Chin J Plant Ecol ›› 2012, Vol. 36 ›› Issue (10): 1062-1074.DOI: 10.3724/SP.J.1258.2012.01062
Previous Articles Next Articles
LIU Shi-Liang1, MA Ming-Dong1,2, PAN Yuan-Zhi1,*(), WEI Liu-Li1,3, HE Cheng-Xiang1, YANG Kai-Mao1
Received:
2012-05-28
Accepted:
2012-07-24
Online:
2012-05-28
Published:
2012-09-26
Contact:
PAN Yuan-Zhi
LIU Shi-Liang, MA Ming-Dong, PAN Yuan-Zhi, WEI Liu-Li, HE Cheng-Xiang, YANG Kai-Mao. Effects of light regimes on photosynthetic characteristics and antioxidant system in seedlings of two alder species[J]. Chin J Plant Ecol, 2012, 36(10): 1062-1074.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2012.01062
Fig. 1 Effect of light regimes on the lamina mass per unit area (LMA) and pigment content in seedling leaves of two Alnus species (mean ± SE). LT1, full light; LT2, (56.2 ± 1.03)% full light; LT3, (12.5 ± 0.21)% full light. L, light; S, tree species; S × L, interaction of tree species and light. **, p < 0.01; *, p < 0.05. Different capital letters indicate significant differences among two tree species under the same light regimes (p < 0.05); Different small letters indicate significant differences among three light regimes of the same species (p < 0.05).
Fig. 2 Light-photosynthetic response curves of two Alnus seedlings under different light regimes. LT1, full light; LT2, (56.2 ± 1.03)% full light; LT3, (12.5 ± 0.21)% full light.
物种 Species | 处理 Treatment | Pmax (μmol CO2 ?m-2?s-1) | LSP (μmol CO2?m-2?s-1) | LCP (μmol CO2 ?m-2?s-1) |
---|---|---|---|---|
台湾桤木 A. formosana | LT1 | 8.52 ± 0.45A, a | 1205.7 ± 104.0A, a | 98.05 ± 1.49B, a |
LT2 | 7.48 ± 0.43A, a | 995.8 ± 55.4A, ab | 83.22 ± 1.76A, b | |
LT3 | 5.46 ± 0.27A, b | 755.9 ± 79.5A, b | 38.42 ± 3.12B, c | |
桤木 A. cremastogyne | LT1 | 7.13 ± 0.05B, a | 877.3 ± 60.9A, a | 104.57 ± 3.02A, a |
LT2 | 6.62 ± 0.30B, a | 749.4 ± 56.1B, a | 86.93 ± 5.04A, b | |
LT3 | 4.75 ± 0.18A, b | 489.6 ±16.0B, b | 84.69 ± 1.06A, b |
Table 1 Maximum net photosynthetic rate (Pmax), light saturation point (LSP) and light compensation point (LCP) for the seedlings of two Alnus species under different light regimes (mean ± SE)
物种 Species | 处理 Treatment | Pmax (μmol CO2 ?m-2?s-1) | LSP (μmol CO2?m-2?s-1) | LCP (μmol CO2 ?m-2?s-1) |
---|---|---|---|---|
台湾桤木 A. formosana | LT1 | 8.52 ± 0.45A, a | 1205.7 ± 104.0A, a | 98.05 ± 1.49B, a |
LT2 | 7.48 ± 0.43A, a | 995.8 ± 55.4A, ab | 83.22 ± 1.76A, b | |
LT3 | 5.46 ± 0.27A, b | 755.9 ± 79.5A, b | 38.42 ± 3.12B, c | |
桤木 A. cremastogyne | LT1 | 7.13 ± 0.05B, a | 877.3 ± 60.9A, a | 104.57 ± 3.02A, a |
LT2 | 6.62 ± 0.30B, a | 749.4 ± 56.1B, a | 86.93 ± 5.04A, b | |
LT3 | 4.75 ± 0.18A, b | 489.6 ±16.0B, b | 84.69 ± 1.06A, b |
物种 Species | 处理 Treatment | Pn (μmol CO2·m-2·s-1) | Tr (mmol H2O·m-2·s-1) | Gs (mmol H2O·m-2 ·s-1) | Ci (μmol CO2?m-2?s-1) | LUE (mmol?mol-1) | Ls |
---|---|---|---|---|---|---|---|
台湾桤木 A. formosana | LT1 | 7.32 ± 0.42A, a | 5.61 ± 0.21A, a | 236.91 ± 13.48A, a | 249.15 ± 15.91A, b | 8.81 ± 0.77A, b | 0.24 ± 0.01B, a |
LT2 | 7.45 ± 0.32A, a | 4.12 ± 0.14A, b | 192.41 ± 4.20A, b | 281.85 ± 12.71A, ab | 13.11 ± 2.12B, b | 0.27 ± 0.01A, a | |
LT3 | 2.96 ± 0.36A, b | 2.93 ± 0.09A, c | 161.09 ± 13.27A, b | 337.01 ± 21.78B, a | 35.98 ± 1.11B, a | 0.14 ± 0.01A, b | |
桤木 A.cremastogyne | LT1 | 6.66 ± 084B, a | 3.73 ± 0.49B, a | 196.32 ± 15.35A, a | 262.24 ± 10.86A, b | 9.63 ± 0.33A, b | 0.29 ± 0.01A, a |
LT2 | 5.47 ± 0.78B, a | 2.89 ± 0.09B, a | 151.46 ± 11.87B, ab | 291.87 ± 7.97A, b | 15.25 ± 3.09A, b | 0.26 ± 0.02A, a | |
LT3 | 2.30 ± 0.45A, b | 1.71 ± 0.22B, b | 108.16 ± 25.93A, b | 340.35 ± 8.39A, a | 30.81 ± 3.70A, a | 0.15 ± 0.01A, b |
Table 2 Gas exchange parameters and instantaneous light utilization efficiency in seedling leaves of two Alnus species under different light regimes (mean ± SE)
物种 Species | 处理 Treatment | Pn (μmol CO2·m-2·s-1) | Tr (mmol H2O·m-2·s-1) | Gs (mmol H2O·m-2 ·s-1) | Ci (μmol CO2?m-2?s-1) | LUE (mmol?mol-1) | Ls |
---|---|---|---|---|---|---|---|
台湾桤木 A. formosana | LT1 | 7.32 ± 0.42A, a | 5.61 ± 0.21A, a | 236.91 ± 13.48A, a | 249.15 ± 15.91A, b | 8.81 ± 0.77A, b | 0.24 ± 0.01B, a |
LT2 | 7.45 ± 0.32A, a | 4.12 ± 0.14A, b | 192.41 ± 4.20A, b | 281.85 ± 12.71A, ab | 13.11 ± 2.12B, b | 0.27 ± 0.01A, a | |
LT3 | 2.96 ± 0.36A, b | 2.93 ± 0.09A, c | 161.09 ± 13.27A, b | 337.01 ± 21.78B, a | 35.98 ± 1.11B, a | 0.14 ± 0.01A, b | |
桤木 A.cremastogyne | LT1 | 6.66 ± 084B, a | 3.73 ± 0.49B, a | 196.32 ± 15.35A, a | 262.24 ± 10.86A, b | 9.63 ± 0.33A, b | 0.29 ± 0.01A, a |
LT2 | 5.47 ± 0.78B, a | 2.89 ± 0.09B, a | 151.46 ± 11.87B, ab | 291.87 ± 7.97A, b | 15.25 ± 3.09A, b | 0.26 ± 0.02A, a | |
LT3 | 2.30 ± 0.45A, b | 1.71 ± 0.22B, b | 108.16 ± 25.93A, b | 340.35 ± 8.39A, a | 30.81 ± 3.70A, a | 0.15 ± 0.01A, b |
Pn | Tr | Gs | Ci | Ls | LUE | |
---|---|---|---|---|---|---|
Pn | 1.00 | |||||
Tr | 0.77** | 1.00 | ||||
Gs | 0.72** | 0.87** | 1.00 | |||
Ci | -0.73** | -0.80** | -0.65** | 1.00 | ||
Ls | 0.81** | 0.50* | 0.49* | -0.73** | 1.00 | |
LUE | -0.89** | -0.66 | -0.68** | 0.79** | -0.89** | 1.00 |
Table 3 Correlation coefficients among gas exchange parameters and LUE in seedling leaves of two Alnus species (n = 18)
Pn | Tr | Gs | Ci | Ls | LUE | |
---|---|---|---|---|---|---|
Pn | 1.00 | |||||
Tr | 0.77** | 1.00 | ||||
Gs | 0.72** | 0.87** | 1.00 | |||
Ci | -0.73** | -0.80** | -0.65** | 1.00 | ||
Ls | 0.81** | 0.50* | 0.49* | -0.73** | 1.00 | |
LUE | -0.89** | -0.66 | -0.68** | 0.79** | -0.89** | 1.00 |
Fig. 3 Diurnal changes of maximum efficiency of PSII photochemistry (Fv/Fm) for the seedling leaves of two Alnus species under different light regimes (mean ± SE). LT1, full light; LT2, (56.2 ± 1.03)% full light; LT3, (12.5 ± 0.21)% full light.
Fig. 4 Diurnal changes of non-photochemical quenching (NPQ) for the seedling leaves of two Alnus species grown under different light regimes (mean ± SE). LT1, full light; LT2, (56.2 ± 1.03)% full light; LT3, (12.5 ± 0.21)% full light.
Fig. 5 Malondialdehyde (MDA) and H2O2 contents in seedling leaves of two Alnus species under different light regimes (mean ± SE). LT1, full light; LT2, (56.2 ± 1.03)% full light; LT3, (12.5 ± 0.21)% full light. L, light; S, tree species; S × L, interaction of tree species and light. **, p < 0.01; *, p < 0.05; ns, p > 0.05. Different capital letters indicate significant differences among two tree species under the same light regimes (p < 0.05); Different small letters indicate significant differences among three light regimes of the same species (p < 0.05).
MDA含量 MDA content | H2O2含量 H2O2 content | CAT活性 CAT activity | SOD活性 SOD activity | APX活性 APX activity | |
---|---|---|---|---|---|
MDA含量 MDA content | 1.00 | ||||
H2O2含量 H2O2 content | 0.20 | 1.00 | |||
CAT活性 CAT activity | 0.15 | 0.82** | 1.00 | ||
SOD活性 SOD activity | -0.21 | 0.81** | 0.84** | 1.00 | |
APX活性 APX activity | -0.04 | 0.80** | 0.91** | 0.89** | 1.00 |
Table 4 Correlation coefficients among malondialdehyde (MDA) content, H2O2 content, superoxide dismutase (SOD) activity, catalase (CAT) activity and ascorbate peroxidase (APX) activity in seedling leaves of two Alnus species (n = 18)
MDA含量 MDA content | H2O2含量 H2O2 content | CAT活性 CAT activity | SOD活性 SOD activity | APX活性 APX activity | |
---|---|---|---|---|---|
MDA含量 MDA content | 1.00 | ||||
H2O2含量 H2O2 content | 0.20 | 1.00 | |||
CAT活性 CAT activity | 0.15 | 0.82** | 1.00 | ||
SOD活性 SOD activity | -0.21 | 0.81** | 0.84** | 1.00 | |
APX活性 APX activity | -0.04 | 0.80** | 0.91** | 0.89** | 1.00 |
Fig. 6 Activities of antioxidant enzyme in seedling leaves of two Alnus species under different light regimes (mean ± SE). APX, ascorbate peroxidase; CAT, catalase; SOD, superoxide dismutase. LT1, full light; LT2, (56.2 ± 1.03)% full light; LT3, (12.5 ± 0.21)% full light. L, light; S, tree species; S × L, interaction of tree species and light. **, p < 0.01; *, p < 0.05; ns, p > 0.05. Different capital letters indicate significant differences among two tree species under the same light regimes (p < 0.05); Different small letters indicate significant differences among three light regimes of the same species (p < 0.05).
1 | Cakmak I, Marschner H ( 1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98, 1222-1227. |
2 | Cardol P, de Paepe R, Franck F, Forti G, Finazzi G ( 2010). The onset of NPQ and ΔμH + upon illumination of tobacco plants studied through the influence of mitochondrial electron transport. Biochimica et Biophysica Acta, 1797, 177-188. |
3 | Chen YT ( 陈益泰), Zhuo RY ( 卓仁英), Wu TL ( 吴天林 ) ( 2004). Introduction and early adaptability of exotic alders. Forest Research (林业科学研究), 17, 139-146. (in Chinese with English abstract) |
4 | Dai YJ, Shen ZG, Liu Y, Wang LL, Hannaway D, Lu HF ( 2009). Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany, 65, 177-182. |
5 | Farquhar GD, Sharkey TD ( 1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33, 317-345. |
6 | Feng YL ( 冯玉龙), Cao KF ( 曹坤芳), Feng ZL ( 冯志立), Ma L ( 马玲 ) ( 2002). Acclimation of lamina mass per unit area, photosynthetic characteristics and dark respiration to growth light regimes in four tropical rainforest species. Acta Ecologica Sinica (生态学报), 22, 901-910. (in Chinese with English abstract) |
7 | Foyer CH, Noctor G ( 1999). Leaves in the dark see the light. Science, 284, 599-601. |
8 | Funk JL, Vitousek PM ( 2007). Resource-use efficiency and plant invasion in low-resource systems. Nature, 446, 1079-1081. |
9 | Giannopolitis CN, Ries SK ( 1977). Superoxide dismutases I. Occurrence in higher plants. Plant Physiology, 59, 309-314. |
10 |
Guo XR ( 郭晓荣), Cao KF ( 曹坤芳), Xu ZF ( 许再富 ) ( 2004). Response of photosynthesis and antioxygenic enzymes in seedlings of three tropical forest tree species to different light environments. Chinese Journal of Applied Ecology (应用生态学报), 15, 377-381. (in Chinese with English abstract)
URL PMID |
11 | Gutiérrez D, Gutiérrez E, Pérez P, Morcuende R, Verdejo AL, Martinez-Carrasco R ( 2009). Acclimation to future atmospheric CO2 levels increases photochemical eff- iciency and mitigates photochemistry inhibition by warm temperatures in wheat under field chambers. Physiologia Plantarum, 137, 86-100. |
12 | Han YZ ( 韩有志), Wang ZQ ( 王政权 ) ( 2002). Spatial heterogeneity and forest regeneration. Chinese Journal of Applied Ecology (应用生态学报), 13, 615-619. (in Chinese with English abstract) |
13 | Herrera A, Tezara W, Marín O, Rengifo E ( 2008). Stomatal and non-stomatal limitations of photosynthesis in trees of a tropical seasonally flooded forest. Physiologia Plantarum, 134, 41-48. |
14 | Huang D, Wu L, Chen JR, Dong L ( 2011). Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels. Photosynthetica, 49, 611-618. |
15 | Huang HY ( 黄红英), Dou XY ( 窦新永), Sun BY ( 孙蓓育), Deng B ( 邓斌), Wu GJ ( 吴国江), Peng CL ( 彭长连 ) ( 2009). Comparison of photosynthetic characteristics in two ecotypes of Jatropha curcas in summer. Acta Ecologica Sinica (生态学报), 29, 2862-2866. (in Chinese with English abstract) |
16 | Jablonski PP, Anderson JW ( 1981). Light-dependent reduction of dehydroascorbate by ruptured pea chloroplasts. Plant Physiology, 67, 1239-1244. |
17 | Jaleel CA, Riadh K, Gopi R, Manivannan P, Inès J, Al-Juburi HJ, Zhao CX, Shao HB, Panneerselvam R ( 2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum, 31, 427-436. |
18 | Johnson DM, Woodruff DR, Mcculloh KA, Meinzer FC ( 2009). Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species. Tree Physiology, 29, 879-887. |
19 | Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y ( 2000). Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant, Cell & Environment, 23, 81-89. |
20 | Krause GH, Koroleva OY, Dalling JW, Winter K ( 2001). Acclimation of tropical tree seedlings to excessive light in simulated tree-fall gaps. Plant, Cell & Environment, 24, 1345-1352. |
21 | Lai YC, Chen CK, Lin WW, Lee SS ( 2012). A comprehensive investigation of anti-inflammatory diarylheptanoids from the leaves of Alnus formosana. Phytochemistry, 73, 84-94. |
22 | Lee YL, Lee MH, Chang HJ, Huang PY, Huang IJ, Cheng KT, Leu SJ ( 2009). Taiwanese native plants inhibit matrix metalloproteinase-9 activity after ultraviolet B irradiation. Molecules, 14, 1062-1071. |
23 | Liao TS, Weng JH ( 2002). Ecophysiological characteristics of Taiwan alder ( Alnus formosana) seedlings adapted to the subtropical region. Tree Physiology, 22, 355-362. |
24 | Lichtenthaler HK ( 1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382. |
25 |
Liu CC ( 刘长成), Liu YG ( 刘玉国), Guo K ( 郭柯 ) ( 2011). Ecophysiological adaptations to drought stress of seedlings of four plant species with different growth forms in karst habitats. Chinese Journal of Plant Ecology (植物生态学报), 35, 1070-1082. (in Chinese with English abstract)
DOI URL |
26 | Liu SJ ( 刘守江), Su ZX ( 苏智先), Wu Y ( 吴勇 ) ( 2004). Floristic analysis of plant community on the east slope of Jiuding Mountain in Sichuan Province. Chinese Journal of Ecology (生态学杂志), 23, 41-44. (in Chinese with English abstract) |
27 | Mao PL ( 毛培利), Zang RG ( 臧润国), Ding Y ( 丁易), Li YD ( 李意德), Lin MX ( 林明献 ) ( 2011). Photosynthetic characteristics of three typical tree species at different succession stages of a tropical montane rain forest on Hainan Island, China. Forest Research (林业科学研究), 24, 563-571. (in Chinese with English abstract) |
28 | Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S ( 2010). Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress. Plant and Cell Physiology, 51, 190-200. |
29 | Munné-Bosch S, Aleger L ( 2000). The xanthophyll cycle is induced by light irrespective of water status in field-grown lavender (Lavandula stoechas) plants. Physiologia Plantarum, 108, 147-151. |
30 | Nakano Y, Asada K ( 1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880. |
31 | Niyogi KK ( 1999). Photoprotection revisited: genetic and molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 333-359. |
32 | Patterson BD, Macrae EA, Ferguson IB ( 1984). Estimation of hydrogen peroxide in plant extracts using titanium (IV). Analytical Biochemistry, 139, 487-492. |
33 | Qi X ( 齐欣), Cao KF ( 曹坤芳), Feng YL ( 冯玉龙 ) ( 2004). Photosynthetic acclimation to different growth light environments in seedlings of three tropical rainforest Syzygium species. Acta Phytoecologica Sinica (植物生态学报), 28, 31-38. (in Chinese with English abstract) |
34 |
Reddy AR, Chaitanya KV, Vivekanandan M ( 2004). Drought- induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161, 1189-1202.
DOI URL |
35 |
Richardson AD, Beryln GP ( 2002). Spectral reflectance and photosynthetic properties of Betula papyrifera( Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA. American Journal of Botany, 89, 88-94.
DOI URL |
36 | Rozendaal DMA, Hurtado VH, Poorter L ( 2006). Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology, 20, 207-216. |
37 | Shirke PA, Pathre UV (2003). Diurnal and seasonal changes in photosynthesis and photosystem 2 photochemical efficiency in Prosopis juliflora leaves subjected to natural environmental stress. Photosynthetica, 2003,41, 83-89. |
38 | Wang BY ( 王博轶), Feng YL ( 冯玉龙 ) ( 2005). Effects of growth light intensities on photosynthesis in seedlings of two tropical rain forest species. Acta Ecologica Sinica (生态学报), 25, 23-30. (in Chinese with English abstract) |
39 | Wang GG, Bauerle WL ( 2006). Effects of light intensity on the growth and energy balance of photosystem II electron transport in Quercus alba seedlings. Annals of Forest Science, 63, 111-118. |
40 | Wang JH ( 王军辉), Gu WC ( 顾万春), Xia LF ( 夏良放), Li B ( 李斌), Guo WY ( 郭文英 ) ( 2001). Genetic variation and selection of wood property of Alnus cremastogyne provenance and family. Forest Research (林业科学研究), 14, 362-368. (in Chinese with English abstract) |
41 | Wang Q ( 王强), Wen XG ( 温晓刚), Zhang QD ( 张其德 ) ( 2003). Progress in studies on photoinhibition. Chinese Bulletin of Botany (植物学通报), 20, 539-548. (in Chinese with English abstract) |
42 | Weng JH, Chen YN, Liao TZ ( 2006). Relationships between chlorophyll fluorescence parameters and photochemical reflectance index of tree species adapted to different temperature regimes. Functional Plant Biology, 33, 241-246. |
43 | Xu F ( 徐飞), Guo WH ( 郭卫华), Xu WH ( 徐伟红), Wang RQ ( 王仁卿 ) ( 2010). Effects of light intensity on growth and photosynthesis of seedlings of Quercus acutissima and Robinia pseudoacacia. Acta Ecologica Sinica (生态学报), 30, 3098-3107. (in Chinese with English abstract) |
44 | Yang Y ( 杨莹), Wang CH ( 王传华), Liu YH ( 刘艳红 ) ( 2010). The effect of low irradiance on growth, photosynthetic characteristics, and biomass allocation in two deciduous broad-leaved tree seedlings in southeast of Hubei Province. Acta Ecologica Sinica (生态学报), 30, 6083-6090. (in Chinese with English abstract) |
45 | Zhang JL ( 张教林), Cao KF ( 曹坤芳 ) ( 2002). The effect of irradiance on photosynthetic capacity, heat dissipation, and antioxidants of seedlings of two tropical rain forest tree species. Acta Phytoecologica Sinica (植物生态学报), 26, 639-646. (in Chinese with English abstract) |
46 | Zhang SY ( 张淑勇), Zhou ZF ( 周泽福), Zhang GC ( 张光灿), Xia JB ( 夏江宝 ) ( 2009). Changes of gas exchange parameters in leaves of natural secondary shrubs Prunus davidiana and Prunus sibirica L. in semi-arid Loess Hilly region. Acta Ecologica Sinica (生态学报), 29, 499-507. (in Chinese with English abstract) |
47 | Zhu WZ ( 朱万泽), Xue JH ( 薛建辉), Wang JX ( 王金锡 ) ( 2004). Effects of water stress on net photosynthesis of Alnus formosana provenances and its drought tolerance. Journal of Soil and Water Conservation (水土保持学报), 18, 170-173, 181. (in Chinese with English abstract) |
[1] | HU Wen-Hai,ZHANG Si-Si,XIAO Yi-An,YAN Xiao-Hong. Physiological responses and photo-protective mechanisms of two Rhododendron plants to natural sunlight after long term shading [J]. Chin J Plan Ecolo, 2015, 39(11): 1093-1100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn