005). Affection of aridity to anatomical structure of leave of Ulmus pumila L. var. sabulosa. Bulletin of Botanical Research (植物研究), 25, 39-45. (in Chinese with English abstract) |
[38] | Zhang LG (张利刚), Zeng FJ (曾凡江), Liu B (刘波), Liu Z (刘镇), An GX (安桂香), Li HF (李海峰), Yuan N (袁娜) (2011). Photosynthetic and physiological characteristics of three fruit trees in the southern fringe of Taklamakan Desert. Acta Botanica Boreali-Occiden- talia Sinica (西北植物学报), 31, 2027-2034. (in Chinese with English abstract) |
[39] | Zhang QF (张庆费), Xia L (夏檑), Qian YY (钱又宇) (2000). Diagnosis indexes system and its application of shade-tolerance characteristics of urban greenery plants. Chinese Landscape Architecture (中国园林), 16(6), 93-95. (in Chinese with English abstract) |
[40] | Zhang SY (张淑勇), Zhou ZF (周泽福), Xia JB (夏江宝), Zhang GC (张光灿) (2007). The responses of Euonymus fortunei var. radicans Sieb. leaf photosynthesis to light in different soil moisture. Acta Botanica Boreali- Occidentalia Sinica (西北植物学报), 27, 2514-2521. (in Chinese with English abstract) |
[41] | Zhang YM (张元明), Chen YN (陈亚宁), Zhang DY (张道远) (2003). Plant communities and their interrelations with environmental factors in the middle reaches of the Tarim River. Acta Geographica Sinica (地理学报), 58, 104-118. (in Chinese with English abstract) |
[42] | Zhu WZ (朱万泽), Wang JX (王金锡), Xue JH (薛建辉) (2004). Study on the photosynthetic characteristics of introduced Alnus formosana. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 24, 2012- 2019. (in Chinese with English abstract) |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[3] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[4] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[5] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[6] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[7] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[8] | 余俊瑞, 万春燕, 朱师丹. 热带亚热带喀斯特森林木本植物的水力脆弱性分割[J]. 植物生态学报, 2023, 47(11): 1576-1584. |
[9] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[10] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[11] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[12] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[13] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[14] | 黄樱, 陈挚, 石喆, 熊博文, 鄢春华, 邱国玉. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022, 46(3): 300-310. |
[15] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19