Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (10): 1374-1384.DOI: 10.17521/cjpe.2024.0002 cstr: 32100.14.cjpe.2024.0002
• Research Articles • Previous Articles Next Articles
LI Lin, SUN Yi, YANG Xiao-Qiong, FANG Hai-Dong, YAN Bang-Guo*()(
)
Received:
2024-01-04
Accepted:
2024-05-22
Online:
2024-10-20
Published:
2024-12-03
Contact:
YAN Bang-Guo
Supported by:
LI Lin, SUN Yi, YANG Xiao-Qiong, FANG Hai-Dong, YAN Bang-Guo. Response of endophytes in root nodules of Arachis hypogaea ‘Qicai’ to nitrogen addition and its relationship with plant stoichiometry characteristics[J]. Chin J Plant Ecol, 2024, 48(10): 1374-1384.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0002
Fig. 1 Changes of carbon (C), nitrogen (N) and phosphorus (P) contents and stoichiometric characteristics of Arachis hypogaea ‘Qicai’ leaves under different nitrogen addition treatments. The same lowercase letters indicate no significant differences between treatments (p > 0.05). N0, 0 kg·hm-2; N1, 140 kg·hm-2; N2, 280 kg·hm-2.
Fig. 2 Diversity (A), changes in the relative abundance of dominant genera (B), principal coordination analysis (PCoA) (C) and volcano plot illustrating changes in the relative abundance (D) of endophytes in root nodules under different nitrogen addition treatments of Arachis hypogaea ‘Qicai’. Different lowercase letters in A indicate significant differences among treatments (p < 0.05). Each point represents an amplicon sequence variant (ASV) in D. Each red point indicate an enriched ASV while each blue point represents a depleted ASV. N0, 0 kg·hm-2; N1, 140 kg·hm-2; N2, 280 kg·hm-2. *, p < 0.05.
相关性系数 Correlation coeffficient | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
根瘤菌属 Allorhizobium-Neorhizobium- Pararhizobium-Rhizobium | 0.00 | -0.35* | -0.11 | 0.37** | 0.13 | -0.12 |
慢生根瘤菌属 Bradyrhizobium | 0.01 | 0.17 | 0.27 | -0.19 | -0.23 | -0.08 |
伯克霍尔德菌属 Burkholderia-Caballeronia- Paraburkholderia | 0.37** | 0.16 | -0.03 | -0.08 | 0.06 | 0.10 |
肠杆菌属 Enterobacter | -0.22 | 0.18 | -0.05 | -0.23 | 0.02 | 0.18 |
科萨克氏菌属 Kosakonia | -0.27 | -0.09 | -0.04 | 0.03 | -0.01 | -0.03 |
分枝杆菌属 Mycobacterium | 0.03 | -0.16 | 0.13 | 0.18 | -0.11 | -0.20 |
新鞘氨醇菌属 Novosphingobium | 0.18 | -0.21 | -0.04 | 0.24 | 0.09 | -0.09 |
泛菌属 Pantoea | 0.08 | -0.02 | -0.04 | 0.04 | 0.04 | 0.01 |
糖单孢菌 Saccharimonadales | -0.04 | -0.21 | 0.03 | 0.17 | -0.03 | -0.15 |
Table 1 Relationship between relative abundance of Arachis hypogaea ‘Qicai’ root nodule endophytes and leaf carbon (C), nitrogen (N) and phosphorus (P) stoichiometric characteristics
相关性系数 Correlation coeffficient | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
根瘤菌属 Allorhizobium-Neorhizobium- Pararhizobium-Rhizobium | 0.00 | -0.35* | -0.11 | 0.37** | 0.13 | -0.12 |
慢生根瘤菌属 Bradyrhizobium | 0.01 | 0.17 | 0.27 | -0.19 | -0.23 | -0.08 |
伯克霍尔德菌属 Burkholderia-Caballeronia- Paraburkholderia | 0.37** | 0.16 | -0.03 | -0.08 | 0.06 | 0.10 |
肠杆菌属 Enterobacter | -0.22 | 0.18 | -0.05 | -0.23 | 0.02 | 0.18 |
科萨克氏菌属 Kosakonia | -0.27 | -0.09 | -0.04 | 0.03 | -0.01 | -0.03 |
分枝杆菌属 Mycobacterium | 0.03 | -0.16 | 0.13 | 0.18 | -0.11 | -0.20 |
新鞘氨醇菌属 Novosphingobium | 0.18 | -0.21 | -0.04 | 0.24 | 0.09 | -0.09 |
泛菌属 Pantoea | 0.08 | -0.02 | -0.04 | 0.04 | 0.04 | 0.01 |
糖单孢菌 Saccharimonadales | -0.04 | -0.21 | 0.03 | 0.17 | -0.03 | -0.15 |
Fig. 3 Response of root nodule endophyte enzyme functions (predicted by PICRUSt 2) to nitrogen addition treatments and their association with leaf stoichiometric characteristics. A, Changes in enzyme activities (mean ± SE). B, Principal component analysis (PCoA) of enzyme activity. C, Relationships between enzyme activities and leaf stoichiometric characteristics. N0, 0 kg·hm-2; N1, 140 kg·hm-2; N2, 280 kg·hm-2. C, carbon; N, nitrogen; P, phosphorus。*, p ≤ 0.05; **, p ≤ 0.01. Different lowercase letters in A indicate significant differences among treatments (p < 0.05).
Fig. 4 Co-occurrence network analysis of endophytic communities in root nodules of Arachis hypogaea ‘Qicai’. A, Cooccurrence network of root nodule endophytes. B, Associations between the relative abundance of different clusters with leaf stoichiometric characteristics. C, Main bacterial genus composition of each module. N0, 0 kg·hm-2; N1, 140 kg·hm-2; N2, 280 kg·hm-2. C, carbon; N, nitrogen; P, phosphorus. *, p ≤ 0.05; **, p ≤ 0.01.
[1] | Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2011). Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function//Shukla G, Varma A. Soil Enzymology. Springer, Berlin. 229-243. |
[2] |
Berendsen RL, Pieterse CMJ, Bakker PAHM (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 478-486.
DOI PMID |
[3] |
Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20, 30-59.
PMID |
[4] |
Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N (2018). A global atlas of the dominant bacteria found in soil. Science, 359, 320-325.
DOI PMID |
[5] |
Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020). PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38, 685-688.
DOI PMID |
[6] |
Duc L, Noll M, Meier BE, Bürgmann H, Zeyer J (2009). High diversity of diazotrophs in the forefield of a receding alpine glacier. Microbial Ecology, 57, 179-190.
DOI PMID |
[7] |
Fan KK, Delgado-Baquerizo M, Guo XS, Wang DZ, Wu YY, Zhu M, Yu W, Yao HY, Zhu YG, Chu HY (2019). Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome, 7, 143. DOI: 10.1186/s40168-019-0757-8.
PMID |
[8] | Feng MM, Adams JM, Fan KK, Shi Y, Sun RB, Wang DZ, Guo XS, Chu HY (2018). Long-term fertilization influences community assembly processes of soil diazotrophs. Soil Biology & Biochemistry, 126, 151-158. |
[9] | Gan Y, Stulen I, van Keulen H, Kuiper PJC (2004). Low concentrations of nitrate and ammonium stimulate nodulation and N2 fixation while inhibiting specific nodulation (nodule DW g-1 root dry weight) and specific N2 fixation (N2 fixed g-1 root dry weight) in soybean. Plant and Soil, 258, 281-292. |
[10] |
Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI PMID |
[11] |
Hardoim PR, van Overbeek LS, Elsas JD (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16, 463-471.
DOI PMID |
[12] | Lewis RW, Bertsch PM, McNear DH (2019). Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria—A critical review. Nanotoxicology, 13, 392-428. |
[13] | Li GL, Li PF, Wu M, Liu K, Evangelos P, Liu J, Liu M, Li ZP (2023). Variation in rhizosphere microbial communities and its association with the nodulation ability of peanut. Archives of Agronomy and Soil Science, 69, 759-770. |
[14] | Li L, Sun Y, Fang HD, Shi LT, Yue XW, Yan BG (2023). Nitrogen fixation capabilities of rhizobia in Yunnan colorful peanut and their associations with leghemoglobin concentration. Journal of Peanut Science, 52(3), 56-62. |
[ 李林, 孙毅, 方海东, 史亮涛, 岳学文, 闫帮国 (2023). 云南七彩花生根瘤菌固氮能力及其与豆血红蛋白含量的关系. 花生学报, 52(3), 56-62.] | |
[15] | Li SX, Yang ZJ, Xu DP, Zhang NN, Liu XJ (2015). Effects of nitrogen application rate on growth and nutrient accumulation of Santalum album L. seedlings. Journal of Plant Nutrition and Fertilizer, 21, 807-814. |
[ 李双喜, 杨曾奖, 徐大平, 张宁南, 刘小金 (2015). 施氮量对檀香幼苗生长及养分积累的影响. 植物营养与肥料学报, 21, 807-814.] | |
[16] |
Li Y, Tremblay J, Bainard LD, Cade-Menun B, Hamel C (2020). Long-term effects of nitrogen and phosphorus fertilization on soil microbial community structure and function under continuous wheat production. Environmental Microbiology, 22, 1066-1088.
DOI PMID |
[17] |
Limpens E, Bisseling T (2003). Signaling in symbiosis. Current Opinion in Plant Biology, 6, 343-350.
PMID |
[18] |
Liu LM, Wang SS, Chen JF (2021). Anthropogenic activities change the relationship between microbial community taxonomic composition and functional attributes. Environmental Microbiology, 23, 6663-6675.
DOI PMID |
[19] | Liang M, Meng WW, Chen ZD, Shen Y, Liu YH, Shen Y, Liu Z, Nan ZW, Xu J, Zhang Z (2023) Effects of nitrogen application levels on microbial community structure and diversity in peanut rhizosphere soil. Shandong Agricultural Sciences, 55, 78-83. |
[ 梁满, 孟维伟, 陈志德, 沈一, 刘永惠, 沈悦, 刘柱, 南镇武, 徐杰, 张正 (2023). 施氮水平对花生根际土壤微生物群落结构和多样性的影响. 山东农业科学, 55, 78-83.] | |
[20] | Lyu XC, Xia X, Wang C, Ma CM, Dong SK, Gong ZP (2019). Effects of changes in applied nitrogen concentrations on nodulation, nitrogen fixation and nitrogen accumulation during the soybean growth period. Soil Science and Plant Nutrition, 65, 479-489. |
[21] | Melero S, López-Bellido RJ, López-Bellido L, Muñoz-Romero V, Moreno F, Murillo JM (2011). Long-term effect of tillage, rotation and nitrogen fertiliser on soil quality in a Mediterranean Vertisol. Soil and Tillage Research, 114, 97-107. |
[22] | Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012). Closing yield gaps through nutrient and water management. Nature, 490, 254-257. |
[23] | Pernilla Brinkman E, van der Putten WH, Bakker EJ, Verhoeven KJF (2010). Plant-soil feedback: experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology, 98, 1063-1073. |
[24] | Preyanga R, Anandham R, Krishnamoorthy R, Senthilkumar M, Gopal NO, Vellaikumar A, Meena S (2021). Groundnut (Arachis hypogaea) nodule Rhizobium and passenger endophytic bacterial cultivable diversity and their impact on plant growth promotion. Rhizosphere, 17, 100309. DOI: 10.1016/j.rhisph.2021.100309. |
[25] |
Reich PB, Oleksyn J, Wright IJ (2009). Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia, 160, 207-212.
DOI PMID |
[26] | Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ (2010). Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proceedings of the Royal Society B: Biological Sciences, 277, 877-883. |
[27] | Robertson GP, Vitousek PM (2009). Nitrogen in agriculture: balancing the cost of an essential resource. Annual Review of Environment and Resources, 34, 97-125. |
[28] | Salas-González I, Reyt G, Flis P, Custódio V, Gopaulchan D, Bakhoum N, Dew TP, Suresh K, Franke RB, Dangl JL, Salt DE, Castrillo G (2021). Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science, 371, eabd0695. DOI: 10.1126/science.abd0695. |
[29] |
Schreeg LA, Santiago LS, Wright SJ, Turner BL (2014). Stem, root, and older leaf N:P ratios are more responsive indicators of soil nutrient availability than new foliage. Ecology, 95, 2062-2068.
DOI PMID |
[30] | Singh P, Singh RK, Li H, Guo D, Sharma A, Lakshmanan P, Malviya MK, Song X, Solanki MK, Verma KK, Yang LT, L Y (2021). Diazotrophic bacteria Pantoea dispersa and Enterobacter asburiae promote sugarcane growth by inducing nitrogen uptake and defense-related gene expression. Frontiers in Microbiology, 11, 600417. DOI: 10.3389/micb.2020.600417. |
[31] | Su W, Chen P, Wu T, Liu Y, Song YT, Liu XJ, Liu JX (2023). Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings. Chinese Journal of Plant Ecology, 47, 1094-1104. |
[ 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀 (2023). 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响. 植物生态学报, 47, 1094-1104.]
DOI |
|
[32] | Sun QQ, Zheng YM, Yu TY, Wu Y, Yang JS, Wu ZF, Wu JX, Li SX (2022). Responses of soil diazotrophic diversity and community composition of nodulating and non-nodulating peanuts (Arachis hypogaea L.) to nitrogen fertilization. Acta Agronomica Sinica, 48, 2575-2587. |
[ 孙棋棋, 郑永美, 于天一, 吴月, 杨吉顺, 吴正锋, 吴菊香, 李尚霞 (2022). 施氮对不同结瘤特性花生土壤固氮菌多样性和群落组成的影响. 作物学报, 48, 2575-2587.]
DOI |
|
[33] | Treseder KK, Vitousek PM (2001). Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology, 82, 946-954. |
[34] | van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, van de Voorde TFJ, Wardle DA (2013). Plant-soil feedbacks: the past, the present and future challenges. Journal of Ecology, 101, 265-276. |
[35] |
Vandamme P, Goris J, Chen WM, de Vos P, Willems A (2002). Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Systematic and Applied Microbiology, 25, 507-512.
PMID |
[36] | Wang CB, Zheng YM, Shen P, Zheng YP, Wu ZF, Sun XW, Yu TY, Feng H (2016). Determining N supplied sources and N use efficiency for peanut under applications of four forms of N fertilizers labeled by isotope 15N. Journal of Integrative Agriculture, 15, 432-439. |
[37] |
Wang H, Gu CT, Liu XF, Yang CW, Li WB, Wang SD (2020). Impact of soybean nodulation phenotypes and nitrogen fertilizer levels on the rhizosphere bacterial community. Frontiers in Microbiology, 11, 750. DOI: 10.3389/fmicb.2020.00750.
PMID |
[38] | Wang PC, Ding LL, Zou C, Zhang YJ, Wang MY (2022). Rhizosphere element circling, multifunctionality, aboveground productivity and trade-offs are better predicted by rhizosphere rare taxa. Frontiers in Plant Science, 13, 985574. DOI: 10.3389/fpls.2022.985574. |
[39] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[40] | Wu CX, Yan BS, Wei FR, Wang HL, Gao LQ, Ma HZ, Liu Q, Liu Y, Liu GB, Wang GL (2023). Long-term application of nitrogen and phosphorus fertilizers changes the process of community construction by affecting keystone species of crop rhizosphere microorganisms. Science of the Total Environment, 897, 165239. DOI: 10.1016/j.scitotenv.2023.65239. |
[41] | Wu ZF, Chen DX, Zheng YM, Wang CB, Sun XW, Li XD, Wang XX, Shi CR, Feng H, Yu TY (2016). Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut. Chinese Journal of Oil Crop Sciences, 38, 207-213. |
[ 吴正锋, 陈殿绪, 郑永美, 王才斌, 孙学武, 李向东, 王兴祥, 石程仁, 冯昊, 于天一 (2016). 花生不同氮源供氮特性及氮肥利用率研究. 中国油料作物学报, 38, 207-213.] | |
[42] | Xia X, Ma CM, Dong SK, Xu Y, Gong ZP (2017). Effects of nitrogen concentrations on nodulation and nitrogenase activity in dual root systems of soybean plants. Soil Science and Plant Nutrition, 63, 470-482. |
[43] | Yan BG, Liu GC, Fan B, He GX, Shi LT, Li JC, Ji ZH (2015). Relationships between plant stoichiometry and biomass in an arid-hot valley, Southwest China. Chinese Journal of Plant Ecology, 39, 807-815. |
[ 闫帮国, 刘刚才, 樊博, 何光熊, 史亮涛, 李纪潮, 纪中华 (2015). 干热河谷植物化学计量特征与生物量之间的关系. 植物生态学报, 39, 807-815.]
DOI |
|
[44] | Yan J, Han XZ (2014). Effect of soil inorganic N concentrations on the nodulation, N2 fixation and yield in soybean in a pot experiment. Scientia Agricultura Sinica, 47, 1929-1938. |
[ 严君, 韩晓增 (2014). 盆栽条件下土壤无机氮浓度对大豆结瘤、固氮和产量的影响. 中国农业科学, 47, 1929-1938.]
DOI |
|
[45] | Ying D, Chen XL, Hou JF, Zhao FC, Li P (2023). Soil properties and microbial functional attributes drive the response of soil multifunctionality to long-term fertilization management. Applied Soil Ecology, 192, 105095. DOI: 10.1016/j.apsoil.2023.105095. |
[46] | Zhang X, Zhang XY, Zhang YT, Mao JW, Li GP, Zhao LJ (2012). Effects of nitrogen application rate on nodulation, nitrogen absorption and utilization of peanuts. Journal of Peanut Science, 41(4), 12-17. |
[ 张翔, 张新友, 张玉亭, 毛家伟, 李国平, 赵丽君 (2012). 氮用量对花生结瘤和氮素吸收利用的影响. 花生学报, 41(4), 12-17.] | |
[47] | Zhao BY, Jia XQ, Yu N, Murray JD, Yi KK, Wang ET (2024). Microbe-dependent and independent nitrogen and phosphate acquisition and regulation in plants. New Phytologist, 242, 1507-1522. |
[48] |
Zheng YM, Wang CX, Liu QM, Wu ZF, Wang CB, Sun XS, Zheng YP (2017). Effect of nitrogen fertilizer regulation on root growth and nodulating ability of peanut. Journal of Nuclear Agricultural Sciences, 31, 2418-2425.
DOI |
[ 郑永美, 王春晓, 刘岐茂, 吴正锋, 王才斌, 孙秀山, 郑亚萍 (2017). 氮肥对花生根系生长和结瘤能力的调控效应. 核农学报, 31, 2418-2425.]
DOI |
|
[49] | Zipfel C, Oldroyd GED (2017). Plant signalling in symbiosis and immunity. Nature, 543, 328-336. |
[1] | WANG Yi-Tong, Yeerjiang BAIKETUERHAN, LIAO Dan, WANG Juan. Correlation between elemental biometric characteristics and sexual dimorphism in leaves of dioecious Acer barbinerve at different growth stages [J]. Chin J Plant Ecol, 2024, 48(6): 760-769. |
[2] | WANG Qing-Kui,LI Yan-Peng,ZHANG Fang-Yue,HE Tong-Xin. Short-term nitrogen fertilization decreased root and microbial respiration in a young Cunninghamia lanceolata plantation [J]. Chin J Plan Ecolo, 2015, 39(12): 1166-1175. |
[3] | ZHAO Feng-Hua, MA Jun-Hua, OUYANG Zhu. Effects of excessive nitrogen supply on productivity of winter wheat [J]. Chin J Plant Ecol, 2012, 36(10): 1075-1081. |
[4] | JIAO Juan-Yu, YIN Chun-Ying, CHEN Ke. Effects of soil water and nitrogen supply on the photosynthetic characteristics of Jatropha curcas seedlings [J]. Chin J Plant Ecol, 2011, 35(1): 91-99. |
[5] | JIA Shu-Xia, WANG Zheng-Quan, MEI Li, SUN Yue, QUAN Xian-Kui, SHI Jian-Wei, YU Shui-Qiang, SUN Hai-Long, GU Jia-Cun. EFFECT OF NITROGEN FERTILIZATION ON SOIL RESPIRATION IN LARIX GMELINII AND FRAXINUS MANDSHURICA PLANTATIONS IN CHINA [J]. Chin J Plant Ecol, 2007, 31(3): 372-379. |
[6] | PAN Qing-Min, BAI Yong-Fei, HAN Xing-Guo, Yang Jing-Cheng. EFFECTS OF NITROGEN ADDITIONS ON A LEYMUS CHINENSIS POPULATION IN TYPICAL STEPPE OF INNER MONGOLIA [J]. Chin J Plant Ecol, 2005, 29(2): 311-317. |
[7] | PAN Qing-Min, BAI Yong-Fei, HAN Xing-Guo, ZHANG Li-Xia. Carbohydrate Reserves in the Rhizome of Leymus chinensis in Response to Nitrogen Addition [J]. Chin J Plan Ecolo, 2004, 28(1): 53-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn