Reviews

Responses of ecosystem multifunctionality to global change: progress, problem and prospect

Expand
  • Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China

Received date: 2020-03-18

  Accepted date: 2020-10-22

  Online published: 2020-12-09

Supported by

National Key R&D Program of China(2016YFC0500701);National Natural Science Foundation of China(31972939)

Abstract

Global change has exerted profound impacts on ecosystem function, such as variations in plant productivity and imbalances in nutrient cycling. Previous studies mostly focused on the impacts of global change on individual functions. However, ecosystems have multiple functions, known as ecosystem multifunctionality (EMF), such that the evaluation based on a single functionality is inappropriate to reflect the overall performance of ecosystems due to the occurrence of trade-offs or synergies among the differential functions. This imposes limitation to our understanding of the effects of global change on ecosystems. Since the initial quantitative study of EMF by Hector and Bagchi in 2007, this field of research has undergone rapid development and the environmental impacts on EMF have received wide attention with intensification of global change. In order to gain systematic understanding of the progress in EMF studies, we conducted a bibliometric analysis for the period 2007-2020 based on CNKI and ISI Web of Science databases. This paper provides a brief description of the development in EMF research and summary of studies concerning the impacts of land use change, warming, changes in precipitation, and nitrogen deposition on EMF. We raised six issues of further attention in future studies of EMF in the context of global change, including (1) requirement of consensus in EMF indices and evaluation method; (2) consideration on the interactive effects among different factors on EMF; (3) elucidation of EMF responses to global change across various temporal scales; (4) understanding of the relationships between multi-dimensional, multi-scale biodiversity and EMF; (5) understanding of the relationships between multiple trophic diversity and EMF; and (6) understanding of the relationships between root functional traits and EMF.

Cite this article

ZHANG Hong-Jin, WANG Wei . Responses of ecosystem multifunctionality to global change: progress, problem and prospect[J]. Chinese Journal of Plant Ecology, 2021 , 45(10) : 1112 -1126 . DOI: 10.17521/cjpe.2020.0074

References

[1] Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH, Kleinebecker T, Morris EK, Oelmann Y, Prati D, Renner SC, et al. (2015). Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters, 18, 834-843.
[2] Alsterberg C, Roger F, Sundbäck K, Juhanson J, Hulth S, Hallin S, Gamfeldt L (2017). Habitat diversity and ecosystem multifunctionality-The importance of direct and indirect effects. Science Advances, 3, e1601475. DOI: 10.1126/sciadv.1601475.
[3] Antiqueira PAP, Petchey OL, Romero GQ (2018). Warming and top predator loss drive ecosystem multifunctionality. Ecology Letters, 21, 72-82.
[4] Bardgett RD, Mommer L, de Vries FT (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29, 692-699.
[5] Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE,Emmett Duffy J (2014). Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution, 5, 111-124.
[6] Canarini A, Kiær LP, Dijkstra FA (2017). Soil carbon loss regulated by drought intensity and available substrate: a meta-analysis. Soil Biology & Biochemistry, 112, 90-99.
[7] Chen QL, Ding J, Zhu D, Hu HW, Delgado-Baquerizo M, Ma YB, He JZ, Zhu YG (2020). Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology & Biochemistry, 141, 107686. DOI: 10.1016/j.soilbio.2019.107686.
[8] Chen W, Zeng H, Eissenstat DM, Guo D (2013). Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecology and Biogeography, 22, 846-856.
[9] Chillo V, Vázquez DP, Amoroso MM, Bennett EM (2018). Land-use intensity indirectly affects ecosystem services mainly through plant functional identity in a temperate forest. Functional Ecology, 32, 1390-1399.
[10] Choat B (2013). Predicting thresholds of drought-induced mortality in woody plant species. Tree Physiology, 33, 669-671.
[11] Cui H, Sun W, Delgado-Baquerizo M, Song W, Ma J, Wang K, Ling X (2020). Phosphorus addition regulates the responses of soil multifunctionality to nitrogen over-fertilization in a temperate grassland. Plant and Soil, DOI: 10.1007/s11104-020-04620-2.
[12] Dacal M, Bradford MA, Plaza C, Maestre FT, García-Palacios P (2019). Soil microbial respiration adapts to ambient temperature in global drylands. Nature Ecology & Evolution, 3, 232-238.
[13] Dai YX, Wang L, Wan XC (2015). Progress on researches of drought-induced tree mortality mechanisms. Chinese Journal of Ecology, 34, 3228-3236.
[13] [ 代永欣, 王林, 万贤崇 (2015). 干旱导致树木死亡机制研究进展. 生态学杂志, 34, 3228-3236.]
[14] Delgado-Baquerizo M, Maestre FT, Eldridge DJ, Bowker MA, Ochoa V, Gozalo B, Berdugo M, Val J, Singh BK (2016). Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands. New Phytologist, 209, 1540-1552.
[15] Delgado-Baquerizo M, Trivedi P, Trivedi C, Eldridge DJ, Reich PB, Jeffries TC, Singh BK (2017). Microbial richness and composition independently drive soil multifunctionality. Functional Ecology, 31, 2330-2343.
[16] Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, et al. (2006). Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochemical Cycles, 20, GB4003. DOI: 10.1029/2005gb002672.
[17] Díaz S, Lavorel S de Bello F, Quétier F, Grigulis K, Robson TM (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 104, 20684-20689.
[18] Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z (2015). Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Global Change Biology, 21, 388-395.
[19] Ding J, Chen L, Ji C, Hugelius G, Li Y, Liu L, Qin S, Zhang B, Yang G, Li F, Fang K, Chen Y, Peng Y, Zhao X, He H, et al. (2017). Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience, 10, 420-424.
[20] Eisenhauer N, Hines J, Isbell F, van der Plas F, Hobbie SE, Kazanski CE, Lehmann A, Liu M, Lochner A, Rillig MC, Vogel A, Worm K, Reich PB (2018). Plant diversity maintains multiple soil functions in future environments. eLife, 7, e41228. DOI: 10.7554/eLife.41228.
[21] Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Bjorkman AD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JHC, Day TA, Fosaa AM, Gould WA, Grétarsdóttir J, Harte J, Hermanutz L, et al. (2012). Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 15, 164-175.
[22] Fry EL, Savage J, Hall AL, Oakley S, Pritchard WJ, Ostle NJ, Pywell RF, Bullock JM, Bardgett RD (2018). Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland. Ecology, 99, 2260-2271.
[23] Fu W, Wu H, Zhao AH, Hao ZP, Chen BD (2020). Ecological impacts of nitrogen deposition on terrestrial ecosystems: research progresses and prospects. Chinese Journal of Plant Ecology, 44, 475-493.
[23] [ 付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬 (2020). 陆地生态系统氮沉降的生态效应: 研究进展与展望. 植物生态学报, 44, 475-493.]
[24] Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153-226.
[25] Gamfeldt L, Hillebrand H, Jonsson PR (2008). Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89, 1223-1231.
[26] Giling DP, Beaumelle L, Phillips HRP, Cesarz S, Eisenhauer N, Ferlian O, Gottschall F, Guerra C, Hines J, Sendek A, Siebert J, Thakur MP, Barnes AD (2019). A niche for ecosystem multifunctionality in global change research. Global Change Biology, 25, 763-774.
[27] Hautier Y, Isbell F, Borer ET, Seabloom EW, Harpole WS, Lind EM, MacDougall AS, Stevens CJ, Adler PB, Alberti J, Bakker JD, Brudvig LA, Buckley YM, Cadotte M, Caldeira MC, et al. (2018). Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution, 2, 50-56.
[28] Hector A, Bagchi R (2007). Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190.
[29] Hoeppner SS, Dukes JS (2012). Interactive responses of old-field plant growth and composition to warming and precipitation. Global Change Biology, 18, 1754-1768.
[30] Hufkens K, Keenan TF, Flanagan LB, Scott RL, Bernacchi CJ, Joo E, Brunsell NA, Verfaillie J, Richardson AD (2016). Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nature Climate Change, 6, 710-714.
[31] IPCC Intergovernmental Panel on Climate Change(2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
[32] Jing X, Sanders NJ, Shi Y, Chu HY, Classen AT, Zhao K, Chen LT, Shi Y, Jiang YX, He JS (2015). The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 6, 8159. DOI: 10.1038/ncomms9159.
[33] Klaus VH, Kleinebecker T, Busch V, Fischer M, Hölzel N, Nowak S, Prati D, Schäfer D, Schöning I, Schrumpf M, Hamer U (2018). Land use intensity, rather than plant species richness, affects the leaching risk of multiple nutrients from permanent grasslands. Global Change Biology, 24, 2828-2840.
[34] Le Bagousse-Pinguet Y, Soliveres S, Gross N, Torices R, Berdugo M, Maestre FT (2019). Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 116, 8419-8424.
[35] Lefcheck JS, Byrnes JEK, Isbell F, Gamfeldt L, Griffin JN, Eisenhauer N, Hensel MJS, Hector A, Cardinale BJ, Duffy JE (2015). Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications, 6, 6936. DOI: 10.1038/ncomms7936.
[36] Lei LJ, Kong DL, Li XM, Zhou ZX, Li GY (2016). Plant functional traits, functional diversity, and ecosystem functioning: current knowledge and perspectives. Biodiversity Science, 24, 922-931.
[36] [ 雷羚洁, 孔德良, 李晓明, 周振兴, 李国勇 (2016). 植物功能性状、功能多样性与生态系统功能: 进展与展望. 生物多样性, 24, 922-931.]
[37] Liu YR, Delgado-Baquerizo M, Trivedi P, He JZ, Wang JT, Singh BK (2017). Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change. Soil Biology & Biochemistry, 107, 208-217.
[38] Luo G, Rensing C, Chen H, Liu M, Wang M, Guo S, Ling N, Shen Q (2018). Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management. Functional Ecology, 32, 1103-1116.
[39] Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, García-Gómez M, Bowker MA, Soliveres S, Escolar C, García-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, et al. (2012). Plant species richness and ecosystem multifunctionality in global drylands. Science, 335, 214-218.
[40] Manning P, van der Plas F, Soliveres S, Allan E, Maestre FT, Mace G, Whittingham MJ, Fischer M (2018). Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2, 427-436.
[41] McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
[42] Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA, Grandy AS (2017). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358, 101-105.
[43] Nie M, Lu M, Bell J, Raut S, Pendall E (2013). Altered root traits due to elevated CO2: a meta-analysis. Global Ecology and Biogeography, 22, 1095-1105.
[44] Ochoa-Hueso R, Collins SL, Delgado-Baquerizo M, Hamonts K, Pockman WT, Sinsabaugh RL, Smith MD, Knapp AK, Power SA (2018). Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Global Change Biology, 24, 2818-2827.
[45] Peco B, Navarro E, Carmona CP, Medina NG, Marques MJ (2017). Effects of grazing abandonment on soil multifunctionality: the role of plant functional traits. Agriculture, Ecosystems and Environment, 249, 215-225.
[46] Perkins DM, Bailey RA, Dossena M, Gamfeldt L, Reiss J, Trimmer M, Woodward G (2015). Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes. Global Change Biology, 21, 396-406.
[47] Qin SQ, Chen LY, Fang K, Zhang QW, Wang J, Liu FT, Yu JC, Yang YH (2019). Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Science Advances, 5, eaau1218. DOI: 10.1126/sciadv.aau1218.
[48] Qu JS, Ge QS, Zhang XQ (2008). Development and comparison of the significations of global change and its correlated concepts. Advances in Earth Science, 23, 1277-1284.
[48] [ 曲建升, 葛全胜, 张雪芹 (2008). 全球变化及其相关概念的发展与比较. 地球科学进展, 23, 1277-1284.]
[49] Ren H, Eviner VT, Gui W, Wilson GWT, Cobb AB, Yang G, Zhang Y, Hu S, Bai Y (2018). Livestock grazing regulates ecosystem multifunctionality in semi-arid grassland. Functional Ecology, 32, 2790-2800.
[50] Renard D, Rhemtulla JM, Bennett EM (2015). Historical dynamics in ecosystem service bundles. Proceedings of the National Academy of Sciences of the United States of America, 112, 13411-13416.
[51] Robroek BJM, Jassey VEJ, Beltman B, Hefting MM (2017). Diverse fen plant communities enhance carbon-related multifunctionality, but do not mitigate negative effects of drought. Royal Society Open Science, 4, 170449. DOI: 10.1098/rsos.170449.
[52] Sanderson MA, Skinner RH, Barker DJ, Edwards GR, Tracy BF, Wedin DA (2004). Plant species diversity and management of temperate forage and grazing land ecosystems. Crop Science, 44, 1132-1144.
[53] Schuldt A, Assmann T, Brezzi M, Buscot F, Eichenberg D, Gutknecht J, Härdtle W, He JS, Klein AM, Kühn P, Liu X, Ma K, Niklaus PA, Pietsch KA, Purahong W, et al. (2018). Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications, 9, 2989. DOI: 10.1038/s41467-018-05421-z.
[54] Shan LS, Li Y, Dong QL, Geng DM (2012). Ecological adaptation of Reaumuria soongorica root system architecture to arid environment. Journal of Desert Research, 32, 1283-1290.
[54] [ 单立山, 李毅, 董秋莲, 耿东梅 (2012). 红砂根系构型对干旱的生态适应. 中国沙漠, 32, 1283-1290.]
[55] Soliveres S, Manning P, Prati D, Gossner MM, Alt F, Arndt H, Baumgartner V, Binkenstein J, Birkhofer K, Blaser S, Blüthgen N, Boch S, Böhm S, Börschig C, Buscot F, et al. (2016). Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150269. DOI: 10.1098/rstb.2015.0269.
[56] Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia J, Liu Q, Ru J, Zhou Z, et al. (2019). A meta- analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution, 3, 1309-1320.
[57] Stocker BD, Zscheischler J, Keenan TF, Prentice IC, Seneviratne SI, Peñuelas J (2019). Drought impacts on terrestrial primary production underestimated by satellite monitoring. Nature Geoscience, 12, 264-270.
[58] Tang YK, Wu YT, Wu K, Guo ZW, Liang CZ, Wang MJ, Chang PJ (2019). Changes in trade-offs of grassland ecosystem services and functions under different grazing intensities. Chinese Journal of Plant Ecology, 43, 408-417.
[58] [ 汤永康, 武艳涛, 武魁, 郭之伟, 梁存柱, 王敏杰, 常佩静 (2019). 放牧对草地生态系统服务和功能权衡关系的影响. 植物生态学报, 43, 408-417.]
[59] Tresch S, Frey D, Bayon RCL, Mäder P, Stehle B, Fliessbach A, Moretti M (2019). Direct and indirect effects of urban gardening on aboveground and belowground diversity influencing soil multifunctionality. Scientific Reports, 9, 9769. DOI: 10.1038/s41598-019-46024-y.
[60] Valencia E, Gross N, Quero JL, Carmona CP, Ochoa V, Gozalo B, Delgado-Baquerizo M, Dumack K, Hamonts K, Singh BK, Bonkowski M, Maestre FT (2018). Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality. Global Change Biology, 24, 5642-5654.
[61] Valencia E, Maestre FT le Bagousse-Pinguet Y, Quero JL, Tamme R, Börger L, García-Gómez M, Gross N (2015). Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytologist, 206, 660-671.
[62] van der Heijden MGA, Bardgett RD, van Straalen NM (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296-310.
[63] van der Plas F (2019). Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews, 94, 1220-1245.
[64] van der Plas F, Manning P, Soliveres S, Allan E, Scherer- Lorenzen M, Verheyen K, Wirth C, Zavala MA, Ampoorter E, Baeten L, Barbaro L, Bauhus J, Benavides R, Benneter A, Bonal D, et al. (2016). Biotic homogenization can decrease landscape-scale forest multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 113, 3557-3562.
[65] Wagg C, Bender SF, Widmer F,van der Heijden MGA (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111, 5266-5270.
[66] Walther GR, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czúcz B, Dauber J, Hickler T, Jarošík V, Kenis M, et al. (2009). Alien species in a warmer world: risks and opportunities. Trends in Ecology & Evolution, 24, 686-693.
[67] Wang L, Delgado-Baquerizo M, Wang D, Isbell F, Liu J, Feng C, Liu J, Zhong Z, Zhu H, Yuan X, Chang Q, Liu C (2019). Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proceedings of the National Academy of Sciences of the United States of America, 116, 6187-6192.
[68] Wen Z, Zheng H, Zhao H, Xie S, Liu L, Ouyang Z (2020). Land-use intensity indirectly affects soil multifunctionality via a cascade effect of plant diversity on soil bacterial diversity. Global Ecology and Conservation, 23, e01061. DOI: 10.1016/j.gecco.2020.e01061.
[69] Xu W, Jing X, Ma ZY, He JS (2016a). A review on the measurement of ecosystem multifunctionality. Biodiversity Science, 24, 72-84.
[69] [ 徐炜, 井新, 马志远, 贺金生 (2016b). 生态系统多功能性的测度方法. 生物多样性, 24, 72-84.]
[70] Xu W, Ma ZY, Jing X, He JS (2016b). Biodiversity and ecosystem multifunctionality: advances and perspectives. Biodiversity Science, 24, 55-71.
[70] [ 徐炜, 马志远, 井新, 贺金生 (2016a). 生物多样性与生态系统多功能性: 进展与展望. 生物多样性, 24, 55-71.]
[71] Yan Y, Zhang Q, Buyantuev A, Liu Q, Niu J (2020). Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality. Science of the Total Environment, 726, 138529. DOI: 10.1016/j.scitotenv.2020.138529.
[72] Yang J, Chu PF, Chen DM, Wang MJ, Bai YF (2014). Mechanisms underlying the impacts of grazing on plant α, β and γ diversity in a typical steppe of the Inner Mongolia grassland. Chinese Journal of Plant Ecology, 38, 188-200.
[72] [ 杨婧, 褚鹏飞, 陈迪马, 王明玖, 白永飞 (2014). 放牧对内蒙古典型草原α、β和γ多样性的影响机制. 植物生态学报, 38, 188-200.]
[73] Yin R, Eisenhauer N, Auge H, Purahong W, Schmidt A, Schädler M (2019). Additive effects of experimental climate change and land use on faunal contribution to litter decomposition. Soil Biology & Biochemistry, 131, 141-148.
[74] Zhu ZC, Liu YW, Liu Z, Piao SL (2018). Projection of changes in terrestrial ecosystem net primary productivity under future global warming scenarios based on CMIP5 models. Climate Change Research, 14, 31-39.
[74] [ 朱再春, 刘永稳, 刘祯, 朴世龙 (2018). CMIP5模式对未来升温情景下全球陆地生态系统净初级生产力变化的预估. 气候变化研究进展, 14, 31-39.]
[75] Zou H, Gao GY, Fu BJ (2016). The relationship between grassland ecosystem and soil water in arid and semi-arid areas: a review. Acta Ecologica Sinica, 36, 3127-3136.
[75] [ 邹慧, 高光耀, 傅伯杰 (2016). 干旱半干旱草地生态系统与土壤水分关系研究进展. 生态学报, 36, 3127-3136.]
Outlines

/