Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (7): 954-966.DOI: 10.17521/cjpe.2022.0121
• Research Articles • Previous Articles Next Articles
HUANG Peng1, LIN Yong-Wen2, ZHANG Jie1, YAO Jin-Ai1, YU De-Yi1,*()
Received:
2022-04-06
Accepted:
2022-09-28
Online:
2023-07-20
Published:
2023-07-21
Contact:
*YU De-Yi(Supported by:
HUANG Peng, LIN Yong-Wen, ZHANG Jie, YAO Jin-Ai, YU De-Yi. Specific volatiles of Ficus plants determine host preference behavior of Gynaikothrips uzeli[J]. Chin J Plant Ecol, 2023, 47(7): 954-966.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0121
基因 Gene | 正向引物 Forward sequence | 反向引物 Reverse sequence | 基因描述 Gene description |
---|---|---|---|
Fm.09G0004550 | ACTTTCGTGGTGATGGAT | GTCCGCTTCCTTGATAAAG | 参与类胡萝卜素生物裂解, 编码类胡萝卜素裂解双加氧酶CCD4 Participates in carotenoid biolysis, encodes the carotenoid cleavage dioxygenase CCD4 |
Fm.11G0000860 | GAACTCTCAACACTTGGTT | CACCCAATTATCGCCAAT | 参与倍半萜和三萜生物合成, 编码倍半萜合成酶LUP2 Participates in sesquiterpene and triterpene biosynthesis, encodes the sesquiterpene synthetase LUP2 |
Fm.newGene1857 | AGAGGAAGAAGCGGTTGAAGA | CATTGGAACACTGATTGGGTAGAG | 参与倍半萜生物合成, 编码倍半萜合成酶STPS Participates in sesquiterpene biosynthesis, encodes the sesquiterpene synthetase STPS |
Fm.newGene6827 | GCTAATGAAGAATGCCTCCATA | GCCATCTCCATCTAAGTACATC | 参与倍半萜生物合成, 编码倍半萜合成酶VIT 19s0014g04930 Participates in sesquiterpene biosynthesis, encodes the sesquiterpene synthetase VIT 19s0014g04930 |
Fm.13G0003820 | TCCAGACTCTGGTCCTCTTTAG | CATGAACCATCAGGGTTTTGC | 参与倍半萜和三萜生物合成, 编码倍半萜合成酶LUS1 Participates in sesquiterpene and triterpene biosynthesis, encodes the sesquiterpene synthetase LUS1 |
Fm.newGene489 | TAACCATCGGATGTGTTGAG | CTCTCGGAATATGCTTCTTGA | 参与倍半萜和三萜生物合成, 编码倍半萜合成酶GgbAS1 Participates in sesquiterpene and triterpene biosynthesis, encodes the sesquiterpene synthetase GgbAS1 |
max2 | CGGAGTTCTACTACTGGACGG | GGGACAAGCCTCGGTGAT | 内参基因, 编码蛋白F-box Reference gene, encodes the protein F-box |
Table 1 Primers of synthesis-related genes for specific volatiles used in quantitative real-time PCR validation
基因 Gene | 正向引物 Forward sequence | 反向引物 Reverse sequence | 基因描述 Gene description |
---|---|---|---|
Fm.09G0004550 | ACTTTCGTGGTGATGGAT | GTCCGCTTCCTTGATAAAG | 参与类胡萝卜素生物裂解, 编码类胡萝卜素裂解双加氧酶CCD4 Participates in carotenoid biolysis, encodes the carotenoid cleavage dioxygenase CCD4 |
Fm.11G0000860 | GAACTCTCAACACTTGGTT | CACCCAATTATCGCCAAT | 参与倍半萜和三萜生物合成, 编码倍半萜合成酶LUP2 Participates in sesquiterpene and triterpene biosynthesis, encodes the sesquiterpene synthetase LUP2 |
Fm.newGene1857 | AGAGGAAGAAGCGGTTGAAGA | CATTGGAACACTGATTGGGTAGAG | 参与倍半萜生物合成, 编码倍半萜合成酶STPS Participates in sesquiterpene biosynthesis, encodes the sesquiterpene synthetase STPS |
Fm.newGene6827 | GCTAATGAAGAATGCCTCCATA | GCCATCTCCATCTAAGTACATC | 参与倍半萜生物合成, 编码倍半萜合成酶VIT 19s0014g04930 Participates in sesquiterpene biosynthesis, encodes the sesquiterpene synthetase VIT 19s0014g04930 |
Fm.13G0003820 | TCCAGACTCTGGTCCTCTTTAG | CATGAACCATCAGGGTTTTGC | 参与倍半萜和三萜生物合成, 编码倍半萜合成酶LUS1 Participates in sesquiterpene and triterpene biosynthesis, encodes the sesquiterpene synthetase LUS1 |
Fm.newGene489 | TAACCATCGGATGTGTTGAG | CTCTCGGAATATGCTTCTTGA | 参与倍半萜和三萜生物合成, 编码倍半萜合成酶GgbAS1 Participates in sesquiterpene and triterpene biosynthesis, encodes the sesquiterpene synthetase GgbAS1 |
max2 | CGGAGTTCTACTACTGGACGG | GGGACAAGCCTCGGTGAT | 内参基因, 编码蛋白F-box Reference gene, encodes the protein F-box |
Fig. 2 Relative content (A) and venn set (B) of volatile organic compounds (VOCs) in three Ficus species. Different color columns in figure A indicates relative content of VOCs in three Ficus species, and the digits indicates VOCs number. The digits in figure B indicates unique (unoverlapping color parts) and shared (overlapping color parts) VOCs number among three Ficus species.
挥发物成分 VOCs name | 相对含量 Relative content (%) | r | p | ||
---|---|---|---|---|---|
垂叶榕 F. benjamina | 人参榕 F. microcarpa | 印度榕 F. elastica | |||
β-环柠檬醛 β-cyclocitral | 2.84 ± 013a | 2.32 ± 0.32ab | 0.96 ± 0.50b | 0.999 5 | 0.020 0 |
β-马榄烯 β-maaliene | 0.37 ± 0.05a | 0.29 ± 0.05a | 0.00 ± 0.00b | 0.996 0 | 0.044 2 |
β-古巴烯 β-copaene | 0.12 ± 0.02a | 0.08 ± 0.03ab | 0.00 ± 0.00b | 0.999 3 | 0.023 4 |
胆甾-3, 5-二烯 Cholesta-3,5-diene | 0.00 ± 0.00c | 0.43 ± 0.21b | 4.26 ± 1.44a | -0.979 1 | 0.093 7 |
顺-α-香柑油烯 Cis-α-bergamotene | 0.00 ± 0.00b | 0.14 ± 0.14b | 3.02 ± 0.57a | -0.967 5 | 0.094 8 |
反-11-十八烯酸甲酯 Trans-11-octadecenoate | 0.00 ± 0.00b | 0.19 ± 0.10ab | 0.45 ± 0.10a | -0.990 6 | 0.087 4 |
反-α-香柑油烯 Trans-α-bergamotene | 0.00 ± 0.00c | 0.13 ± 0.07b | 0.43 ± 0.06a | -1.000 0 | 0.001 6 |
Table 2 Correlations between relative content of volatile organic compounds (VOCs) released by three Ficus species and behavioral preference of Gynaikothrips uzeli (mean ± SD)
挥发物成分 VOCs name | 相对含量 Relative content (%) | r | p | ||
---|---|---|---|---|---|
垂叶榕 F. benjamina | 人参榕 F. microcarpa | 印度榕 F. elastica | |||
β-环柠檬醛 β-cyclocitral | 2.84 ± 013a | 2.32 ± 0.32ab | 0.96 ± 0.50b | 0.999 5 | 0.020 0 |
β-马榄烯 β-maaliene | 0.37 ± 0.05a | 0.29 ± 0.05a | 0.00 ± 0.00b | 0.996 0 | 0.044 2 |
β-古巴烯 β-copaene | 0.12 ± 0.02a | 0.08 ± 0.03ab | 0.00 ± 0.00b | 0.999 3 | 0.023 4 |
胆甾-3, 5-二烯 Cholesta-3,5-diene | 0.00 ± 0.00c | 0.43 ± 0.21b | 4.26 ± 1.44a | -0.979 1 | 0.093 7 |
顺-α-香柑油烯 Cis-α-bergamotene | 0.00 ± 0.00b | 0.14 ± 0.14b | 3.02 ± 0.57a | -0.967 5 | 0.094 8 |
反-11-十八烯酸甲酯 Trans-11-octadecenoate | 0.00 ± 0.00b | 0.19 ± 0.10ab | 0.45 ± 0.10a | -0.990 6 | 0.087 4 |
反-α-香柑油烯 Trans-α-bergamotene | 0.00 ± 0.00c | 0.13 ± 0.07b | 0.43 ± 0.06a | -1.000 0 | 0.001 6 |
挥发物成分 VOCs name | 基因名 (注释) Gene name (annotation) | r | p |
---|---|---|---|
β-环柠檬醛 β-cyclocitral | Fm.09G0004550 (CCD4) | 0.998 3 | 0.037 5 |
β-马榄烯 β-maaliene | Fm.11G0000860 (LUP2) | 0.988 0 | 0.098 7 |
Fm.newGene1857 (STPS) | 0.997 8 | 0.042 0 | |
Fm.newGene6827 (VIT_19s0014g04930) | 0.999 8 | 0.019 1 | |
β-古巴烯 β-copaene | Fm.11G0000860 (LUP2) | 0.999 6 | 0.018 1 |
Fm.newGene1857 (STPS) | 0.998 2 | 0.038 6 | |
Fm.newGene6827 (VIT_19s0014g04930) | 0.987 8 | 0.099 7 | |
反-α-香柑油烯 Trans-α-bergamotene | Fm.13G0003820 (LUS1) | 0.997 6 | 0.044 3 |
Fm.newGene489 (GgbAS1) | 0.999 2 | 0.025 0 |
Table 3 Correlations between relative content of four terpene volatiles and expression of six terpene synthase genes in three Ficus species (mean ± SD)
挥发物成分 VOCs name | 基因名 (注释) Gene name (annotation) | r | p |
---|---|---|---|
β-环柠檬醛 β-cyclocitral | Fm.09G0004550 (CCD4) | 0.998 3 | 0.037 5 |
β-马榄烯 β-maaliene | Fm.11G0000860 (LUP2) | 0.988 0 | 0.098 7 |
Fm.newGene1857 (STPS) | 0.997 8 | 0.042 0 | |
Fm.newGene6827 (VIT_19s0014g04930) | 0.999 8 | 0.019 1 | |
β-古巴烯 β-copaene | Fm.11G0000860 (LUP2) | 0.999 6 | 0.018 1 |
Fm.newGene1857 (STPS) | 0.998 2 | 0.038 6 | |
Fm.newGene6827 (VIT_19s0014g04930) | 0.987 8 | 0.099 7 | |
反-α-香柑油烯 Trans-α-bergamotene | Fm.13G0003820 (LUS1) | 0.997 6 | 0.044 3 |
Fm.newGene489 (GgbAS1) | 0.999 2 | 0.025 0 |
Fig. 5 Expression heatmap of monoterpene synthase genes (A), carotenoid cleavage dioxygenase genes (B) and sesquiterpene synthase genes (C) of leaves in three Ficus species. FPKM, fragments per kilobase of exon model per million mapped fragments.
[1] | Anderson P, Anton S (2014). Experience-based modulation of behavioural responses to plant volatiles and other sensory cues in insect herbivores. Plant, Cell & Environment, 37, 1826-1835. |
[2] |
Attia M, Kim SU, Ro DK (2012). Molecular cloning and characterization of (+)-epi-α-bisabolol synthase, catalyzing the first step in the biosynthesis of the natural sweetener, hernandulcin, in Lippia dulcis. Archives of Biochemistry and Biophysics, 527, 37-44.
DOI URL |
[3] | Belostotsky DA (2009). Plant System Biology. Humana Press, New York. |
[4] | Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological), 57, 289-300. |
[5] | Benjamini Y, Yekutieli D (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29, 1165-1188. |
[6] | Bernays EA, Chapman RE (1994). Host-Plant Selection by Phytophagous Insects. Chapman & Hall, New York. |
[7] |
Binder BF, Robbins JC, Wilson RL (1995). Chemically mediated ovipositional behaviors of the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). Journal of Chemical Ecology, 21, 1315-1327.
DOI PMID |
[8] |
Bouvier F, Isner JC, Dogbo O, Camara B (2005). Oxidative tailoring of carotenoids: a prospect towards novel functions in plants. Trends in Plant Science, 10, 187-194.
PMID |
[9] |
Bruce TJA, Wadhams LJ, Woodcock CM (2005). Insect host location: a volatile situation. Trends in Plant Science, 10, 269-274.
DOI PMID |
[10] |
Chen F, Tholl D, D’Auria JC, Farooq A, Pichersky E, Gershenzon J (2003). Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. The Plant Cell, 15, 481-494.
DOI URL |
[11] |
D’Alessandro M, Turlings TCJ (2005). In situ modification of herbivore-induced plant odors: a novel approach to study the attractiveness of volatile organic compounds to parasitic wasps. Chemical Senses, 30, 739-753.
DOI URL |
[12] |
D’Alessandro M, Turlings TCJ (2006). Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst, 131, 24-32.
PMID |
[13] |
Dara SK, Hodel DR (2015). Weeping fig thrips (Thysanoptera: Phlaeothripidae) in California and a review of its biology and management options. Journal of Integrated Pest Management, 6, 2. DOI: 10.1093/jipm/pmv001.
DOI |
[14] |
Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198, 16-32.
DOI PMID |
[15] |
Dudareva N, Negre F (2005). Practical applications of research into the regulation of plant volatile emission. Current Opinion in Plant Biology, 8, 113-118.
PMID |
[16] |
Flath RA, Cunningham RT, Mon TR, John JO (1994a). Additional male mediterranean fruitfly (Ceratitis capitata Wied.) attractants from Angelica seed oil (Angelica archangelica L.). Journal of Chemical Ecology, 20, 1969-1984.
DOI URL |
[17] |
Flath RA, Cunningham RT, Mon TR, John JO (1994b). Male lures for mediterranean fruitfly (Ceratitis capitata Wied.): structural analogs of α-copaene. Journal of Chemical Ecology, 20, 2595-2609.
DOI URL |
[18] |
Goh HH, Khairudin K, Sukiran NA, Normah MN, Baharum SN (2016). Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations. Plant Biology, 18, 130-139.
DOI URL |
[19] |
Haber AI, Sims JW, Mescher MC, de Moraes CM, Carr DE (2019). A key floral scent component (β-trans-bergamotene) drives pollinator preferences independently of pollen rewards in seep monkeyflower. Functional Ecology, 33, 218-228.
DOI URL |
[20] |
Köllner TG, Gershenzon J, Degenhardt J (2009). Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry, 70, 1139-1145.
DOI PMID |
[21] | Kong CH, Lou YG (2010). Frontiers of Chemical Ecology. Higher Education Press, Beijing. |
[孔垂华, 娄永根 (2010). 化学生态学前沿. 高等教育出版社, 北京.] | |
[22] |
Krips OE, Willems PE, Gols R, Posthumus MA, Gort G, Dicke M (2001). Comparison of cultivars of ornamental crop Gerbera jamesonii on production of spider mite-induced volatiles, and their attractiveness to the predator, Phytoseiulus persimilis. Journal of Chemical Ecology, 27, 1355-1372.
PMID |
[23] |
Landmann C, Fink B, Festner M, Dregus M, Engel KH, Schwab W (2007). Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Archives of Biochemistry and Biophysics, 465, 417-429.
DOI PMID |
[24] |
Lin YW, Chen F, Lin S, Huang P, Akutse KS, Yu DY, Gao YL (2018). Imidacloprid pesticide regulates Gynaikothrips uzeli (Thysanoptera: Phlaeothripidae) host choice behavior and immunity against Lecanicillium lecanii (Hypocreales: Clavicipitaceae). Journal of Economic Entomology, 111, 2069-2075.
DOI URL |
[25] |
Lin YW, Lin S, Akutse KS, Hussain M, Wang LD (2016). Diaphorina citri induces huanglongbing-infected citrus plant volatiles to repel and reduce the performance of Propylaea japonica. Frontiers in Plant Science, 7, 1969. DOI: 10.3389/fpls.2016.01969.
DOI |
[26] |
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402-408.
DOI PMID |
[27] |
Lopez-Gallego F, Agger SA, Abate-Pella D, Distefano MD, Schmidt-Dannert C (2010). Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic promiscuity and cyclization of farnesyl pyrophosphate geometric isomers. Chembiochem, 11, 1093-1106.
DOI PMID |
[28] |
Maeda T, Kishimoto H, Wright LC, James DG (2015). Mixture of synthetic herbivore-induced plant volatiles attracts more Stethorus punctum picipes (Casey) (Coleoptera: Coccinellidae) than a single volatile. Journal of Insect Behavior, 28, 126-137.
DOI URL |
[29] | Meng HL (2017). Primary Study on the Host Search Mechanism of Bamboo Shoot Wireworms, Melanotus cribricollis. Master degree dissertation, Chinese Academy of Forestry, Beijing. 31-35. |
[孟海林 (2017). 竹林金针虫寄主搜寻机制初步研究. 硕士学位论文, 中国林业科学研究院, 北京. 31-35.] | |
[30] |
Mody K, Collatz J, Dorn S (2015). Plant genotype and the preference and performance of herbivores: cultivar affects apple resistance to the florivorous weevil Anthonomus pomorum. Agricultural and Forest Entomology, 17, 337-346.
DOI URL |
[31] |
Nishida R, Shelly TE, Whittier TS, Kaneshiro KY (2000). α-Copaene, a potential rendezvous cue for the mediterranean fruit fly, Ceratitis Capitata? Journal of Chemical Ecology, 26, 87-100.
DOI URL |
[32] | PubChem (2020). Explore Chemistry. [2021-12-28]. https://pubchem.ncbi.nlm.nih.gov/. |
[33] | Qin JD, Wang CZ (2001). The relation of interaction between insects and plants to evolution. Acta Entomologica Sinica, 44, 360-365. |
[钦俊德, 王琛柱 (2001). 论昆虫与植物的相互作用和进化的关系. 昆虫学报, 44, 360-365.] | |
[34] |
Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylidès C, Havaux M (2012). Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proceedings of the National Academy of Sciences of the United States of America, 109, 5535-5540.
DOI PMID |
[35] |
Riffell JA, Lei H, Christensen TA, Hildebrand JG (2009). Characterization and coding of behaviorally significant odor mixtures. Current Biology, 19, 335-340.
DOI PMID |
[36] |
Roseland CR, Bates MB, Carlson RB, Oseto CY (1992). Discrimination of sunflower volatiles by the red sunflower seed weevil. Entomologia Experimentalis et Applicata, 62, 99-106.
DOI URL |
[37] |
Sacchettini JC, Poulter CD (1997). Creating isoprenoid diversity. Science, 277, 1788-1789.
DOI PMID |
[38] |
Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, Schmidt A, Wilkerson C, Last RL, Pichersky E (2009). Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proceedings of the National Academy of Sciences of the United States of America, 106, 10865-10870.
DOI PMID |
[39] |
Schnee C, Köllner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006). The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proceedings of the National Academy of Sciences of the United States of America, 103, 1129-1134.
DOI PMID |
[40] | Schoonhoven LM, Loon JJAV, Dicke M (2005). Insect-plant Biology. Oxford University Press, Oxford, UK. |
[41] |
Sharma G, Malthankar PA, Mathur V (2021). Insect-plant interactions: a multilayered relationship. Annals of the Entomological Society of America, 114, 1-16.
DOI URL |
[42] |
Shelly TE (2001). Exposure to α-copaene and α-copaene- containing oils enhances mating success of male mediterranean fruit flies (Diptera: Tephritidae). Annals of the Entomological Society of America, 94, 497-502.
DOI URL |
[43] |
Shih TH, Lin SH, Huang MY, Huang WD, Yang CM (2019). Transcriptome profile of the variegated Ficus microcarpa c.v. milky stripe fig leaf. International Journal of Molecular Sciences, 20, 1338. DOI: 10.3390/ijms20061338.
DOI URL |
[44] | Sun ZX, Song YY, Zeng RS (2019). Advances in studies on intraspecific and interspecific relationships mediated by plant volatiles. Journal of South China Agricultural University, 40, 166-174. |
[孙仲享, 宋圆圆, 曾任森 (2019). 植物挥发物介导的种内与种间关系研究进展. 华南农业大学学报, 40, 166-174.] | |
[45] |
Tholl D (2006). Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Current Opinion in Plant Biology, 9, 297-304.
DOI PMID |
[46] |
Tholl D, Boland W, Hansel A, Loreto F, Röse USR, Schnitzler JP (2006). Practical approaches to plant volatile analysis. The Plant Journal, 45, 540-560.
DOI URL |
[47] |
Tingle FC, Mitchell ER, Heath RR (1990). Preferences of mated Heliothis virescens and H. subflexa females for host and nonhost volatiles in a flight tunnel. Journal of Chemical Ecology, 16, 2889-2898.
DOI PMID |
[48] |
Ton J, D’Alessandro M, Jourdie V, Jakab G, Karlen D, Held M, Mauch-Mani B, Turlings TCJ (2007). Priming by airborne signals boosts direct and indirect resistance in maize. The Plant Journal, 49, 16-26.
DOI URL |
[49] |
Turlings TCJ, Loughrin JH, McCall PJ, Röse USR, Lewis WJ, Tumlinson JH (1995). How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proceedings of the National Academy of Sciences of the United States of America, 92, 4169-4174.
DOI PMID |
[50] |
Verkerk RHJ, Wright DJ (1994). Interactions between the diamondback moth, Plutella xylostella L. and glasshouse and outdoor-grown cabbage cultivars. Annals of Applied Biology, 125, 477-488.
DOI URL |
[51] | Wang R, Yang Y, Jing Y, Segar ST, Zhang Y, Wang G, Chen J, Liu QF, Chen S, Chen Y, Cruaud A, Ding YY, Dunn DW, Gao Q, Gilmartin PM, et al. (2021). Molecular mechanisms of mutualistic and antagonistic interactions in a plant-pollinator association. Nature Ecology & Evolution, 5, 974-986. |
[52] | Xiang YY, Liu TX, Zhang SZ (2015). Effect and application of plant volatiles on host selecting behavior of phytophagous insects. Journal of Anhui Agricultural Sciences, 43(28), 92-94. |
[向玉勇, 刘同先, 张世泽 (2015). 植物挥发物在植食性昆虫寄主选择行为中的作用及应用. 安徽农业科学, 43(28), 92-94.] | |
[53] | Yu DY, Huang P, Yao JA, Wang LD, Wang JM (2012). Species of thrips on potted ficus and the degree of damage to different host plants by the dominant species Gynaikothrips uzeli (Thysanoptera: Thripidae). Acta Entomologica Sinica, 55, 832-840. |
[余德亿, 黄鹏, 姚锦爱, 王联德, 王金明 (2012). 盆栽榕树蓟马种类及优势种榕管蓟马对寄主植物的致害性. 昆虫学报, 55, 832-840.] | |
[54] | Yu DY, Yao JA, Huang P, Hu JF, Lan YY (2014). The injury of Gynaikothrips uzeli Zimmermann to potted ficus and its correlation with the host leaves structure and nutrient contents. Journal of Nanjing Agricultural University, 37(2), 38-44. |
[余德亿, 姚锦爱, 黄鹏, 胡进锋, 蓝炎阳 (2014). 榕管蓟马危害与寄主叶片结构及营养物质的关系. 南京农业大学学报, 37(2), 38-44.] | |
[55] |
Yu FN, Utsumi R (2009). Diversity, regulation, and genetic manipulation of plant mono- and sesquiterpenoid biosynthesis. Cellular and Molecular Life Sciences, 66, 3043-3052.
DOI PMID |
[56] |
Zhang T, Wang B, Miao BG, Peng YQ (2017). Chemical composition of volatiles from the syconia of Ficus microcarpa and host recognition behavior of pollinating fig wasps. Chinese Journal of Plant Ecology, 41, 549-558.
DOI URL |
[张亭, 王波, 苗白鸽, 彭艳琼 (2017). 榕树隐头花序挥发物组成及其传粉榕小蜂寄主识别行为. 植物生态学报, 41, 549-558.]
DOI |
|
[57] |
Zhang XT, Wang G, Zhang SC, Chen S, Wang YB, Wen P, Ma XK, Shi Y, Qi R, Yang Y, Liao ZY, Lin J, Lin JS, Xu XM, Chen XQ, et al. (2020). Genomes of the Banyan tree and pollinator wasp provide insights into fig-wasp coevolution. Cell, 183, 875-889.
DOI PMID |
[58] |
Zhou F, Pichersky E (2020). More is better: the diversity of terpene metabolism in plants. Current Opinion in Plant Biology, 55, 1-10.
DOI PMID |
[59] |
Zhou WW, Kügler A, McGale E, Haverkamp A, Knaden M, Guo H, Beran F, Yon F, Li R, Lackus N, Köllner TG, Bing JL, Schuman MC, Hansson BS, Kessler D, et al. (2017). Tissue-specific emission of (E)-α-bergamotene helps resolve the dilemma when pollinators are also herbivores. Current Biology, 27, 1336-1341.
DOI PMID |
[60] |
Zhuang XF, Köllner TG, Zhao N, Li GL, Jiang YF, Zhu LC, Ma JX, Degenhardt J, Chen F (2012). Dynamic evolution of herbivore-induced sesquiterpene biosynthesis in sorghum and related grass crops. The Plant Journal, 69, 70-80.
DOI PMID |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn