Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (10): 1003-1011.DOI: 10.17521/cjpe.2015.0097
Special Issue: 生物多样性
• Orginal Article • Previous Articles Next Articles
WANG Jin-Nan1,*, CHEN Jin-Fu2,*, Chen Wu-Sheng1, Zhou Xin-Yang3, XU Dong1, LI Ji-Hong1,**(), QI Xiao1
Online:
2015-10-01
Published:
2015-10-24
Contact:
Jin-Nan WANG,Jin-Fu CHEN,Ji-Hong LI
About author:
# Co-first authors
WANG Jin-Nan,CHEN Jin-Fu,Chen Wu-Sheng,Zhou Xin-Yang,XU Dong,LI Ji-Hong,QI Xiao. Population genetic diversity of wild Lycium ruthenicum in Qaidam inferred from AFLP markers[J]. Chin J Plan Ecolo, 2015, 39(10): 1003-1011.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.0097
种群 Population | 海拔 Altitude (m) | 纬度 Latitude (N) | 经度 Longitude (E) | 样品数 Sampling size |
---|---|---|---|---|
德令哈怀头他拉 Huaitoutala, Delingha (DLH1) | 2 810 | 37.25° | 96.83° | 24 |
诺木洪贝壳梁 Beikeliang, Nomhon (NMH1) | 2 703 | 36.50° | 96.22° | 24 |
诺木洪奥斯勒草场 Osler grassland, Nomhon (NMH2) | 2 770 | 36.45° | 96.45° | 24 |
格尔木乌图美仁 Urt Moron, Glomud (GEM1) | 2 890 | 36.88° | 93.12° | 24 |
格尔木鱼水河 River water, Glomud (GEM2) | 2 750 | 36.48° | 94.95° | 24 |
Table 1 Habitats and localities of the sampled Lycium ruthenicum populations
种群 Population | 海拔 Altitude (m) | 纬度 Latitude (N) | 经度 Longitude (E) | 样品数 Sampling size |
---|---|---|---|---|
德令哈怀头他拉 Huaitoutala, Delingha (DLH1) | 2 810 | 37.25° | 96.83° | 24 |
诺木洪贝壳梁 Beikeliang, Nomhon (NMH1) | 2 703 | 36.50° | 96.22° | 24 |
诺木洪奥斯勒草场 Osler grassland, Nomhon (NMH2) | 2 770 | 36.45° | 96.45° | 24 |
格尔木乌图美仁 Urt Moron, Glomud (GEM1) | 2 890 | 36.88° | 93.12° | 24 |
格尔木鱼水河 River water, Glomud (GEM2) | 2 750 | 36.48° | 94.95° | 24 |
引物组合 Primer combination | 总带数 Total No. of bands | 多态带数 No. of polymorphic bands | 多态带比例 Percentage of polymorphic bands (%) |
---|---|---|---|
E-AAG/M-CAC | 182 | 182 | 100.00 |
E-AAG/M-CAG | 192 | 189 | 98.43 |
E-ACA/M-CAA | 190 | 189 | 99.47 |
E-ACA/M-CAC | 180 | 180 | 100.00 |
E-ACT/M-CTT | 205 | 201 | 98.05 |
E-AGG/M-CAA | 193 | 193 | 100.00 |
E-AGG/M-CAC | 177 | 177 | 100.00 |
E-AGG/M-CAG | 184 | 182 | 98.91 |
E-AGG/M-CTG | 188 | 185 | 98.40 |
合计 Summation | 1 691 | 1 678 | |
平均 Mean | 211.40 | 209.75 | 99.23 |
Table 2 Polymorphism of AFLP bands obtained by selective amplification based on the primer combinations
引物组合 Primer combination | 总带数 Total No. of bands | 多态带数 No. of polymorphic bands | 多态带比例 Percentage of polymorphic bands (%) |
---|---|---|---|
E-AAG/M-CAC | 182 | 182 | 100.00 |
E-AAG/M-CAG | 192 | 189 | 98.43 |
E-ACA/M-CAA | 190 | 189 | 99.47 |
E-ACA/M-CAC | 180 | 180 | 100.00 |
E-ACT/M-CTT | 205 | 201 | 98.05 |
E-AGG/M-CAA | 193 | 193 | 100.00 |
E-AGG/M-CAC | 177 | 177 | 100.00 |
E-AGG/M-CAG | 184 | 182 | 98.91 |
E-AGG/M-CTG | 188 | 185 | 98.40 |
合计 Summation | 1 691 | 1 678 | |
平均 Mean | 211.40 | 209.75 | 99.23 |
引物组合 Primer combination | 有效等位 基因数 Ne | Nei’s基因 多样性指数 H | Shannon多态性 信息指数 I |
---|---|---|---|
E-AAG/M-CAC | 1.500 1 | 0.337 9 | 0.453 5 |
E-AAG/M-CAG | 1.456 4 | 0.318 6 | 0.430 2 |
E-ACA/M-CAA | 1.473 2 | 0.322 5 | 0.431 3 |
E-ACA/M-CAC | 1.494 9 | 0.335 0 | 0.450 0 |
E-ACT/M-CTT | 1.432 9 | 0.302 2 | 0.406 1 |
E-AGG/M-CAA | 1.491 9 | 0.336 7 | 0.453 6 |
E-AGG/M-CAC | 1.501 4 | 0.342 4 | 0.461 9 |
E-AGG/M-CAG | 1.445 2 | 0.311 2 | 0.419 9 |
E-AGG/M-CTG | 1.444 5 | 0.314 2 | 0.424 2 |
平均 Mean | 1.471 2 | 0.324 5 | 0.436 7 |
Table 3 Genetic diversity level of Lycium ruthenicum based on different primer combinations
引物组合 Primer combination | 有效等位 基因数 Ne | Nei’s基因 多样性指数 H | Shannon多态性 信息指数 I |
---|---|---|---|
E-AAG/M-CAC | 1.500 1 | 0.337 9 | 0.453 5 |
E-AAG/M-CAG | 1.456 4 | 0.318 6 | 0.430 2 |
E-ACA/M-CAA | 1.473 2 | 0.322 5 | 0.431 3 |
E-ACA/M-CAC | 1.494 9 | 0.335 0 | 0.450 0 |
E-ACT/M-CTT | 1.432 9 | 0.302 2 | 0.406 1 |
E-AGG/M-CAA | 1.491 9 | 0.336 7 | 0.453 6 |
E-AGG/M-CAC | 1.501 4 | 0.342 4 | 0.461 9 |
E-AGG/M-CAG | 1.445 2 | 0.311 2 | 0.419 9 |
E-AGG/M-CTG | 1.444 5 | 0.314 2 | 0.424 2 |
平均 Mean | 1.471 2 | 0.324 5 | 0.436 7 |
种群 Population | 有效等位 基因数 Ne | Nei’s基因 多样性指数 H | Shannon多态性 信息指数 I |
---|---|---|---|
DLH1 | 1.343 4b | 0.216 9b | 0.349 6b |
NMH1 | 1.366 2ab | 0.225 9ab | 0.359 5a |
NMH2 | 1.373 4a | 0.231 1a | 0.366 1a |
GEM1 | 1.347 5b | 0.222 8b | 0.357 5b |
GEM2 | 1.351 0b | 0.224 8b | 0.349 2b |
Table 4 Genetic diversity of the five Lycium ruthenicum populations
种群 Population | 有效等位 基因数 Ne | Nei’s基因 多样性指数 H | Shannon多态性 信息指数 I |
---|---|---|---|
DLH1 | 1.343 4b | 0.216 9b | 0.349 6b |
NMH1 | 1.366 2ab | 0.225 9ab | 0.359 5a |
NMH2 | 1.373 4a | 0.231 1a | 0.366 1a |
GEM1 | 1.347 5b | 0.222 8b | 0.357 5b |
GEM2 | 1.351 0b | 0.224 8b | 0.349 2b |
变异来源 Source of variation | 自由度 dt | 基因多样性指数 Gene diversity index | 占总变异百分率(%) Percentage of total variation | p |
---|---|---|---|---|
种群间 Among populations | 9 | 0.075 6 | 8 | <0.001 |
种群内 Within populations | 70 | 0.164 3 | 92 | <0.001 |
Table 5 Genetic divergence of Lycium ruthenicum populations in Qaidam area
变异来源 Source of variation | 自由度 dt | 基因多样性指数 Gene diversity index | 占总变异百分率(%) Percentage of total variation | p |
---|---|---|---|---|
种群间 Among populations | 9 | 0.075 6 | 8 | <0.001 |
种群内 Within populations | 70 | 0.164 3 | 92 | <0.001 |
种群 Population | DLH1 | NMH1 | NMH2 | GEM1 | GEM2 |
---|---|---|---|---|---|
DLH1 | — | 0.986 3 | 0.977 2 | 0.970 9 | 0.971 0 |
NMH1 | 0.013 9 | — | 0.992 2 | 0.986 4 | 0.986 1 |
NMH2 | 0.023 1 | 0.007 8 | — | 0.989 8 | 0.984 7 |
GEM1 | 0.029 5 | 0.014 4 | 0.009 7 | — | 0.990 2 |
GEM2 | 0.029 7 | 0.014 5 | 0.015 5 | 0.009 5 | — |
Table 6 genetic identity and genetic distance between five Lycium ruthenicum populations based on AFLP
种群 Population | DLH1 | NMH1 | NMH2 | GEM1 | GEM2 |
---|---|---|---|---|---|
DLH1 | — | 0.986 3 | 0.977 2 | 0.970 9 | 0.971 0 |
NMH1 | 0.013 9 | — | 0.992 2 | 0.986 4 | 0.986 1 |
NMH2 | 0.023 1 | 0.007 8 | — | 0.989 8 | 0.984 7 |
GEM1 | 0.029 5 | 0.014 4 | 0.009 7 | — | 0.990 2 |
GEM2 | 0.029 7 | 0.014 5 | 0.015 5 | 0.009 5 | — |
[1] | Alitong QMK, Wang QF, Yang CF, Chen JM (2013). ISSR analysis on genetic diversity of medically important Lycium ruthenicum murr. in Xinjiang.Plant Science Journal, 31, 517-524. (in Chinese with English abstract) |
[阿力同·其米克, 王青峰, 杨春峰, 陈进明 (2013). 新疆产药用植物黑果枸杞遗传多样性的ISSR分析. 植物科学学报, 31, 517-524.] | |
[2] | Chen H (2008). Analysis of Genetic Diversity and Relationship among Chaenomeles germplasm using RAPD and AFLP Makers. Master degree dissertation, Shandong Agricultural University, Tai’an. (in Chinese with English abstract) |
[陈红 (2008). 木瓜属种质资源的RAPD、AFLP亲缘关系鉴定及遗传多样性分析. 硕士学位论文, 山东农业大学, 泰安.] | |
[3] | Chen HK, Pu LK, Cao JM, Ren X (2008). Current research state and exploitation of Lycium ruthenicum Murr.Heilongjiang Agricultural Sciences, (5), 155-157. (in Chinese with English abstract) |
[陈海魁, 蒲凌奎, 曹君迈, 任贤 (2008). 黑果枸杞的研究现状及其开发利用. 黑龙江农业科学, (5), 155-157.] | |
[4] | Chen LH, Hu TX, Zhang F, Li GH (2008). Genetic diversities of four Juglans populations revealed by AFLP in Sichuan Province, China. Journal of Plant Ecology (Chinese Version), 32, 1362-1372. (in Chinese with English abstract) |
[陈良华, 胡庭兴, 张帆, 李国和 (2008). 用AFLP技术分析四川核桃资源的遗传多样性. 植物生态学报, 32, 1362-1372.] | |
[5] | Ellstrand NC, Elam DR (1993). Population genetic consequences of small population size: Implications for plant conservation.Annual Review of Ecology and Systematics, 24, 217-242. |
[6] | Excoffier L (1993). Analysis of Molecular Variance. version 1. 55. Genetics and Biometry Laboratory, University of Geneva, Switzerland. |
[7] | Govindaraju DR (1988). Relationship between dispersal ability and levels of gene flow in plants.Oikos, 52, 31-35. |
[8] | Guo XM, Xue X, Chen H (2006). Progress in research on amplified fragment length polymorphism (AFLP).Chinese Journal of Comparative Medicine, 16, 369-372. (in Chinese with English abstract) |
[郭雄明, 薛霞, 陈华 (2006). 扩增片段长度多态性(AFLP)研究进展. 中国比较医学杂志, 16, 369-372.] | |
[9] | Jiang X (2012). Studies on the Physiological Mechanism Underlying Salt Tolerance of Lycium ruthenicum murr. Master degree dissertation, Northwest A&F University, Yang- ling. (in Chinese with English abstract) |
[姜霞 (2012). 黑果枸杞耐盐机理的相关研究. 硕士学位论文, 西北农林科技大学, 杨凌.] | |
[10] | Jiang ZY, Yu XX, Yu Z, Liu ZH, Hao ZM, Li XL (2015). Construction of an AFLP-based genetic linkage map of tetraploid hybrid wheatgrass.Journal of Triticeae Crops, 35, 457-463. (in Chinese with English abstract) |
[姜志燕, 于肖夏, 于卓, 刘志华, 郝治满, 李小雷 (2015). 四倍体杂交冰草AFLP遗传连锁图谱的构建. 麦类作物学报, 35, 457-463.] | |
[11] | Jiao XL, Chi XF, Dong Q, Xiao YC, Hu FZ (2011). Analysis of the nutritional components of Lycium ruthenicum.Amino Acids & Biotic Resources, 33(3), 60-62. (in Chinese with English abstract) |
[矫晓丽, 迟晓峰, 董琦, 肖远灿, 胡凤祖 (2011). 柴达木野生黑果枸杞营养成分分析. 氨基酸和生物资源, 33(3), 60-62.] | |
[12] | Jin MY, Liu LZ, Fu FY, Zhang ZS, Zhang XK, Li JN (2006). Construction of a genetic linkage map in Brassica napus based on SRAP, SSR, AFLP and TRAP.Molecular Plant Breeding, 4, 520-526. (in Chinese with English abstract) |
[金梦阳, 刘列钊, 付福友, 张正圣, 张学昆, 李加纳 (2006). 甘蓝型油菜SRAP、SSR、AFLP、和TRAP标记遗传图谱构建. 分子植物育种, 4, 520-526.] | |
[13] | Li J, Yuan H, Zeng XC, Han B, Shi DH (2007). Toxicological assessment of pigment of Lycium ruthenicum Murr.Food Science, 28(7), 470-474. (in Chinese with English abstract) |
[李进, 原惠, 曾献春, 韩彬, 时德红 (2007). 黑果枸杞色素的毒理学研究. 食品科学, 28(7), 470-474.] | |
[14] | Li SZ, Li J, Yang ZJ, Yuan H (2008). Technology of extracting and refining total flavonoids from Lycium ruthenicun Murr.Food Research and Development, 29(8), 82-87. (in Chinese with English abstract) |
[李淑珍, 李进, 杨志江, 原惠 (2008). 黑果枸杞类黄酮的提取和精制工艺研究. 食品研究与开发, 29(8), 82-87.] | |
[15] | Li YL, Fan YF, Dai GL, An W, Cao YL (2011). Analysis of genetic diversity for wolfberry germplasms by AFLP technology.Chinese Traditional and Herbal Drugs, 42, 770-773. (in Chinese with English abstract) |
[李彦龙, 樊云芳, 戴国礼, 安巍, 曹有龙 (2011). 枸杞种质遗传多样性的AFLP分析. 中草药, 42, 770-773.] | |
[16] | Lin L, Li J, Ding CL (2013). Determination of anthocyanins in fruits of Lycium ruthenicum Murr. By HPLC.Food Science, 34(6), 164-166. (in Chinese with English abstract) |
[林丽, 李进, 丁成丽 (2013). 高效液相色谱法测定黑果枸杞果实中花色苷的含量. 食品科学, 34(6), 164-166.] | |
[17] | Liu ZG, Shu QY, Wang L, Yu MF, Hu YP, Zhang HG, Tao YD, Shao Y (2012). Genetic diversity of the endangered and medically important Lycium ruthenicum Murr. revealed by sequence-related amplified polymorphism (SRAP) markers.Biochemical Systematics and Ecology, 45, 86-97. |
[18] | Liu ZL, Zhao GF (1999). Population genetics and its implications for conservation of rare and endangered plants.Chinese Biodiversity, 7, 340-346. (in Chinese with English abstract) |
[刘占林, 赵桂仿 (1999). 居群遗传学原理及其在珍稀濒危植物保护中的应用. 生物多样性, 7, 340-346.] | |
[19] | Lu WJ, Wang ZL, Fan GH (2014). Morphological variation of Lycium ruthenicum under artificial cultivation conditions.Nonwood Forest Research, 32(1), 171-174. (in Chinese with English abstract) |
[卢文晋, 王占林, 樊光辉 (2014). 黑果枸杞在人工栽培条件下的形态变异. 经济林研究, 32(1), 171-174.] | |
[20] | Ma JP, Li JG, Wang X, Chen X, Wang J (2013). Rapid propagation of seedlings and technology of planting of Black Wolfberry.North Horticulture, (9), 185-187. (in Chinese with English abstract) |
[马金平, 李建国, 王孝, 陈曦, 王佳 (2013). 黑果枸杞苗木快速繁育及建园技术. 北方园艺, (9), 185-187.] | |
[21] | Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals.Genetics, 89, 583-590. |
[22] | Nybom H (2004). Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants.Molecular Ecology, 13, 1143-1155. |
[23] | Qiu YX, Huang AJ, Fu CX (2000). Studies on genetic diversity in Changium smyrnioides Wolff (Umbelliferae).Acta Phytotaxonomica Sinica, 38(2), 111-120. (in Chinese with English abstract) |
[邱英雄, 黄爱军, 傅承新 (2000). 明党参的遗传多样性研究. 植物分类学报, 38(2), 111-120.] | |
[24] | Rohlf FJ (1988). NTSYSpc: Numerical Taxonomy and Multivariate Analysis System. Exeter Software, Setauket, New York. |
[25] | Savage AE, Miller JS (2006). Gametophytic self-incompati- bility in Lycium parishii (Solanaceae): Allelic diversity, genealogical structure, and patterns of molecular evolution at the S-RNase locus.Heredity, 96, 434-444. |
[26] | Shang J, Li S, Zhang KW (2010). Genetic diversity analysis of Lycium barbarum L. by RAPD.Bulletin of Botanical Research, 30, 116-119. (in Chinese with English abstract) |
[尚洁, 李收, 张靠稳 (2010). 宁夏枸杞遗传多样性的RAPD分析. 植物研究, 30, 116-119.] | |
[27] | Song XL (2008). AFLP Identification of 12 Close Genetic Relationships of Cultivars in Capsicum frutescens L. Master degree dissertation, Zhejiang University, Hangzhou. (in Chinese) |
[宋小丽 (2008). 亲缘关系密切的12个辣椒品种的AFLP鉴定. 硕士学位论文, 浙江大学, 杭州.] | |
[28] | Sun K (2011). Study on the extracting technology of pigments from Lycium ruthenicum in Qaidam Basin.Hubei Agricultural Sciences, 50, 2318-2320. (in Chinese with English abstract) |
[孙奎 (2011) 柴达木盆地黑果枸杞色素最佳提取工艺研究. 湖北农业科学, 50, 2318-2320.] | |
[29] | Vos P, Hogers R, Bleeker M, Reijans M, Lee TVD, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995). AFLP: A new technique for DNA fingerprinting.Nucleic Acids Research, 23, 4407-4414. |
[30] | Wang HB, Bai HJ, Wang JL, Chu ZQ, Wang Q (2006). Study on scavenging free radical activity of pigment in Lycium rethenicum Murr.Food Research and Development, 27(11), 8-10. (in Chinese with English abstract) |
[汪河滨, 白红进, 王金磊, 褚志强, 王奇 (2006). 黑果枸杞色素清除自由基活性的研究. 食品研究与开发, 27(11), 8-10.] | |
[31] | Wang JH, Chen XQ, Zhang WJ (2009). Study on hypoglycemic function of polysaccharides from Lycium ruthenicum Murr. fruit and its mechanism.Food Science, 30(5), 244-248. (in Chinese with English abstract) |
[汪建红, 陈晓琴, 张蔚佼 (2009). 黑果枸杞果实多糖降血糖生物功效及其机制研究. 食品科学, 30(5), 244-248.] | |
[32] | Yan YM, Dai GL, Ran LW, Luo Q, Li XY, Qin K, Wu PJ (2014). The polyphenols composition of Lycium ruthenicum Murr. From different places.Scientia Agricultura Sinica, 22, 4540-4550. (in Chinese with English abstract) |
[闫亚美, 戴国礼, 冉林武, 罗青, 李晓莺, 秦垦, 巫鹏举 (2014). 不同产地野生黑果枸杞资源果实多酚组成分析. 中国农业科学, 22, 4540-4550.] | |
[33] | Yang ZJ, Li J, Li SZ, Zhang Y, Ling LH (2008). Effect of different sodium salt stress on the seed germination of Lycium ruthenicum murr.Seed, 27(9), 19-22. (in Chinese with English abstract) |
[杨志江, 李进, 李淑珍, 张尧, 陵林辉 (2008). 不同钠盐胁迫对黑果枸杞种子萌发的影响. 种子, 27(9), 19-22.] | |
[34] | Zhang YC, Zhang JN (2004). Studies on morphological structure characteristics of leaves of Lycium ruthenicum in two salinity environments. Journal of Ningxia University (Natural Science Edition), 25(4), 365-367. (in Chinese with English abstract) |
[章英才, 张晋宁 (2004). 两种盐浓度环境中的黑果枸杞叶的形态结构特征研究. 宁夏大学学报(自然科学版), 25(4), 365-367.] | |
[35] | Zhang YH, Hou Y, Lou AR (2010). Population genetic diversity of Rhodiola dumulosa in Northern China inferred from AFLP makers.Chinese Journal of Plant Ecology, 34, 1084-1094. (in Chinese with English abstract) |
[张云红, 侯艳, 娄安如 (2010). 华北地区小丛红景天种群的AFLP遗传多样性. 植物生态学报, 34, 1084-1094.] | |
[36] | Zhang YJ, Wang YS (2008). Genetic diversity of endangered shrub Reaumuria trigyna population detected by RAPD and ISSR markers.Scientia Silvae Sinicae, 44(12), 43-47. (in Chinese with English abstract) |
[张颖娟, 王玉山 (2008). 濒危小灌木长叶红砂种群的遗传多样性. 林业科学, 44(12), 43-47.] | |
[37] | Zheng J, Ding CX, Wang LS, Li GL, Shi JY, Li H, Wang HL, Suo YR (2011). Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau.Food Chemistry, 126, 859-865. |
[1] | YAN Han, ZHANG Yun-Ling, MA Song-Mei, WANG Chun-Cheng, ZHANG Dan. Suitable distribution simulation and local environmental adaptability differentiation of Lycium ruthenicum in Xinjiang, China [J]. Chin J Plant Ecol, 2021, 45(11): 1221-1230. |
[2] | WANG Chun-Cheng, MA Song-Mei, ZHANG Dan, WANG Shao-Ming. Spatial genetic structure of Lycium ruthenicum in the Qaidam Basin [J]. Chin J Plant Ecol, 2020, 44(6): 661-668. |
[3] | WEI Yu-Kun, GAO Yu-Bao, LI Chuan, XU Hua, Ren An-Zhi. GENETIC DIVERSITY OF NEOTYPHODIUM ENDOPHYTES ISOLATED FROM ACHNATHERUM SIBIRICUM POPULATIONS IN MID-AND EASTERN INNER MONGOLIA STEPPE, CHINA [J]. Chin J Plant Ecol, 2006, 30(4): 640-649. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn