Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (7): 752-762.DOI: 10.17521/cjpe.2019.0337
• Research Articles • Previous Articles Next Articles
ZHU Lin1,2,*(), WANG Tian-Tian1,2, ZHAO Xue-Lin1,2, QI Ya-Shu3, XU Xing1,2
Received:
2019-12-03
Accepted:
2020-06-17
Online:
2020-07-20
Published:
2020-07-03
Contact:
ZHU Lin: ORCID:0000-0002-1234-5837,E-mail:zhulinscience@126.com
Supported by:
ZHU Lin, WANG Tian-Tian, ZHAO Xue-Lin, QI Ya-Shu, XU Xing. Hydraulic lift of Medicago sativa and Astragalus laxmannii and its effect on their neighborhood plants[J]. Chin J Plant Ecol, 2020, 44(7): 752-762.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0337
组合 Combination | 豆科 Leguminosae | 禾本科 Gramineae | 禾+豆总产量 Sum of Leguminosae and Gramineae |
---|---|---|---|
AA | 5 802.90 ± 326.7b | 5 802.9 ± 326.70b | |
BB | 7 861.99 ± 504.85a | 7 861.99 ± 504.85a | |
AC1 | 4 365.35 ± 232.90c | 525.89 ± 52.98c | 4 891.25 ± 285.88b |
AC2 | 4 832.31 ± 511.98c | 703.87 ± 57.05c | 5 536.18 ± 454.93b |
AC3 | 4 125.48 ± 518.69c | 284.56 ± 20.69c | 4 410.05 ± 539.38b |
BC1 | 4 829.60 ± 538.53c | 2 617.29 ± 142.73a | 7 266.63 ± 268.33a |
BC2 | 5 082.16 ± 184.05bc | 1 501.70 ± 665.95b | 6 583.86 ± 481.90a |
BC3 | 5 982.88 ± 490.54b | 1 386.05 ± 545.77b | 7 549.20 ± 72.24a |
Table 1 Yield of forages in different sowing combinations (Mean ± SD)
组合 Combination | 豆科 Leguminosae | 禾本科 Gramineae | 禾+豆总产量 Sum of Leguminosae and Gramineae |
---|---|---|---|
AA | 5 802.90 ± 326.7b | 5 802.9 ± 326.70b | |
BB | 7 861.99 ± 504.85a | 7 861.99 ± 504.85a | |
AC1 | 4 365.35 ± 232.90c | 525.89 ± 52.98c | 4 891.25 ± 285.88b |
AC2 | 4 832.31 ± 511.98c | 703.87 ± 57.05c | 5 536.18 ± 454.93b |
AC3 | 4 125.48 ± 518.69c | 284.56 ± 20.69c | 4 410.05 ± 539.38b |
BC1 | 4 829.60 ± 538.53c | 2 617.29 ± 142.73a | 7 266.63 ± 268.33a |
BC2 | 5 082.16 ± 184.05bc | 1 501.70 ± 665.95b | 6 583.86 ± 481.90a |
BC3 | 5 982.88 ± 490.54b | 1 386.05 ± 545.77b | 7 549.20 ± 72.24a |
Fig. 2 Differences in the soil water content between the mid-day and mid-night for the different mixed sowing or single sowing combinations from April to October. AA and BB represent single sowing of Medicago sativa and Astragalus laxmannii, respectively. AC1, AC2, AC3, BC1, BC2 and BC3 represent the mixed sowing combinations of Medicago sativa and Astragalus laxmannii with gramineous forage in proportions of 3:7, 5:5 and 7:3, respectively.
Fig. 3 The maximum, minimum of daily soil water content and differences in the soil water content between the mid-day and mid-night for the different mixed sowing or single sowing combinations from April to October (mean + SD). AA and BB represent single sowing of Medicago sativa and Astragalus laxmannii, respectively. AC1, AC2, AC3, BC1, BC2 and BC3 represent the mixed sowing combinations of Medicago sativa and Astragalus laxmannii with gramineous forage in lowercase proportions of 3:7, 5:5 and 7:3, respectively. Different lowercase letters represent differences in soil water content between different mixed sowing combinations at the level of 0.05.
组合 Combination | 平均值 Mean (g·plant-1·d-1) | 标准偏差 SD |
---|---|---|
AA | 36.63d | 3.07 |
AC1 | 37.55d | 4.51 |
AC2 | 46.58c | 8.66 |
AC3 | 47.36c | 6.37 |
BB | 44.41c | 7.15 |
BC1 | 45.65c | 5.08 |
BC2 | 70.09a | 6.92 |
BC3 | 62.70b | 10.11 |
F (df = 3) | 37.25** |
Table 2 Hydraulic lift water of leguminous crops in mixed combinations of different water treatments
组合 Combination | 平均值 Mean (g·plant-1·d-1) | 标准偏差 SD |
---|---|---|
AA | 36.63d | 3.07 |
AC1 | 37.55d | 4.51 |
AC2 | 46.58c | 8.66 |
AC3 | 47.36c | 6.37 |
BB | 44.41c | 7.15 |
BC1 | 45.65c | 5.08 |
BC2 | 70.09a | 6.92 |
BC3 | 62.70b | 10.11 |
F (df = 3) | 37.25** |
Fig. 4 Soil water hydrogen stable isotope ratio (δD) in the bottom and upper pots of different combinations (mean + SD). Sixteen soil samples from the upper and bottom pots of eight single or mixed sowing combinations, totally. AA and BB represent single sowing of Medicago sativa and Astragalus laxmannii, respectively. AC1, AC2, AC3, BC1, BC2 and BC3 represent the mixed sowing combinations of Medicago sativa and Astragalus laxmannii with gramineous forage in proportions of 3:7, 5:5 and 7:3, respectively.
Fig. 5 Plant stem water hydrogen stable isotope ratio (δD) of single or mixed sowing combinations (mean + SD). Fourteen plant samples from eight single or mixed sowing combinations, totally. AA and BB represent single sowing of Medicago sativa and Astragalus laxmannii, respectively. AC1, AC2, AC3, BC1, BC2 and BC3 represent the mixed sowing combinations of Medicago sativa and Astragalus laxmannii with gramineous forage in proportions of 3:7, 5:5 and 7:3, respectively.
Fig. 6 Comparison of ?13C in each combination under different water treatments and mixed seeding rates (mean + SD). Fourteen plant samples from eight single or mixed sowing combinations, totally. AA and BB represent single sowing of Medicago sativa and Astragalus laxmannii, respectively. AC1, AC2, AC3, BC1, BC2 and BC3 represent the mixed sowing combinations of Medicago sativa and Astragalus laxmannii with gramineous forage in lowercase proportions of 3:7, 5:5 and 7:3, respectively. Different lowercase letters represent differences in whole plant ?13C between different mixed sowing combinations at the level of 0.05.
[1] | Alamusa , Zhou LF (2011). Empirical test of hydraulic lift in 21 plant species in the Horqin sandy land, Inner Mongolia. Journal of Beijing Forestry University, 33(1), 70-77. |
[ 阿拉木萨, 周丽芳 (2011). 科尔沁沙地21种植物水分提升作用的实证检验. 北京林业大学学报, 33(1), 70-77.] | |
[2] |
Badeck FW, Tcherkez G, Nogués S, Piel C, Ghashghaie J (2005). Post-photosynthetic fractionation of stable carbon isotopes between plant organs—A wide spread phenomenon. Rapid Communications in Mass Spectrometry, 19, 1381-1391.
URL PMID |
[3] | Brooksbank K, White DA, Veneklaas EJ, Carter JL (2011). Hydraulic redistribution in Eucalyptus kochii subsp. borealis with variable access to fresh groundwater. Trees, 25, 735-744. |
[4] |
Caldwell MM, Dawson TE, Richards JH (1998). Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia, 113, 151-161.
URL PMID |
[5] | Couvreur V, Vanderborght J, Draye X, Javaux M (2014). Dynamic aspects of soil water availability for isohydric plants: focus on root hydraulic resistances. Water Resources Research, 50, 8891-8906. |
[6] |
Dawson TE (1996). Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: the roles of tree size and hydraulic lift. Tree Physiology, 16, 263-272.
URL PMID |
[7] | Eriksen J, Askegaard M, Søegaard K (2010). Residual effect and nitrate leaching in grass-arable rotations: effect of grassland proportion, sward type and fertilizer history. Soil Use & Management, 24, 373-382. |
[8] | Farquhar GD, Ehleringer FR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology, 40, 503-537. |
[9] | Farquhar GD, Richards RA (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology, 11, 539-552. |
[10] | Hao XM, Chen YN, Li WH, Guo B, Zhao RF (2009). Evidence and ecological effects of hydraulic lift in Populus euphratica. Chinese Journal of Plant Ecology, 33, 1125-1131. |
[ 郝兴明, 陈亚宁, 李卫红, 郭斌, 赵锐锋 (2009). 胡杨根系水力提升作用的证据及其生态学意义. 植物生态学报, 33, 1125-1131.] | |
[11] | He WM, Zhang XS (2001). Water sharing in the roots of four shrubs of the mu us sandy desert. Acta Phytoecologica Sinica, 25, 630-633. |
[ 何维明, 张新时 (2001). 水分共享在毛乌素沙地4种灌木根系中的存在状况. 植物生态学报, 25, 630-633.] | |
[12] | Hirota I, Sakuratani T, Sato T, Higuchi H, Nawata E (2004). A split-root apparatus for examining the effects of hydraulic lift by trees on the water status of neighboring crops. Agroforestry Systems, 60, 181-187. |
[13] | Li HX, Yang XD, Lü GH (2018). Relationships between hydraulic lift of Haloxylon ammodendron with growth condition, abundance and richness of shallow-rooted plants. Bulletin of Soil and Water Conservation, 38, 75-81. |
[ 李宏侠, 杨晓东, 吕光辉 (2018). 梭梭水力提升与浅根系植物优势度、丰富度和多度的关系. 水土保持通报, 38, 75-81. ] | |
[14] | Li W, Hu ZZ, Ni Y, Li SZ, Ni SL (2007). The relationship of hydraulic lift in alfalfa and maize and their drought resistance study on mechanism of hydraulic lift in root system of plant (II). Acta Agrestia Sinica, 15, 515-518. |
[ 李唯, 胡自治, 倪郁, 李尚忠, 倪胜利 (2007). 苜蓿、玉米根系提水作用与耐旱性的关系——植物根系提水作用机理研究II. 草地学报, 15, 515-518.] | |
[15] | Liu XL, Zhang HR, Fu H (2007). Root hydraulic lift and nutrition activity in Astraglus adsurgens with fertilization. Acta Botanica Boreali-Occidentalia Sinica, 27, 2507-2513. |
[ 刘小莉, 张洪荣, 傅华 (2007). 施肥对沙打旺根系提水及土壤养分活性的影响. 西北植物学报, 27, 2507-2513.] | |
[16] | Meunier F, Rothfuss Y, Bariac T, Biron P, Richard P, Durand JL, Couvreur V, Vanderborght J, Javaux M (2017). Measuring and modeling hydraulic lift of Lolium multiflorum using stable water isotopes. Vadose Zone Journal, 17, 1-15. |
[17] | Paynel F, Murray PJ, Cliquet JB (2001). Root exudates: a pathway for short-term N transfer from clover to ryegrass. Plant and Soil, 229, 235-243. |
[18] | Peñuelas J, Filella I (2003). Deuterium labeling of roots provides evidence of deep water access and hydraulic lift by Pinus nigra, in a Mediterranean forest of NE Spain. Environmental and Experimental Botany, 49, 201-208. |
[19] | Shan L, Zhang SQ, Li WR (2008). Productivity and drought resistance of alfalfa. Journal of Agricultural Science and Technology, 10, 12-17. |
[ 山仑, 张岁岐, 李文娆 (2008). 论苜蓿的生产力与抗旱性. 中国农业科技导报, 10, 12-17.] | |
[20] | Sun GC, Zhao P, Cai XA, Zeng XP, Liu XJ, Rao XQ, Wang H (2008). Carbon isotope discrimination in leaf juice of Acacia mangium and its relation to water-use efficiency. Chinese Journal of Ecology, 27, 497-503. |
[ 孙谷畴, 赵平, 蔡锡安, 曾小平, 刘晓静, 饶兴权, 王华 (2008). 马占相思叶片液汁碳同位素甄别率和水分利用效率. 生态学杂志, 27, 497-503.] | |
[21] | Wan CG, Xu WW, Sosebee RE, Machado S, Archer T (2000). Hydraulic lift in drought-tolerant and susceptible maize hybrids. Plant and Soil, 219, 117-126. |
[22] | Wang X, Zeng ZH, Hu YG, Zhu B (2007). Progress and prospect on mixture of Gramineae herbage and Leguminosae herbage. Chinese Journal of Grassland, 29, 92-98. |
[ 王旭, 曾昭海, 胡跃高, 朱波 (2007). 豆科与禾本科牧草混播效应研究进展. 中国草地学报, 29, 92-98.] | |
[23] | Wu XH (1999). Root development of pea and oat mixture sward with plastic mulching. Journal of Gansu Agricultural University, 34, 120-124. |
[ 吴序卉 (1999). 地膜覆盖下豆禾混播草地根系的动态研究. 甘肃农业大学学报, 34, 120-124.] | |
[24] |
Xu BC, Shan L, Li FM (2005). Responses of Medicago sativa and Astragalus adsurgens seedlings growth and water use to soil moisture regime. Chinese Journal of Applied Ecology, 16, 2328-2332.
URL PMID |
[ 徐炳成, 山仑, 李凤民 (2005). 苜蓿与沙打旺苗期生长和水分利用对土壤水分变化的反应. 应用生态学报, 16, 2328-2332.]
PMID |
|
[25] | Xue XH, Niu DC, Fu H, Zhang HR (2007). Studies on mechanism of hydraulic lift by Astragalus laxmannii. Acta Botanica Boreali-Occidentalia Sinica, 27, 2269-2274. |
[ 薛小红, 牛得草, 傅华, 张洪荣 (2007). 沙打旺根系提水作用及其机理研究. 西北植物学报, 27, 2269-2274.] | |
[26] | Yang YD, Zhang JS, Cai GJ, Mo BR, Chai CS, Wang ZT (2008). Soil moisture dynamics of alfalfa pasture at different eco- sites in Gullied Loess Area. Pratural Science, 25(10), 25-28. |
[ 杨永东, 张建生, 蔡国军, 莫保儒, 柴春山, 王子婷 (2008). 黄土丘陵区不同立地条件下紫花苜蓿地土壤水分动态变化. 草业科学, 25(10), 25-28.] | |
[27] | Yu TF, Feng Q, Si JH, Zhang XY (2014). Patterns, magnitude and controlling factors of hydraulic redistribution by Populus euphratica roots. Journal of Beijing Forestry University, 36(2), 22-29. |
[ 鱼腾飞, 冯起, 司建华, 张小由 (2014). 胡杨根系水力再分配的模式、大小及其影响因子. 北京林业大学学报, 36(2), 22-29.] | |
[28] | Zhang YL, Zhang LJ, Yu TF, Pan D (2019). Effects of grass- legume combinations and intercropping patterns on the forage yield and yield stability. Acta Agrestia Sinica, 27, 1410-1418. |
[ 张永亮, 张丽娟, 于铁峰, 潘东 (2019). 禾豆组合与间作方式对牧草产量及产量稳定性的影响. 草地学报, 27, 1410-1418.] | |
[29] | Zhu L, Zheng SX, Xu X, Hou ZJ (2014). Effects of irrigation on mixed sowing of leguminous and graminaceous forage. Pratacultural Science, 31, 1752-1760. |
[ 朱林, 郑淑欣, 许兴, 侯志军 (2014). 宁夏中部灌水量对豆-禾牧草混播的影响. 草业科学, 31, 1752-1760.] |
[1] | LIU Yang, MA Xu, DI Nan, ZENG Zi-Hang, FU Hai-Man, LI Xin, XI Ben-Ye. Root sap flow and hydraulic redistribution of Populus tomentosa [J]. Chin J Plant Ecol, 2023, 47(1): 123-133. |
[2] | XI Ben-Ye, DI Nan, CAO Zhi-Guo, LIU Jin-Qiang, LI Dou-Dou, WANG Ye, LI Guang-De, DUAN Jie, JIA Li-Ming, ZHANG Rui-Na. Characteristics and underlying mechanisms of plant deep soil water uptake and utilization: Implication for the cultivation of plantation trees [J]. Chin J Plan Ecolo, 2018, 42(9): 885-905. |
[3] | SU Hua,LIU Wei,LI Yong-Geng. Ecological implications of hydraulic redistribution in nutrient cycling of soil-plant system [J]. Chin J Plant Ecol, 2014, 38(9): 1019-1028. |
[4] | YUAN Guo-Fu, ZHANG Pei, XUE Sha-Sha, ZHUANG Wei. Change characteristics in soil water content in root zone and evidence of root hydraulic lift in Tamarix ramosissima thickets on sand dunes [J]. Chin J Plant Ecol, 2012, 36(10): 1033-1042. |
[5] | HAO Xing-Ming, CHEN Ya-Ning, LI Wei-Hong, Guo Bin, ZHAO Rui-Feng. EVIDENCE AND ECOLOGICAL EFFECTS OF HYDRAULIC LIFT IN POPULUS EUPHRATICA [J]. Chin J Plant Ecol, 2009, 33(6): 1125-1131. |
[6] | LIU Jun-Shan, GAO Qiong, ZHU Yu-Jie, WANG Kun. HYDRAULIC REDISTRIBUTION: NEWLY RECOGNIZED SMALL CYCLE WITHIN THE SOIL-PLANT-ATMOSPHERE CONTINUUM [J]. Chin J Plant Ecol, 2007, 31(5): 794-803. |
[7] | HE Wei-Ming, ZHANG Xin-Shi. Water Sharing in the Roots of Four Shrubs of the Mu Us Sandy Desert [J]. Chin J Plan Ecolo, 2001, 25(5): 630-633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn