Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (12): 1472-1484.DOI: 10.3773/j.issn.1005-264x.2010.12.014
• Review • Previous Articles
Received:
2009-12-21
Accepted:
2010-08-23
Online:
2010-12-21
Published:
2010-12-28
Contact:
MOU Pu
LIU Yan-Bin, MOU Pu. Mycorrhizal plasticity of plant nutrient foraging: a review of ectomycorrhizal plasticity[J]. Chin J Plant Ecol, 2010, 34(12): 1472-1484.
菌根类型 Mycorrhiza type | 内生菌根 Endomycorrhizae | 外生菌根 Ectomycorrhiza | 内外生菌根 Ectendomycorrhiza | 欧石楠类 菌根 Ericoid mycorrhizas | 浆果鹃类菌根 Arbutoid mycorrhizas | 水晶兰类菌根 Monotropoid mycorrhizas | 兰科菌根 Orchid mycorrhizas |
---|---|---|---|---|---|---|---|
结构特征 Construction | 在植物根部的表皮细胞内和细胞间有菌丝, 并且在细胞内菌丝发育成丛枝体和囊泡 Intercellular and intracellular hyphae inside plant root cortical cells, developed arbscules and vesicules in the cells | 菌丝鞘 Fungal mantle 哈氏网 Hartig net 外延菌丝 Extraradical mycelium | 菌丝鞘 Fungal mantle 哈氏网 Hartig net 菌丝在植物根部表皮细胞内形成复杂结构 Hyphae form complex structure in plant root cortical cells | 菌丝在植物根部表皮细胞内形成菌丝复合体 Fungal hyphae form complexes in the plant root cortical cells 外延菌丝不发达 Extraradical mycelium limited | 菌丝鞘 Fungal mantle 哈氏网 Hartig net 植物根表皮细胞内复合结构Complexes in the plant root cortical cells | 菌丝鞘 Fungal mantle 哈氏网 Hartig net 钉状结构进入根表皮细胞 Hyphae form “pegs” enter epidermal cell | 在植物根表皮细胞内形成菌丝团状结构 Form extracellular coils (pelotons) in root cortical cells 外延菌丝不发达 Extraradical mycelium limited |
真菌种类 Fungal taxa | 球囊霉门 Glomeromycota | 担子菌门 Basidiomycota 子囊菌门 Ascomycota 接合菌门 Zygomycota | 担子菌门 Basidiomycota 子囊菌门 Ascomycota | 子囊菌门 Ascomycota | 担子菌门Basidiomycota | 担子菌门 Basidiomycota | 担子菌门 Basidiomycota |
共生植物种类 Plant taxa | 蕨类植物门 Pteridophyta 苔藓植物门 Bryophyta 裸子植物门 Gymnospermae 被子植物门 Angiospermae | 裸子植物门 Gymnospermae 被子植物门 Angiospermae | 裸子植物门 Gymnospermae 被子植物门 Angiospermae | 杜鹃科 Ericaceae 岩高兰科 Empetraceae 掌脉石楠科Epacridaceae 苔藓植物门Bryophyta | 杜鹃目 Ericales | 水晶兰科 Monotropoideae | 兰科 Orchidales |
Table 1 Comparison of seven mycorrhiza types
菌根类型 Mycorrhiza type | 内生菌根 Endomycorrhizae | 外生菌根 Ectomycorrhiza | 内外生菌根 Ectendomycorrhiza | 欧石楠类 菌根 Ericoid mycorrhizas | 浆果鹃类菌根 Arbutoid mycorrhizas | 水晶兰类菌根 Monotropoid mycorrhizas | 兰科菌根 Orchid mycorrhizas |
---|---|---|---|---|---|---|---|
结构特征 Construction | 在植物根部的表皮细胞内和细胞间有菌丝, 并且在细胞内菌丝发育成丛枝体和囊泡 Intercellular and intracellular hyphae inside plant root cortical cells, developed arbscules and vesicules in the cells | 菌丝鞘 Fungal mantle 哈氏网 Hartig net 外延菌丝 Extraradical mycelium | 菌丝鞘 Fungal mantle 哈氏网 Hartig net 菌丝在植物根部表皮细胞内形成复杂结构 Hyphae form complex structure in plant root cortical cells | 菌丝在植物根部表皮细胞内形成菌丝复合体 Fungal hyphae form complexes in the plant root cortical cells 外延菌丝不发达 Extraradical mycelium limited | 菌丝鞘 Fungal mantle 哈氏网 Hartig net 植物根表皮细胞内复合结构Complexes in the plant root cortical cells | 菌丝鞘 Fungal mantle 哈氏网 Hartig net 钉状结构进入根表皮细胞 Hyphae form “pegs” enter epidermal cell | 在植物根表皮细胞内形成菌丝团状结构 Form extracellular coils (pelotons) in root cortical cells 外延菌丝不发达 Extraradical mycelium limited |
真菌种类 Fungal taxa | 球囊霉门 Glomeromycota | 担子菌门 Basidiomycota 子囊菌门 Ascomycota 接合菌门 Zygomycota | 担子菌门 Basidiomycota 子囊菌门 Ascomycota | 子囊菌门 Ascomycota | 担子菌门Basidiomycota | 担子菌门 Basidiomycota | 担子菌门 Basidiomycota |
共生植物种类 Plant taxa | 蕨类植物门 Pteridophyta 苔藓植物门 Bryophyta 裸子植物门 Gymnospermae 被子植物门 Angiospermae | 裸子植物门 Gymnospermae 被子植物门 Angiospermae | 裸子植物门 Gymnospermae 被子植物门 Angiospermae | 杜鹃科 Ericaceae 岩高兰科 Empetraceae 掌脉石楠科Epacridaceae 苔藓植物门Bryophyta | 杜鹃目 Ericales | 水晶兰科 Monotropoideae | 兰科 Orchidales |
[1] |
Allaway WG, Ashford AE (2001). Motile tubular vacuoles in extramatrical mycelium and sheath hyphae of ectomycorr- hizal systems. Protoplasma, 215, 218-225.
DOI URL |
[2] |
Anderson IC, Cairney JWG (2007). Ectomycorrhizal fungi: exploring the mycelial frontier. FEMS Microbiology Reviews, 31, 388-406.
DOI URL PMID |
[3] | Ashford AE, Allaway WG (1982). A sheathing mycorrhiza on Pisonia grandis R. BR.(Nyctaginaceae) with develop- ment of transfer cells rather than hartig net. New Phytol- ogist, 90, 511-519. |
[4] |
Bååth E (2003). The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Microbial Ecology, 45, 373-383.
DOI URL |
[5] |
Bago B, Cano C, Azcon-Aguilar C, Samson J, Coughlan AP, Piche Y (2004). Differential morphogenesis of the extrara- dical mycelium of an arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous culture media. Mycologia, 96, 452-462.
URL PMID |
[6] |
Bago B, Pfeffer PE, Shachar-Hill Y (2000). Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology, 124, 949-958.
DOI URL PMID |
[7] |
Bending GD, Read DJ (1995). The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytologist, 130, 401-409.
DOI URL |
[8] | Bidartondo MI, Ek H, Wallander H, Söderström B (2001). Do nutrient additions alter carbon sink strength of ectomycorrhizal fungi? New Phytologist, 151, 543-550. |
[9] | Bliss KM, Jones RH, Mitchell RJ, Mou PP (2002). Are competitive interactions influenced by spatial nutrient heterogeneity and root foraging behavior? New Phytologist, 154, 409-417. |
[10] |
Blum JD, Klaue A, Nezat CA, Driscoll CT, Johnson CE, Siccama TG, Eagar C, Fahey TJ, Likens GE (2002). Mycorr- hizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature, 417, 729-731.
DOI URL PMID |
[11] | Bolan NS (1991). A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil, 134, 189-207. |
[12] |
Borges RM (2008). Plasticity comparisons between plants and animals: concepts and mechanisms. Plant Signaling & Behavior, 3, 367-375.
DOI URL PMID |
[13] | Bradshaw AD (1965). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115-155. |
[14] |
Brandes B, Godbold DL, Kuhn AJ, Jentschke G (1998). Nitrogen and phosphorus acquisition by the mycelium of the ectomycorrhizal fungus Paxillus involutus and its effect on host nutrition. New Phytologist, 140, 735-743.
DOI URL |
[15] |
Brundrett MC (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154, 275-304.
DOI URL |
[16] |
Cairney JWG (2000). Evolution of mycorrhiza system. Naturwissenschaften, 87, 467-475.
DOI URL PMID |
[17] |
Campbell BD, Grime JP (1989). A new method of exposing developing root systems to controlled patchiness in mineral nutrient supply. Annals of Botany, 63, 395-400.
DOI URL |
[18] | Cardon ZG, Whitbeck JL (2007). The Rhizosphere: an Ecological Perspective. Academic Press, San Diego. |
[19] |
Casper BB, Cahill JrJF (1996). Limited effects of soil nutrient heterogeneity on populations of Abutilon theophrasti(Malvaceae). American Journal of Botany, 83, 333-341.
DOI URL |
[20] | Chen DM, Taylor AFS, Burke RM, Cairney JWG (2001). Identification of genes for lignin peroxidases and manganese peroxidases in ectomycorrhizal fungi. New Phytologist, 152, 151-158. |
[21] |
de Kroon H, Liesje M (2006). Root foraging theory put to the test. Trends in Ecology & Evolution, 21, 113-116.
DOI URL PMID |
[22] |
de Kroon H, Visser EJW, Huber H, Mommer L, Hutchings MJ (2009). A modular concept of plant foraging behaviour: the interplay between local responses and systemic control. Plant, Cell & Environment, 32, 704-712.
DOI URL PMID |
[23] | Dell B, Malajczuk N, Bougher NL, Thomson G (1994). Development and function of Pisolithus and Scleroderma ectomycorrhizas formed in vivo with Allocasuarina, Casuarina and Eucalyptus. Mycorrhiza, 5, 129-138. |
[24] | Dickie IA, Xu B, Koide RT (2002). Vertical niche differentia- tion of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytologist, 156, 527-535. |
[25] |
di Pietro M, Churin JL, Garbaye J (2007). Differential ability of ectomycorrhizas to survive drying. Mycorrhiza, 17, 547-550.
DOI URL PMID |
[26] |
Donnelly DP, Lynne B, Jonathan LR (2004). Development, persistence and regeneration of foraging ectomycorrhizal mycelial systems in soil microcosms. Mycorrhiza, 14, 37-45.
DOI URL PMID |
[27] | Duddridge JA, Malibari A, Read DJ (1980). Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature, 287, 834-836. |
[28] | Ek H (1997). The influence of nitrogen fertilization on the carbon economy of Paxillus involutus in ectomycorrhizal association with Betula pendula. New Phytologist, 135, 133-142. |
[29] | Einsmann JC, Jones RH, Mou P, Mitchell RJ (1999). Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms. Journal of Ecology, 87, 609-619. |
[30] | Eissenstat DM, Yanai RD (1997). The ecology of root lifespan. Advances in Ecological Research, 27, 1-60. |
[31] | Erland S, Söderström B, Andersson S (1990). Effects of liming on ectomycorrhizal fungi infecting Pinus sylvestris L. II. Growth rates in pure culture at different pH values compared to growth rates in symbiosis with the host plant. New Phytologist, 115, 683-688. |
[32] | Finlay RD, Frostegård Å, Sonnerfeldt AM (1992). Utilization of organic and inorganic nitrogen sources by ectomycorr- hizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. New Phytologist, 120, 105-115. |
[33] | Fitter AH (1991). Costs and benefits of mycorrhizas, implications for functioning under natural conditions. Experientia, 47, 350-355. |
[34] | Gavito ME, Olsson PA (2008). Foraging strategies of the external mycelium of the arbuscular mycorrhizal fungi Glomus intraradices and Scutellospora calospora. Applied Soil Ecology, 39, 282-290. |
[35] | Genney DR, Anderson IC, Alexander IJ (2006). Fine-scale distribution of pine ectomycorrhizas and their extrama- trical mycelium. New Phytologist, 170, 381-390. |
[36] |
Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008). Strigolactone inhibition of shoot branching. Nature, 455, 189-194.
DOI URL PMID |
[37] |
Hagerberg D, Wallander H (2002). The impact of forest residue removal and wood ash amendment on the growth of the ectomycorrhizal external mycelium. FEMS Microbiology Ecology, 39, 139-146.
DOI URL PMID |
[38] | Harley JL, Smith SE (1983). Mycorrhizal Symbiosis 1st edn. Academic Press, London. |
[39] | Harper JL (1977). Population Biology of Plants. Academic Press, London. |
[40] |
Harrison KA, Bol R, Bardgett RD (2007). Preferences for different nitrogen forms by coexisting plant species and soil microbes. Ecology, 88, 989-999.
DOI URL PMID |
[41] | He X, Bledsoe CS, Zasoski RJ, Southworth D, Horwath WR (2006). Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytologist, 170, 143-151. |
[42] |
Hedh J, Wallander H, Erland S (2008). Ectomycorrhizal mycelial species composition in apatite amended and non-amended mesh bags buried in a phosphorus-poor spruce forest. Mycological Research, 112, 681-688.
DOI URL PMID |
[43] |
Hobbie EA (2006). Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation culture studies. Ecology, 87, 563-569.
DOI URL PMID |
[44] | Hodge A (2004). The plastic plant, root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24. |
[45] | Hodge A (2006). Plastic plants and patchy soils. Journal Experimental Botany, 57, 401-411. |
[46] | Hodge A (2009). Root decisions. Plant, Cell & Environment, 36, 628-640. |
[47] | Hoeksema JD, Kummel M (2003). Ecological persistence of the plant-mycorrhizal mutualism: a hypothesis from species coexistence theory. The American Naturalist, 162(s4), S40-S50. |
[48] | Högberg MN (2006). Discrepancies between ergosterol and the phospholipid fatty acid 18:2ω6,9 as biomarkers for fungi in boreal forest soils. Soil Biology and Biochemistry, 38, 3431-3435. |
[49] | Högberg MN, Högberg P (2002). Extramatrical ectomycorr- hizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytologist, 154, 791-795. |
[50] |
Jackson RB, Manwaring JH, Caldwell MM (1990). Rapid physiological adjustment of roots to localized soil enrichment. Nature, 344, 58-60.
DOI URL PMID |
[51] | Jentschke G, Brandes B, Kuhn AJ, Schröder WH, Godbold DL (2001a). Interdependence of phosphorus, nitrogen, potas- sium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus. New Phytologist, 149, 327-337. |
[52] | Jentschke G, Godbold DL, Bettina B (2001b). Nitrogen limitation in mycorrhizal Norway spruce (Picea abies) seedlings induced mycelial foraging for ammonium, implications for Ca and Mg uptake. Plant and Soil, 234, 109-117. |
[53] | Jones MD, Durall DM, Cairney JWG (2003). Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytologist, 157, 399-422. |
[54] | Kemble SW, de Kroon H, Cahill JF, Mommer L (2008). Improving the scale and precision of hypotheses to explain root foraging ability. Annal of Botany, 101, 1295-1301. |
[55] | King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherty P (2002). Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 154, 389-398. |
[56] |
Kranabetter J, Durall D, MacKenzie W (2009). Diversity and species distribution of ectomycorrhizal fungi along productivity gradients of a southern boreal forest. Mycorrhiza, 19, 99-111.
DOI URL PMID |
[57] | Laczko E, Boller T, Wiemken V (2004). Lipids in roots of Pinus sylvestris seedlings and in mycelia of Pisolithus tinctorius during ectomycorrhiza formation, changes in fatty acid and sterol composition. Plant, Cell & Environ- ment, 27, 27-40. |
[58] |
Landeweert R, Veenman C, Kuyper TW, Fritze H, Wernars K, Smit E (2003). Quantification of ectomycorrhizal mycelium in soil by real-time PCR compared to conventional quantification techniques. FEMS Microbiology Ecology, 45, 283-292.
DOI URL PMID |
[59] | Leake JR, Duran AL, Hardy KE, Johnson I, Beerling DJ, Banwart SA, Smits MM (2008). Biological weathering in soil: the role of symbiotic root-associated fungi biosensing minerals and directing photosynthate-energy into grain- scale mineral weathering. Mineralogical Magazine, 72, 85-89. |
[60] |
LePage BA, Currah RS, Stockey RA, Rothwell GW (1997). Fossil ectomycorrhizae from the Middle Eocene. American Journal of Botany, 84, 410-412.
URL PMID |
[61] | Magyar G, Kun Á, Oborny B, Stuefer JF (2007). Importance of plasticity and decision-making strategies for plant resource acquisition in spatio-temporally variable environments. New Phytologist, 174, 182-193. |
[62] |
Mahmood S, Finlay RD, Erland S, Wallander H (2001). Solubilisation and colonisation of wood ash by ectomycorrhizal fungi isolated from a wood ash fertilised spruce forest. FEMS Microbiology Ecology, 35, 151-161.
DOI URL PMID |
[63] |
McGuire KL (2007). Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology, 88, 567-574.
DOI URL PMID |
[64] | McNickle GG, Cahill JFJr (2009). Plant root growth and the marginal value theorem. Proceedings of the National Academy of Sciences of the United States of America, 160, 4747-4751. |
[65] |
Mikihisa U, Atsushi H, Satoko Y, Kohki A, Tomotsugu A, Noriko TK, Hiroshi M, Yuji K, Ken S, Koichi Y, Junko K, Shinjiro Y (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455, 195-200.
DOI URL PMID |
[66] |
Moore AEP, Massicotte HB, Peterson RL (1989). Ectomycorrhiza formation between Eucalyptus pilularis Sm. and Hydnangium carneum Wallr. in Dietr. New Phytologist, 112, 193-204.
DOI URL |
[67] |
Moore-Kucera J, Dick R (2008). PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir Chronosequence. Microbial Ecology, 55, 500-511.
DOI URL |
[68] |
Mou P, Jones RH, Mitchell RJ, Zutter B (1995). Spatial distribution of roots in Sweetgum and Loblolly Pine monocultures and relations with above-ground biomass and soil nutrients. Functional Ecology, 9, 689-699.
DOI URL |
[69] |
Mou P, Mitchell RJ, Jones RH (1997). Root distribution of two tree species under a heterogeneous nutrient environment. Journal of Applied Ecology, 34, 645-656.
DOI URL |
[70] | Nasholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998). Boreal forest plants take up organic nitrogen. Nature, 392, 914-916. |
[71] | Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008). Plants can use protein as a nitrogen source without assistance from other organisms. Proceedings of the National Academy of Sciences of the United States of America, 105, 4525-4529. |
[72] | Peterson RL, Massicotte HB, Melville LH (2004). Mycorrhi- zas, Anatomy and Cell Biology. NRC Research Press, P. B. Cavers. Ottawa, Canada. |
[73] |
Philip L, Simard S (2008). Minimum pulses of stable and radioactive carbon isotopes to detect belowground carbon transfer between plants. Plant and Soil, 308, 23-35.
DOI URL |
[74] | Plassard C, Bonafos B, Touraine B (2000). Differential effects of mineral and organic N sources, and of ectomycorrhizal infection by Hebeloma cylindrosporum, on growth and N utilization in Pinus pinaster. Plant, Cell & Environment, 23, 1195-1205. |
[75] | Plassard C, Guérin-Laguette A, Véry AA, Casarin V, Thibaud JB (2002). Local measurements of nitrate and potassium fluxes along roots of maritime pine. Effects of ectomyc- orrhizal symbiosis. Plant, Cell & Environment, 25, 75-84. |
[76] |
Raidl S, Bonfigli R, Agerer R (2005). Calibration of quantitative real-time Taqman PCR by correlation with hyphal biomass and its copies in mycelia of Piloderma croceum. Plant Biology, 7, 713-717.
URL PMID |
[77] |
Rajaniemi TK (2007). Root foraging traits and competitive ability in heterogeneous soils. Oecologia, 153, 145-152.
DOI URL PMID |
[78] | Read DJ (1991). Mycorrhizas in ecosystems. Cellular and Molecular Life Sciences, 47, 376-391. |
[79] | Read DJ, Leake JR, Perez-Moreno J (2004). Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany, 82, 1243-1263. |
[80] | Reinhard A (2006). Fungal relationships and structural identity of their ectomycorrhizae. Mycological Progress, 5, 67-107. |
[81] |
Robertson SJ, McGill WB, Massicotte HB, Rutherford PM (2007). Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective. Biological Reviews, 82, 213-240.
DOI URL PMID |
[82] | Robinson D (1994). The responses of plants to non-uniform supplies of nutrients. New Phytologist, 127, 635-674. |
[83] | Sayer JA, Gadd GM (1997). Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger. Mycological Research, 101, 653-661. |
[84] | Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997). Net transfer of carbon between ectomycorrhizal tree species in the field. Nature, 388, 579-582. |
[85] | Smith SE, Read DJ (1997). Mycorrhizal Symbiosis 2nd edn. Academic Press, New York. |
[86] | Smith SE, Read DJ (2008). Mycorrhizal Symbiosis 3rd edn. Academic Press, New York. |
[87] | Talbot JM, Allison SD, Treseder KK (2008). Decomposers in disguise, mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology, 22, 955-963. |
[88] |
Tedersoo L, Suvi T, Jairus T, Kõljalg U (2008). Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environmental Microbiology, 10, 1189-1201.
DOI URL PMID |
[89] | Torgny U, Sun YP (1995). Extramatrical structures of hydrophobic and hydrophilic ectomycorrhizal fungi. Myc- orrhiza, 5, 301-311. |
[90] |
van Aarle I, Viennois G, Amenc L, Tatry MV, Luu D, Plassard C (2007). Fluorescent in situ RT-PCR to visualise the expression of a phosphate transporter gene from an ectomycorrhizal fungus. Mycorrhiza, 17, 487-494.
DOI URL PMID |
[91] |
van der Heijden MGA, Sanders IR (2003). Mycorrhizal Ecology. Springer, Heiderlberg.
DOI URL PMID |
[92] | van Schöll L, Keltjens WG, Hoffland E, Breemen N (2005). Effect of ectomycorrhizal colonization on the uptake of Ca, Mg and Al by Pinus sylvestris under aluminium toxicity. Forest Ecology and Management, 215, 352-360. |
[93] | van Schöll L, Kuyper T, Smits M, Landeweert R, Hoffland E, Breemen N (2008). Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant and Soil, 303, 35-47. |
[94] | van Schöll L, Smits MM, Hoffland E (2006). Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytologist, 171, 805-814. |
[95] | Varma A (2008). Mycorrhiza, State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco- Physiology, Structure and Systematics. Springer, Berlin. |
[96] | Wallander H (1995). A new hypothesis to explain allocation of dry matter between mycorrhizal fungi and pine seedlings in relation to nutrient supply. Plant and Soil, 168-169, 243-248. |
[97] | Wallander H, Nilsson LO, Hagerberg D, Bååth E (2001). Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytologist, 151, 753-760. |
[98] |
Wallander H, Pallon J (2005). Temporal changes in the elemental composition of Rhizopogon rhizomorphs during colonization of patches with fresh organic matter or acid-washed sand. Mycologia, 97, 295-303.
URL PMID |
[99] | Wallenda T, Read DJ (1999). Kinetics of amino acid uptake by ectomycorrhizal roots. Plant, Cell & Environment, 22, 179-187. |
[100] | Wang L, Mou PP, Jones RH (2006). Nutrient foraging via physiological and morphological plasticity in three plant species. Canadian Journal of Forest Research, 36, 164-173. |
[101] | Warren JM, Brooks JR, Meinzer FC, Eberhart JL (2008). Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytologist, 178, 382-394. |
[102] | Whipps JM (2004). Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany, 82, 1198-1227. |
[103] |
Whitfield J (2007). Fungal roles in soil ecology: underground networking. Nature, 449, 136-138.
DOI URL PMID |
[104] | Wiemken V, Boller T (2006). Delayed succession from alpine grassland to savannah with upright pine: Limitation by ectomycorrhiza formation? Forest Ecology and Manage- ment, 237, 492-502. |
[105] |
Winwood J, Pate AE, Price AJ, Hanke DE (2007). Effects of long-term, free-air ozone fumigation on the cytokinin content of mature beech trees. Plant Biology, 9, 265-278.
DOI URL PMID |
[106] | Yu TEJC, Egger KN, Peterson RL (2001). Ectendomycorrhizal associations — characteristics and functions. Mycorrhiza, 11, 167-177. |
[107] | Zhang FC (张富仓), Kang SZ (康绍忠), Li ZJ (李志军) (2002). Numerical simulation of nutrient transfer and absorption in soil-root system. I. A steady-state model of nutrient up take by plant roots. Journal of Northwest Science-Technology University of Agriculture and Forestry (Natural Science Edition) (西北农林科技大学学报(自然科学版)), 30(6), 7-10, 15. (in Chinese with English abstract) |
[1] | ZHAO Lei, ZHI Ying-Biao, LI Hong-Li, AN Shu-Qing, DENG Zi-Fa, ZHOU Chang-Fang. EFFECTS OF INITIAL CLONE NUMBER ON MORPHOLOGICAL PLASTICITY AND BIOMASS ALLOCATION OF THE INVASIVE SPARTINA ANGLICA [J]. Chin J Plant Ecol, 2007, 31(4): 607-612. |
[2] | LIAO Ming-Jun, WANG Qi-Bing, SONG Ming-Hua, DONG Ming. Clonal Architecture and Ramet Population Characteristics of Leymus chinensis from Different Habitats in the Xilin River Watershed [J]. Chin J Plan Ecolo, 2002, 26(1): 33-38. |
[3] | SHAN Bao-Qing, DU Guo-Zhen, LIU Zhen-Heng. Clonal Growth of Ligularia virgaurea: Morphological Responses to Nutritional Variation [J]. Chin J Plan Ecolo, 2000, 24(1): 46-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn