Chin J Plan Ecolo ›› 2004, Vol. 28 ›› Issue (4): 457-467.DOI: 10.17521/cjpe.2004.0063

• Research Articles • Previous Articles     Next Articles

LEAF LITTER DECOMPOSITION OF COMMEN TREES IN TIANTONGWANG

Xi-HuaHUANG Jian-Jun and YAN En-Rong   

  1. Department of Environment Science, East China Normal University, Shanghai 200062, China
  • Received:2003-05-16 Online:2004-05-16 Published:2004-04-12
  • Contact: Xi-HuaHUANG

Abstract: Leaf litter decomposition is a critical pathway of nutrient cycling in forests, and the spatial and temporal dynamics of leaf litter decomposition as well as the factors affecting decomposition, such as litter quality and climate, have been studied intensively. More recently, the possible consequences of global environmental change on litter decomposition have received considerable attention. However, little research on the factors influencing litter decomposition has been conducted in the broad-leaved evergreen forests of Eastern China. Therefore, we studied leaf litter decomposition and nutrient release dynamics of selected plant species in the subtropical broad-leaved evergreen forests at Tiantong in Zhejiang Province by using a litter bag method. Results showed that litter mass and N and P concentrations in the decomposing leaf litter changed greatly with time. N and P concentrations increased in the initial decomposition stages for many species. Nutrient release or accumulation from the decomposing leaf litter was not correlated with the initial nutrient content of the leaf litter. Yearly decay rates of leaf litter were significantly correlated with the initial leaf litter nitrogen content but not with phosphorus content, and species with high nitrogen contents exhibited relatively faster decomposition rates. In addition, leaf area had little effect on decomposition, but there was a strong positive correlation between yearly decomposition rates and specific leaf area. Based on decomposition models, yearly decay rate ranged from 0.558 in Litsea elongata to 6.280 in L. cubeba. For most selected plant species, 95% decomposition rates ranged from 1-4 years, with an average of 2.45 years. Leaf litter composed of mixed species had a significant effect on decomposition patterns by inhibiting decomposition rates initially but accelerating rates during later stages. Dry weight loss of leaf litter increased with an increase of the number of species in the leaf litter mixture. Also, decomposition was accelerated by an increase in plant functional groups in the litter, but this effect gradually decreased as decomposition proceeded. The characteristics of species mix were the most important factor influencing decomposition. Overall, leaf litter decomposition is related to the initial quality of leaf litter, which includes structure and nutrient content of leaf litter, and the species composition of the mixed leaf litter.