Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (7): 876-888.DOI: 10.3773/j.issn.1005-264x.2010.07.013
• Review • Previous Articles
CHOU Min-Xia1,*(), WEI Xin-Yuan2
Received:
2009-08-18
Accepted:
2010-03-30
Online:
2010-08-18
Published:
2010-07-01
Contact:
CHOU Min-Xia
CHOU Min-Xia, WEI Xin-Yuan. Review of research advancements on the molecular basis and regulation of symbiotic nodulation of legumes[J]. Chin J Plant Ecol, 2010, 34(7): 876-888.
Fig. 1 Diagram of the determinate- and indeterminate-type nodule. A, Schematic representation of the five distinct regions of an indeterminate type nodule. B, The vertical dissection of an indeterminate type nodule of Astragalus sinicus. C, The vertical dissection of a determinate type nodule of soybean. A and B are derived from Naito et al., 2000; C is provided by the laboratory of Biological Nitrogen Fixation, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
[1] | Amor BB, Shaw SL, Oldroyd GE, Maillet F, Penmetsa RV, Cook D, Long SR, Denarie J, Gough C (2003). The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. The Plant Journal: For Cell and Molecular Biology, 34, 495-506. |
[2] |
Andriankaja A, Boisson-Dernier A, Frances L, Sauviac L, Jauneau A, Barker DG, de Carvalho-Niebel F (2007). AP2-ERF transcription factors mediate Nod factor dependent Mt ENOD11 activation in root hairs via a novel cis-regulatory motif. The Plant Cell, 19, 2866-2885.
DOI URL PMID |
[3] |
Ané JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C, Lévy J, Debellé F, Baek JM, Kalo P, Rosenberg C, Roe BA, Long SR, Dénarié J, Cook DR (2004). Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science, 303, 1364-1367.
DOI URL PMID |
[4] |
Ardourel M, Demont N, Debelle F, Maillet F, de Billy F, Prome JC, Denarie J, Truchet G (1994). Rhizobium meliloti lipooligosaccharide nodulation factors, different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. The Plant Cell, 6, 1357-1374.
DOI URL PMID |
[5] |
Asamizu E, Shimoda Y, Kouchi H, Tabata S, Sato S (2008). A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of Lotus japonicus. Plant Physiology, 147, 2030-2040.
DOI URL PMID |
[6] |
Banba M, Gutjahr C, Miyao A, Hirochika H, Paszkowski U, Kouchi H, Imaizumi-Anraku H (2008). Divergence of evolutionary ways among common sym genes, CASTOR and CCaMK show functional conservation between two symbiosis systems and constitute the root of a common signaling pathway. Plant & Cell Physiology, 49, 1659-1671.
DOI URL PMID |
[7] |
Barbulova A, Rogato A, D’Apuzzo E, Omrane S, Chiurazzi M (2007). Differential effects of combined N sources on early steps of the Nod factor-dependent transduction pathway in Lotus japonicus. Molecular Plant-Microbe Interactions, 20, 994-1003.
URL PMID |
[8] |
Bénaben V, Duc G, Lefebvre V, Huguet T (1995). TE7, an inefficient symbiotic mutant of Medicago truncatula. Plant Physiology, 107, 53-62.
DOI URL PMID |
[9] |
Borisov AY, Madsen LH, Tsyganov VE, Umehara Y, Voroshilova VA, Batagov AO, Sandal N, Mortensen A, Schauser L, Ellis N, Tikhonovich IA, Stougaard J (2003). The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus. Plant Physiology, 131, 1009-1017.
URL PMID |
[10] | Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Frugier F (2008). MicroRNA166 controls root and nodule development in Medicago truncatula. The Plant Journal: For Cell and Molecular Biology, 54, 876-887. |
[11] |
Brewin NJ (1991). Development of the legume root nodule. Annual Review of Cell Biology, 7, 191-226.
DOI URL PMID |
[12] | Brewin NJ (1998). Tissue and cell invasion by Rhizobium, the structure and development of infection threads and symbiosomes. In: Spaink HP, Kondorosi A, Hooykaas PJJ eds. The Rhizobiaceae: Molecular Biology of Model Plant- Associated Bacteria. Kluwer Academic Publishers, Dordretch, The Netherlands 417-429. |
[13] |
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008). Widespread translational inhibition by plant miRNAs and siRNAs. Science, 320, 1185-1190.
DOI URL PMID |
[14] |
Capoen W, Goormachtig S, de Rycke R, Schroeyers K, Holsters M (2005). SrSymRK, a plant receptor essential for symbiosome formation. Proceedings of the National Academy of Sciences of the United States of America, 102, 10369-10374.
DOI URL PMID |
[15] |
Cárdenas L, Holdaway-Clarke TL, Sanchez F, Quinto C, Feijo JA, Kunkel JG, Helper PK (2000). Ion changes in legume root hairs responding to Nod factors. Plant Physiology, 123, 443-452.
URL PMID |
[16] |
Chen C, Fan C, Gao M, Zhu H (2009). Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants. Plant Physiology, 149, 306-317.
URL PMID |
[17] |
Chou MX, Wei XY, Chen DS, Zhou JC (2006). Thirteen nodule-specific or nodule-enhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in Astragalus sinicus L. by suppressive subtractive hybridization. Journal of Experimental Botany, 57, 2673-2685.
DOI URL PMID |
[18] |
Combier JP, Küster H, Journet EP, Hohnjec N, Gamas P, Niebel A (2008a). Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. Molecular Plant-Microbe Interactions, 21, 1118-1127.
DOI URL PMID |
[19] |
Combier JP, de Billy F, Gamas P, Niebel A, Rivas S (2008b). Trans-regulation of the expression of the transcription factor MtHAP2-1 by a uORF controls root nodule development. Genes & Development, 22, 1549-1559.
DOI URL PMID |
[20] | Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P, Crespi M, Niebel A (2006). MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by micro- RNA169 in Medicago truncatula. Genes & Development, 20, 3084-3088. |
[21] |
Complainville A, Brocard L, Roberts I, Dax E, Sever N, Sauer N, Kondorosi A, Wolf S, Oparka K, Crespi M (2003). Nodule initiation involves the creation of a new symplasmic field in specific root cells of Medicago species. The Plant Cell, 15, 2778-2791.
DOI URL PMID |
[22] |
Dénarié J, Debellé F, Promé JC (1996). Rhizobium lipo- chitooligosaccharide nodulation factors, signaling molecules mediating recognition and morphogenesis. Annual Review of Biochemistry, 65, 503-535.
URL PMID |
[23] | Dénarié J, Roche P (1991). Rhizobium nodulation signals. In: Verma DPS ed. Molecular Signals in Plant-Microbe Communications CRC Press, London. 295-323. |
[24] |
Endre G, Kereszt A, Kevei Z, Mihacea S, Kaló P, Kiss GB (2002). A receptor kinase gene regulating symbiotic nodule development. Nature, 417, 962-966.
URL PMID |
[25] | Fei H, Vessey JK (2009). Stimulation of nodulation in Medicago truncatula by low concentrations of ammonium: quantitative reverse transcription PCR analysis of selected genes. Plant Physiology, 135, 317-330. |
[26] |
Gleason C, Chaudhuri S, Yang T, Muñoz A, Poovaiah BW, Oldroyd GE (2006). Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature, 441, 1149-1152.
DOI URL PMID |
[27] |
Graham PH, Vance CP (2003). Legumes, importance and constraints to greater use. Plant Physiology, 131, 872-877.
DOI URL PMID |
[28] | Hirsch AM (1992). Developmental biology of legume nodulation. The New Phytologist, 122, 211-237. |
[29] |
Hirsch S, Kim J, Muñoz A, Heckmann AB, Downie JA, Oldroyd GE (2009). GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. The Plant Cell, 21, 545-557.
DOI URL PMID |
[30] |
Imaizumi-Anraku H, Kouchi H, Syono K, Akao S, Kawaguchi M (2000). Analysis of ENOD40 expression in alb1, a symbiotic mutant of Lotus japonicus that forms empty nodules with incompletely developed nodule vascular bundles. Molecular and General Genetics, 264, 402-410.
DOI URL PMID |
[31] |
Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M (2005). Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature, 433, 527-531.
DOI URL PMID |
[32] |
Imlau A, Truernit E, Sauer N (1999). Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. The Plant Cell, 11, 309-322.
URL PMID |
[33] |
Kaló P, Gleason C, Edwards A, Marsh J, Mitra RM, Hirsch S, Jakab J, Sims S, Long SR, Rogers J, Kiss GB, Downie JA, Oldroyd GE (2005). Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science, 308, 1786-1789.
DOI URL PMID |
[34] |
Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EMH, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2006). A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 103, 359-364.
URL PMID |
[35] |
Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J (2002). Shoot control of root development and nodulation is mediated by a receptor like kinase. Nature, 420, 422-426.
DOI URL PMID |
[36] |
Kuppusamy KT, Endre G, Prabhu R, Penmetsa RV, Veereshlingam H, Cook DR, Dickstein R, Vandenbosch KA (2004). LIN, a Medicago truncatula gene required for nodule differentiation and persistence of rhizobial infections. Plant Physiology, 136, 3682-3691.
URL PMID |
[37] |
Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ané JM, Lauber E, Bisseling T, Dénarié J, Rosenberg C, Debellé F (2004). A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science, 303, 1361-1364.
DOI URL PMID |
[38] |
Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003). LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science, 302, 630-633.
DOI URL PMID |
[39] |
Limpens E, Mirabella R, Fedorova E, Franken C, Franssen H, Bisseling T, Geurts R (2005). Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proceedings of the National Academy of Sciences of the United States of America, 102, 10375-10380.
DOI URL PMID |
[40] | Lodwig E, Poole P (2003). Metabolism of Rhizobium bacteroids. Critical Reviews in Plant Sciences, 22, 37-78. |
[41] |
Lodwig EM, Hosie AH, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS (2003). Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature, 422, 722-726.
DOI URL PMID |
[42] |
Lodwig EM, Leonard M, Marroqui S, Wheeler TR, Findlay K, Downie JA, Poole PS (2005). Role of polyhydroxybutyrate and glycogen as carbon storage compounds in pea and bean bacteroids. Molecular Plant-Microbe Interactions, 18, 67-74.
DOI URL PMID |
[43] |
Lohar DP, VandenBosch KA (2005). Grafting between model legumes demonstrates roles for roots and shoots in determining nodule type and host/rhizobia specificity. Journal of Experimental Botany, 56, 1643-1650.
DOI URL PMID |
[44] |
Lough TJ, Lucas WJ (2006). Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annual Review of Plant Biology, 57, 203-232.
URL PMID |
[45] |
Magori S, Kawaguchi M (2009). Long-distance control of nodulation: molecules and models. Molecules and Cells, 27, 129-134.
DOI URL PMID |
[46] |
Magori S, Oka-Kira E, Shibata S, Umehara Y, Kouchi H, Hase Y, Tanaka A, Sato S, Tabata S, Kawaguchi M (2009). TOO MUCH LOVE, a root regulator associated with the long-distance control of nodulation in Lotus japonicus. Molecular Plant-Microbe Interactions, 22, 259-268.
DOI URL PMID |
[47] |
Marsh JF, Rakocevic A, Mitra RM, Brocard L, Sun J, Eschstruth A, Long SR, Schultze M, Ratet P, Oldroyd GE (2007). Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive CCaMK. Plant Physiology, 144, 324-335.
URL PMID |
[48] |
Mergaert P, Nikovics K, Kelemen Z, Maunoury N, Vaubert D, Kondorosi A, Kondorosi E (2003). A novel family in Medicago truncatula consisting of more than 300 nodule- specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiology, 132, 161-173.
URL PMID |
[49] |
Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kaló P, Prabhu R, Marsh JF, Mitra RM, Kereszt A, Dudas B, VandenBosch K, Long SR, Cook DR, Kiss GB, Oldroyd GE (2007). An ERF transcription factor in Medicago truncatula that is essential for nod factor signal transduction. The Plant Cell, 19, 1221-1234.
DOI URL PMID |
[50] |
Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GE, Long SR (2004). A Ca2+/calmodulin- dependent protein kinase required for symbiotic nodule development, gene identification by transcript-based cloning. Proceedings of the National Academy of Sciences of the United States of America, 101, 4701-4705.
DOI URL PMID |
[51] |
Naito Y, Fujie M, Usami S, Murooka Y, Yamada T (2000). The involvement of a cysteine proteinase in the nodule development in Chinese milk vetch infected with Mesorhizobium huakuii subsp. rengei. Plant Physiology, 124, 1087-1096.
URL PMID |
[52] |
Nap JP, Bisseling T (1990). Developmental biology of a plant-prokaryote symbiosis, the legume root nodule. Science, 250, 948-954.
DOI URL PMID |
[53] |
Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M (2002a). HAR1 mediates systemic regulation of symbiotic organ development. Nature, 420, 426-429.
DOI URL PMID |
[54] |
Nishimura R, Ohmori M, Fujita H, Kawaguchi M (2002b). A Lotus basic leucine zipper protein with a RING-finger motif negatively regulates the developmental program of nodulation. Proceedings of the National Academy of Sciences of the United States of America, 99, 15206-15210.
DOI URL PMID |
[55] |
Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008). Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science, 319, 294.
DOI URL PMID |
[56] | Oka-Kira E, Tateno K, Miura K, Haga T, Hayashi M, Harada K, Sato S, Tabata S, Shikazono N, Tanaka A, Watanabe Y, Fukuhara I, Nagata T, Kawaguchi M (2005). klavier (klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. The Plant Journal: For Cell and Molecular Biology, 44, 505-515. |
[57] |
Okamoto S, Ohnishi E, Sato S, Takahashi H, Nakazono M, Tabata S, Kawaguchi M (2009). Nod factor/nitrate- induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. Plant & Cell Physiology, 50, 67-77.
DOI URL PMID |
[58] | Oldroyd GE, Mitra RM, Wais RJ, Long SR (2001). Evidence for structurally specific negative feedback in the Nod factor signal transduction pathway. The Plant Journal: For Cell and Molecular Biology, 28, 191-199. |
[59] |
Peiter E, Sun J, Heckmann AB, Venkateshwaran M, Riely BK, Otegui MS, Edwards A, Freshour G, Hahn MG, Cook DR, Sanders D, Oldroyd GE, Downie JA, Ané JM (2007). The Medicago truncatula DMI1 protein modulates cytosolic calcium signaling. Plant Physiology, 145, 192-203.
DOI URL PMID |
[60] | Penmetsa RV, Uribe P, Anderson J, Lichtenzveig J, Gish JC, Nam YW, Engstrom E, Xu K, Sckisel G, Pereira M, Baek JM, Lopez-Meyer M, Long SR, Harrison MJ, Singh KB, Kiss GB, Cook DR (2008). The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. The Plant Journal: For Cell and Molecular Biology, 55, 580-595. |
[61] |
Prell J, Poole P (2006). Metabolic changes of rhizobia in legume nodules. Trends in Microbiology, 14, 161-168.
URL PMID |
[62] |
Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Grønlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2003). Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 425, 585-592.
DOI URL PMID |
[63] | Riely BK, Lougnon G, Ané JM, Cook DR (2007). The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots. The Plant Journal: For Cell and Molecular Biology, 49, 208-216. |
[64] |
Schauser L, Roussis A, Stiller J, Stougaard J (1999). A plant regulator controlling development of symbiotic root nodules. Nature, 402, 191-195.
DOI URL PMID |
[65] |
Schnabel E, Journet EP, de Carvalho-Niebel F, Duc G, Frugoli J (2005). The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Molecular Biology, 58, 809-822.
DOI URL PMID |
[66] |
Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003). Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science, 299, 109-112.
DOI URL PMID |
[67] |
Shaw SL, Long SR (2003). Nod factor elicits two separable calcium responses in Medicago truncatula root hair cells. Plant Physiology, 131, 976-984.
DOI URL PMID |
[68] |
Smit P, Limpens E, Geurts R, Fedorova E, Dolgikh E, Gough C, Bisseling T (2007). Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling. Plant Physiology, 145, 183-191.
DOI URL PMID |
[69] |
Smit P, Raedts J, Portyanko V, Debelle F, Gough C, Bisseling T, Geurts R (2005). NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science, 308, 1789-1791.
DOI URL PMID |
[70] |
Starker CG, Parra-Colmenares AL, Smith L, Mitra RM, Long SR (2006). Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression. Plant Physiology, 140, 671-680.
DOI URL PMID |
[71] | Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002). A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature, 27, 959-962. |
[72] | Subramanian S, Stacey G, Yu O (2006). Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. The Plant Journal: For Cell and Molecular Biology, 48, 261-273. |
[73] |
Szczyglowski K, Amyot L (2003). Symbiosis, inventiveness by recruitment? Plant Physiology, 131, 935-940.
DOI URL PMID |
[74] |
Tansengco ML, Hayashi M, Kawaguchi M, Imaizumi-Anraku H, Murooka Y (2003). crinkle, a novel symbiotic mutant that affects the infection thread growth and alters the root hair, trichome, and seed development in Lotus japonicus. Plant Physiology, 131, 1054-1063.
DOI URL PMID |
[75] |
Teillet A, Garcia J, de Billy F, Gherardi M, Huguet T, Barker DG, de Carvalho-Niebel F, Journet EP (2008). api, a novel Medicago truncatula symbiotic mutant impaired in nodule primordium invasion. Molecular Plant-Microbe Interactions, 21, 535-546.
DOI URL PMID |
[76] |
Timmers ACJ, Auriac MC, Truchet G (1999). Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development, 126, 3617-3628.
URL PMID |
[77] |
Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH, Miwa H, Nakagawa T, Sandal N, Albrektsen AS, Kawaguchi M, Downie A, Sato S, Tabata S, Kouchi H, Parniske M, Kawasaki S, Stougaard J (2006). Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature, 441, 1153-1156.
DOI URL PMID |
[78] |
van Brussel AA, Bakhuizen R, van Spronsen PC, Spaink HP, Tak T, Lugtenberg BJ, Kijne JW (1992). Induction of pre-infection thread structures in the leguminous host plant by mitogenic Lipooligosaccharides of Rhizobium. Science, 257, 70-72.
DOI URL PMID |
[79] | van Kammen A (1984). Suggested nomenclature for plant genes involved in nodulation and symbiosis. Plant Molecular Biology Reporter, 2, 43-45. |
[80] |
van Spronsen PC, Bakhuizen R, van Brussel A, Kijne JW (1994). Cell wall degradation during infection thread formation by the root nodule bacterium Rhizobium leguminosarum is a two-step process. European Journal of Cell Biology, 64, 88-94.
URL PMID |
[81] |
van Spronsen PC, Gronlund M, Pacios Bras C, Spaink HP, Kijne JW (2001). Cell biological changes of outer cortical root cells in early determinate nodulation. Molecular Plant-Microbe Interactions, 14, 839-847.
DOI URL PMID |
[82] |
Vasse J, de Billy F, Camut S, Truchet G (1990). Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. Journal of Bacteriology, 172, 4295-4306.
DOI URL PMID |
[83] |
Veereshlingam H, Haynes JG, Penmetsa RV, Cook DR, Sherrier DJ, Dickstein R (2004). nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response. Plant Physiology, 136, 3692-3702.
DOI URL PMID |
[84] |
Vernié T, Moreau S, de Billy F, Plet J, Combier JP, Rogers C, Oldroyd G, Frugier F, Niebel A, Gamas P (2008). EFD is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. The Plant Cell, 20, 2696-2713.
DOI URL PMID |
[85] |
Wais RJ, Galera C, Oldroyd G, Catoira R, Penmetsa RV, Cook D, Gough C, Denarie J, Long SR (2000). Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 97, 13407-13412.
DOI URL PMID |
[86] |
Wais RJ, Keating DH, Long SR (2002). Structure-function analysis of Nod factor-induced root hair calcium spiking in Rhizobium-legume symbiosis. Plant Physiology, 129, 211-224.
DOI URL PMID |
[87] |
Walker SA, Viprey V, Downie JA (2000). Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by Nod factors and chitin oligomers. Proceedings of the National Academy of Sciences of the United States of America, 97, 13413-13418.
DOI URL PMID |
[88] |
Wasson AP, Pellerone FI, Mathesius U (2006). Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. The Plant Cell, 18, 1617-1629.
DOI URL PMID |
[1] | Xiao-Lan ZHENG, Rui-Jiao WANG, Qun-Fa ZHAO, Yong-Peng LIU, Yuan-Yuan WANG, Zhi-Qiang SUN. Ecophysiological mechanisms of plant growth under the influence of rhizosphere oxygen concentration: A review [J]. Chin J Plan Ecolo, 2017, 41(7): 805-814. |
[2] | LIU Shuang-E,LI Yi-Yong,FANG Xiong,HUANG Wen-Juan,LONG Feng-Ling,LIU Ju-Xiu. Effects of the level and regime of nitrogen addition on seedling growth of four major tree species in subtropical China [J]. Chin J Plan Ecolo, 2015, 39(10): 950-961. |
[3] | LI Su-Mei, LONG Chun-Lin, DAO Zhi-Ling. AN EFFECTIVE WAY TO IMPROVE SOIL FERTILITY IN TRADITIONAL AGROFORESTRY: PLANTING ALNUS NEPALENSIS [J]. Chin J Plant Ecol, 2006, 30(5): 878-886. |
[4] | Wang Zuo-ming, Yi Wei-ming, Yu Zuo-yue, Ding Ming-mao. Responses of Tree Legumes to Rhizobial Reinoculation [J]. Chin J Plan Ecolo, 1996, 20(4): 363-370. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn