Chin J Plant Ecol ›› 2013, Vol. 37 ›› Issue (4): 326-334.DOI: 10.3724/SP.J.1258.2013.00032
• Research Articles • Previous Articles Next Articles
FU Deng-Gao1,*(), HE Feng1,2, GUO Zhen1, YAN Kai1, WU Xiao-Ni1, DUAN Chang-Qun1,**(
)
Received:
2012-09-18
Accepted:
2013-02-22
Online:
2013-09-18
Published:
2013-04-09
Contact:
FU Deng-Gao,DUAN Chang-Qun
FU Deng-Gao, HE Feng, GUO Zhen, YAN Kai, WU Xiao-Ni, DUAN Chang-Qun. Assessment of ecological restoration function of the Coriaria nepalensis-Erianthus rufipilus community in the phosphorus-enriched degraded mountain area in the Lake Dianchi Watershed, Southwestern China[J]. Chin J Plant Ecol, 2013, 37(4): 326-334.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2013.00032
Fig. 1 Spatial distribution patterns and spatial associations of three dominant species in the phosphorus-enriched mountain area. A-C, Spatial distribution patterns of population. A, Coriaria nepalensis. B, Erianthus rufipilus. C, Eupatorium adenophorum. D-F, Interspecific spatial associations. D, Coriaria nepalensis and Eupatorium adenophorum. E, Coriaria nepalensis and Erianthus rufipilus. F, Erianthus rufipilus and Eupatorium adenophorum. Solid lines represent quadrat statistics, and dashed lines represent confidence intervals.
参数 Parameter | 蔗茅 Erianthus rufipilus | 马桑 Coriaria nepalensis | 刺芒野古草 Arundinella setosa |
---|---|---|---|
高度 Height (m) | 1.43 ± 0.19a | 1.15 ± 0.42b | - |
盖度 Coverage (%) | 0.52 ± 0.12a | 0.58 ± 0.10a | - |
比叶面积 Specific leaf area (m2·kg-1) | 11.90 ± 3.61a | 10.50 ± 2.65a | - |
叶干物质含量 Leaf dry matter content (mg·g-1) | 371.3 ± 42.6a | 316.2 ± 26.3b | - |
径流系数 Runoff coefficient | 0.03 ± 0.01b | 0.04 ± 0.01b | 0.17 ± 0.06a |
总氮浓度 Total nitrogen concentration (mg·L-1) | 1.42 ± 1.34a | 2.68 ± 2.27a | 0.46 ± 0.24a |
总磷浓度 Total phosphorus concentration (mg·L-1) | 2.35 ± 1.59b | 3.43 ± 2.64b | 28.61 ± 26.53a |
悬浮颗粒浓度 Suspended solid concentration (g·L-1) | 0.81 ± 0.43b | 0.50 ± 0.42b | 2.10 ± 0.84a |
Table 1 Characteristics of morphology and non-point source pollutant output of dominant species (mean ± SD)
参数 Parameter | 蔗茅 Erianthus rufipilus | 马桑 Coriaria nepalensis | 刺芒野古草 Arundinella setosa |
---|---|---|---|
高度 Height (m) | 1.43 ± 0.19a | 1.15 ± 0.42b | - |
盖度 Coverage (%) | 0.52 ± 0.12a | 0.58 ± 0.10a | - |
比叶面积 Specific leaf area (m2·kg-1) | 11.90 ± 3.61a | 10.50 ± 2.65a | - |
叶干物质含量 Leaf dry matter content (mg·g-1) | 371.3 ± 42.6a | 316.2 ± 26.3b | - |
径流系数 Runoff coefficient | 0.03 ± 0.01b | 0.04 ± 0.01b | 0.17 ± 0.06a |
总氮浓度 Total nitrogen concentration (mg·L-1) | 1.42 ± 1.34a | 2.68 ± 2.27a | 0.46 ± 0.24a |
总磷浓度 Total phosphorus concentration (mg·L-1) | 2.35 ± 1.59b | 3.43 ± 2.64b | 28.61 ± 26.53a |
悬浮颗粒浓度 Suspended solid concentration (g·L-1) | 0.81 ± 0.43b | 0.50 ± 0.42b | 2.10 ± 0.84a |
参数 Parameter | 刺芒野古草群落 Arundinella setosa community | 云南松群落 Pinus yunnanensis community | 马桑-蔗茅群落 Coriaria nepalensis- Erianthus rufipilus community |
---|---|---|---|
盖度 Coverage (%) | 95 | 85 | 90 |
物种丰富度 Species richness | 13 | 16 | 10 |
凋落物生物量 Litter biomass (g·m-2) | 5.8 | 77.3 | 14.0 |
地表径流量 Surface runoff (m3) | 2.21 | 1.90 | 1.74 |
化学需氧量输出量 Chemical oxygen demand output (kg·hm-2·a-1) | 27.09 | 34.88 | 7.37 |
总氮输出量 Total nitrogen output (kg·hm-2·a-1) | 0.87 | 0.96 | 0.32 |
总磷输出量 Total phosphorus output (kg·hm-2·a-1) | 4.21 | 3.40 | 1.56 |
溶解态磷输出量 Dissolved phosphorus output (kg·hm-2·a-1) | 0.15 | 0.20 | 0.14 |
颗粒态磷输出量 Particulate phosphorus output (kg·hm-2·a-1) | 4.06 | 3.19 | 1.42 |
悬浮颗粒输出量 Suspended solid output (kg·hm-2·a-1) | 248.8 | 197.1 | 123.7 |
Table 2 Community propeties and characteristics of non-point source pollutant output of different communities
参数 Parameter | 刺芒野古草群落 Arundinella setosa community | 云南松群落 Pinus yunnanensis community | 马桑-蔗茅群落 Coriaria nepalensis- Erianthus rufipilus community |
---|---|---|---|
盖度 Coverage (%) | 95 | 85 | 90 |
物种丰富度 Species richness | 13 | 16 | 10 |
凋落物生物量 Litter biomass (g·m-2) | 5.8 | 77.3 | 14.0 |
地表径流量 Surface runoff (m3) | 2.21 | 1.90 | 1.74 |
化学需氧量输出量 Chemical oxygen demand output (kg·hm-2·a-1) | 27.09 | 34.88 | 7.37 |
总氮输出量 Total nitrogen output (kg·hm-2·a-1) | 0.87 | 0.96 | 0.32 |
总磷输出量 Total phosphorus output (kg·hm-2·a-1) | 4.21 | 3.40 | 1.56 |
溶解态磷输出量 Dissolved phosphorus output (kg·hm-2·a-1) | 0.15 | 0.20 | 0.14 |
颗粒态磷输出量 Particulate phosphorus output (kg·hm-2·a-1) | 4.06 | 3.19 | 1.42 |
悬浮颗粒输出量 Suspended solid output (kg·hm-2·a-1) | 248.8 | 197.1 | 123.7 |
参数 Parameter | 刺芒野古草群落 Arundinella setosa community | 马桑-蔗茅群落 Coriaria nepalensis-Erianthus rufipilus community |
---|---|---|
群落的面源污染防控效能 Control capability of community in non-point source pollutions | 0.496 | 0 |
马桑种群的面源污染防控能力 Control capability of Coriaria nepalensis in non-point source pollutions | 0.602 | 0.207 |
蔗茅种群的面源污染防控能力 Control capability of Erianthus rufipilus in non-point source pollutions | 0.589 | 0.169 |
种间空间关联性 Interspecific spatial associations | - | -0.173§ |
Table 3 Comprehensive evaluation of ecological restoration functions of Coriaria nepalensis-Erianthus rufipilus community
参数 Parameter | 刺芒野古草群落 Arundinella setosa community | 马桑-蔗茅群落 Coriaria nepalensis-Erianthus rufipilus community |
---|---|---|
群落的面源污染防控效能 Control capability of community in non-point source pollutions | 0.496 | 0 |
马桑种群的面源污染防控能力 Control capability of Coriaria nepalensis in non-point source pollutions | 0.602 | 0.207 |
蔗茅种群的面源污染防控能力 Control capability of Erianthus rufipilus in non-point source pollutions | 0.589 | 0.169 |
种间空间关联性 Interspecific spatial associations | - | -0.173§ |
[1] |
Baets SD, Poesen J, Knapen A, Barbera GG, Navarro JA (2007). Root characteristics of representative Mediterranean plant species and their erosion-reducing potential during concentrated runoff. Plant and Soil, 294, 169-183.
DOI URL |
[2] | Bochet E, Poesen J, Rubio JL (2006). Runoff and soil loss under individual plants of a semi-arid Mediterranean shrubland, influence of plant morphology and rainfall intensity. Earth Surface Processes and Landforms, 31, 536-549. |
[3] | Bochet E, Rubio JL, Poesen J (1998). Relative efficiency of three representative matorral species in reducing water erosion at the microscale in a semi-arid climate (Valencia, Spain). Geomorphology, 23, 139-150. |
[4] | Bochet E, Rubio JL, Poesen J (1999). Modified topsoil islands within patchy Mediterranean vegetation in SE Spain. Catena, 38, 23-44. |
[5] | Casermeiro MA, Molina JA, de la Cruz Caravaca MT, Hernando , Costa J, Hernando Massanet MI, Moreno PS (2004). Influence of scrubs on runoff and sediment loss in soils of Mediterranean climate. Catena, 57, 91-107. |
[6] | Castro J, Zamora R, Hodar JA, Gomez JM (2002). Use of shrubs as nurse plants: a new technique for reforestation in Mediterranean mountains. Restoration Ecology, 10, 297-305. |
[7] | Chen FQ, Lu B, Wang XR (2001). Formation and succession of plant community on phosphate mining wasteland in Zhangcunping, Southwest Hubei Province, China. Acta Ecologica Sinica, 21, 1347-1353. (in Chinese with English abstract) |
[ 陈芳清, 卢斌, 王祥荣 (2001). 樟村坪磷矿废弃地植物群落的形成与演替. 生态学报, 21, 1347-1353.] | |
[8] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[9] | Dakora FD, Keya SO (1997). Contribution of legume nitrogen fixation to sustainable agriculture in Sub-Saharan Africa. Soil Biology & Biochemisty, 29, 809-817. |
[10] | Duan CQ, He F, Liu CE, He SZ, Zhang GS (2010). Challenges and solutions of the water environmental issues of plateau lakes in Yunnan of China―from the perspective of ecosystem health. Engineering Science, 12, 60-64. (in Chinese with English abstract) |
[ 段昌群, 何锋, 刘嫦娥, 和树庄, 张国盛 (2010). 基于生态系统健康视角下的云南高原湖泊水环境问题的诊断与解决理念. 中国工程科学, 12, 60-64.] | |
[11] | Duan CQ, Wang HX, He XF (1996). Fuzz clustering to the effects of heavy metals on the quantitative characters of broadobean in four generations and their perturbation analysis. Acta Scientiae Circumstantiae, 16, 450-459. (in Chinese with English abstract) |
[ 段昌群, 王焕校, 何湘藩 (1996). 重金属复合污染对蚕豆性状影响的模糊聚类与性状代间分化的摄动分析. 环境科学学报, 16, 450-459.] | |
[12] | Dutta RK, Agrawal M (2002). Effect of tree plantations on the soil characteristics and microbial activity of coal mine spoil land. Tropical Ecology, 43, 315-324. |
[13] | Falster DS, Warton DI, Wright IJ (2006). User’s guide to SMATR: Standardised major axis tests and routines, version 2.0. http://bio.mq.edu.au/ecology/SMATR/. Cited 13 Sept. 2012. |
[14] | Fu DG, Duan CQ, Hou XL, Xia TY, Gao K (2009). Patterns and relationships of plant traits, community structural attributes, and eco-hydrological functions during a subtropical secondary succession in central Yunnan (Southwest China). Archives of Biological Sciences, 61, 741-749. |
[15] | Gómez-Aparicio L, Zamora R, Gómez JM, Hódar JA, Castro J, Baraza E (2004). Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecological Applications, 14, 1128-1138. |
[16] | Gyssels G, Poesen J (2003). The importance of plant root characteristics in controlling concentrated flow erosion rates. Earth Surface Processes and Landforms, 28, 371-384. |
[17] | He XF, Liu WQ (1989). About the perturbation measure of systems and the eveluation of scheme. Journal of Yunnan University (Natural Sciences Edition), 11, 193-199. (in Chinese with English abstract) |
[ 何湘藩, 刘文奇 (1989). 关于系统的摄动与方案的评价. 云南大学学报(自然科学版), 11, 193-199.] | |
[18] | Hou YP, Duan CQ, He F (2005). Study of soil fertility and soil water in the vegetation of different restoration measures. Research of Soil and Water Conservation, 12, 49-53. (in Chinese with English abstract) |
[ 侯永平, 段昌群, 何锋 (2005). 滇中高原不同植被恢复条件下土壤肥力和水分特征研究. 水土保持研究, 12, 49-53.] | |
[19] | Rhoades CC, Eckert GE, Coleman DC (1998). Effect of pasture trees on soil nitrogen and organic matter: implications for tropical montane forest restoration. Restoration Ecology, 6, 262-270. |
[20] | Thompson DB, Walker LR, Landau FH, Stark LR (2005). The influence of elevation, shrub species, and biological soil crust on fertile islands in the Mojave Desert, USA. Journal of Arid Environment, 61, 609-629. |
[21] | Wiegand T, Gunatilleke S, Gunatilleke N (2007). Species associations in a heterogeneous Sri Lankan dipterocarp forest. The American Naturalist, 170, E77-E95. |
[22] | Wiegand T, Moloney KA (2004). Rings, circles, and null- models for point pattern analysis in ecology. Oikos, 104, 209-229. |
[23] | Xu XL, Ma KM, Fu BJ, Liu W, Song CJ (2009). Soil and water erosion under different plant species in a semiarid river valley, SW China: the effects of plant morphology. Ecological Research, 24, 37-46. |
[24] | Yan K, Fu DG, He F, Duan CQ (2011). Leaf nutrient stoichiometry of plants in the phosphorus-enriched soils of the Lake Dianchi watershed, southwestern China. Chinese Journal of Plant Ecology, 35, 353-361. (in Chinese with English abstract) |
[ 阎凯, 付登高, 何锋, 段昌群 (2011). 滇池流域富磷区不同土壤磷水平下植物叶片的养分化学计量特征. 植物生态学报, 35, 353-361.] | |
[25] |
Zhang LM, Fang P, Zhu RQ (2004). Recent advances in research and application of associated nitrogen-fixation with graminaceous plants. Chinese Journal of Applied Ecology, 15, 1650-1654. (in Chinese with English abstract)
URL PMID |
[ 张丽梅, 方萍, 朱日清 (2004). 禾本科植物联合固氮研究及其应用现状展望. 应用生态学报, 15, 1650-1654.]
PMID |
[1] | SHI Huan-Huan, XUE Qiong, YU Zhen-Lin, WANG Cheng-Huan. Effects of density and species proportion on intraspecific and interspecific interactions between salt marsh plants during seed germination [J]. Chin J Plant Ecol, 2023, 47(1): 77-87. |
[2] | WANG Qing-Qing, GAO Yan, WANG Rong. Review on impacts of global change on food web structure [J]. Chin J Plant Ecol, 2021, 45(10): 1064-1074. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn