植物生态学报, 2012, 36(1): 88-98 DOI: 10.3724/SP.J.1258.2012.00088

研究论文

干旱区叶片形态特征与植物响应和适应的关系

李永华1,2, 卢琦,1,2,*, 吴波1,2, 朱雅娟1,2, 刘殿君1,2, 张金鑫1,2, 靳占虎1,2

1中国林业科学研究院荒漠化研究所, 北京 100091

2中国防治荒漠化研究与发展中心, 北京 100091

A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems

LI Yong-Hua1,2, LU Qi,1,2,*, WU Bo1,2, ZHU Ya-Juan1,2, LIU Dian-Jun1,2, ZHANG Jin-Xin1,2, JIN Zhan-Hu1,2

1Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China

2Chinese Research and Development Center for Combating Desertification, Beijing 100091, China

通讯作者: *(E-mail:luqi767@gmail.com)

编委: 李凤民

责任编辑: 李敏

收稿日期: 2011-05-12   接受日期: 2011-10-31   网络出版日期: 2012-01-01

Corresponding authors: *(E-mail:luqi767@gmail.com)

Received: 2011-05-12   Accepted: 2011-10-31   Online: 2012-01-01

摘要

叶片形态是指示植物适应特定环境的重要指标。由于植物叶片形态不仅对时空环境变化具有极强的敏感性和可塑性, 而且能够通过叶片形态的调整调节自身的生存适应能力, 所以叶片形态学研究一直是植物生理及植物生态学研究中的热点。该文在总结前人叶片形态学研究成果的基础上, 探索建立了简单的叶片形态指标分类体系; 结合物质能量交换的物理学原理, 回顾总结了叶片表观形态变化与叶片物质能量交换之间的相关关系; 应用叶片形态影响物质能量交换的物理学原理, 重点分析了干旱区植物叶片表观形态对低水分环境、高辐射(或高温)的响应与适应特征; 最后, 在回顾分析的基础上, 对叶片形态研究中存在的几个问题进行了讨论。

关键词: 干旱区植物 ; 叶片边界层阻力 ; 叶片形态学 ; 叶片温度 ; 植物响应与适应特征

Abstract

Leaf morphology is closely related to the specific environment and provides the most useful characteristics to understand plant response and adaptation strategy to environmental change. Leaf morphology plasticity is obviously related to the temporal and spatial variation of environmental variables, which are useful to plants to enhance their ability to survive. Consequently, for many years, studies on plant physiology, plant ecology and physiological ecology focused on leaf morphology. We establish a simple category of leaf morphology classification. Simultaneously, based on the principle of material and energy balances, we systematically review the relationships among environment, leaf morphology and energy balances (or material changes), and emphasize that leaf morphology responded or adapted to lower water availability and higher radiation (or temperature) in arid ecosystems. In conclusion, we submit and discuss existing problems in leaf morphology based on the weaknesses of previous studies.

Keywords: arid plant ; leaf boundary layer resistance ; leaf morphology ; leaf temperature ; plant response and adaptation characteristics

PDF (410KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李永华, 卢琦, 吴波, 朱雅娟, 刘殿君, 张金鑫, 靳占虎. 干旱区叶片形态特征与植物响应和适应的关系. 植物生态学报[J], 2012, 36(1): 88-98 DOI:10.3724/SP.J.1258.2012.00088

LI Yong-Hua, LU Qi, WU Bo, ZHU Ya-Juan, LIU Dian-Jun, ZHANG Jin-Xin, JIN Zhan-Hu. A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems. Chinese Journal of Plant Ecology[J], 2012, 36(1): 88-98 DOI:10.3724/SP.J.1258.2012.00088

叶片形态是植物形态结构的重要组成部分, 并广泛应用于传统植物分类学(中国科学院中国植物志编辑委员会, 1998)。叶片形态不仅受基因控制, 同时对不同尺度环境变化都具有极强的敏感性(Nath et al., 2003; Hovenden & Vander Schoor, 2004; Tsukaya, 2005; López de Herediaet al., 2009; Picotte et al., 2009; 于贵瑞和王秋凤, 2010)。叶片形态对环境的响应和适应特征直接影响着植物与周围环境的物质和能量交换以及植物的生存能力和发展、变化方向(Smith & Geller, 1980; Nobel, 1991; Schuepp, 1993; Lambers et al., 2008; Vogel, 2009; 于贵瑞和王秋凤, 2010)。长期以来, 植物生理学家和植物生态学家对叶片形态保持着高度的关注, 并一直致力于发现并解释叶片形态变化的目的和意义(Ehlers, 1915; Pallas et al., 1967; Gates et al., 1968; Vogel, 1970; Morrow & Slatyer, 1971; Ehleringer et al., 1976; Smith & Nobel, 1977, 1978; Smith & Geller, 1980; Ehleringer, 1982; Geller & Smith, 1982; Nobel, 1991; Schuepp, 1993; Vogel, 2009)。同时, 我国研究者从叶片解剖结构(黄振英等, 1997; 何维明和张新时, 2001; 邓艳等, 2004; 铁军等, 2008)、表观形态变化(徐文铎等, 2006; Xu et al., 2008, 2009)、生理性状特征(苏培玺等, 2003; 王俊峰和冯玉龙, 2004; 付爱红等, 2008; 薛伟等, 2011)等不同角度对叶片形态变化及其适应特征做了大量研究。但是, 以往大部分研究主要关注形态变化过程中叶片内部结构及生理性状的变化, 仅有少数研究涉及叶片形态与叶片表面物理过程的变化(傅伟和王天铎, 1994; 张良成和郭延平, 2001; 苏培玺等, 2003; 罗俊等, 2006; 李永华, 2010), 从而阻碍了我们对叶片形态变化与叶片内外物质、能量交换耦合关系的全面认识。为推动该领域的深入研究, 在前人研究基础上, 本文首先尝试对叶片形态指标进行分组; 其次, 从干旱地区植物对高温、低水分条件环境的生存适应能力出发, 利用基本的物理学原理, 着重解释了干旱区多年生植物叶片表观形态(或几何形态)变化的生理生态学意义; 最后, 在比较分析的基础上, 对叶片形态学现存的几个问题进行了分析探讨。

1 叶片形态指标分类

迄今为止, 研究者一直没有建立较为完整的叶片形态分类体系。为更好地开展叶片形态学研究, 本文根据前人研究中使用过的形态指标, 尝试将现有研究使用的叶片形态指标归为3类5组(表1)。

表1   叶片形态指标分类

Table 1  Classification of leaf morphology index

分类(组)
Classification (group)
参数
Parameter
功能和用途的简要描述
Brief description of function or application
类1: 叶解剖结构指标
Class 1: Leaf anatomical classification
角质层厚度
Cuticle thickness
影响叶片内外物质、能量交换, 保护叶片
Relating to leaf material and energy exchange, and leaf defense
栅栏组织厚度
Palisade tissue thickness
影响叶片内外物质、能量交换
Relating to leaf material and energy exchange
海绵组织厚度
Spongy tissue thickness
影响叶片内外物质、能量交换
Relating to leaf material and energy exchange
叶片厚度
Leaf thickness
影响叶片内外物质、能量交换
Relating to leaf material and energy exchange
气孔密度
Stomatal frequency
影响叶片内外物质、能量交换
Relating to leaf material and energy exchange
气孔开度
Stomatal aperture
影响叶片内外物质、能量交换
Relating to leaf material and energy exchange
气孔下陷深度
Stomatal pore depth
影响叶片内外物质、能量交换
Relating to leaf material and energy exchange
海绵组织细胞间隙
Intercellular space
影响叶片内外物质、能量交换
Relating to leaf material and energy exchange
类2 (组1): 非量化形态指标
Class 2 (group 1): Non- quantifiable classification of leaf morphology
如针叶、阔叶
E.g. coniferous and broad-leaved
应用于植物分类学
Relating to plant indentification
如披针形叶、卵形叶
E.g. lanceolate leaf shape and ovate leaf shape
应用于植物分类学
Relating to plant indentification
类2 (组2): 可量化形态指标
Class 2 (group 2): Quantifiable classification of leaf morphology
叶脉
Leaf vein
影响叶片水分传输,应用于植物分类学
Relating to water transport and plant indentification
叶柄
Leaf-petiole
影响叶片水分传输和光合生理,应用于植物分类学
Relating to water transport,photosynthetic physiology and plant indentification
托叶
Stipule
应用于植物分类学
Relating to plant indentification
表面绒毛
Leaf hair
影响叶片内外物质、能量交换, 应用于植物分类学
Relating to leaf material and energy exchange, and plant indentification
叶角
Leaf orientation
影响叶片内外物质、能量交换
Relating to leaf material and energy exchange
类2 (组3): 平面几何形态指标及其衍生指标
Class 2 (group 3): Geometry and derivative geometry classification of leaf morphology
叶长 Leaf length应用于植物分类学
Relating to plant indentification
叶宽 Leaf width应用于植物分类学
Relating to plant indentification
叶周长
Leaf perimeter
无明确生理生态学意义
No clear ecophysiology significance
叶面积
Leaf area
影响叶片内外物质、能量交换
Relating to leaf material and energy exchange
叶齿
Leaf teeth
影响叶片内外物质、能量交换, 应用于植物分类学
Relating to leaf material and energy exchange, and plant indentification
裂叶
Leaf lobe
影响叶片内外物质、能量交换, 应用于植物分类学
Relating to leaf material and energy exchange, and plant indentification
叶长/宽比
Ratio of leaf length to width
无明确生理生态学意义
No clear ecophysiology significance
面积/周长比
Ratio of leaf area to perimeter
无明确生理生态学意义
No clear ecophysiology significance
类3: 与叶片形态密切相关的其他指标
Class 3: Other classification closely related to leaf morphology
比叶面积
Specific leaf area
影响叶片投资收益率
Relating to leaf benefit-cost ratio
叶片氮含量
Leaf nitrogen content
影响叶片光合生理与水分利用效率
Relating to leaf photosynthetic physiology and water use efficiency
叶寿命
Leaf lifespan
影响叶片投资收益率
Relating to leaf benefit-cost ratio
叶片含水量
Leaf water content
影响叶片表面能量平衡及干物质含量
Relating to leaf energy balances and dry matter content
光吸收比例
Light-absorption rate
影响叶片表面能量平衡
Relating to leaf energy balances

新窗口打开| 下载CSV


第一类为叶片解剖结构指标。叶片解剖结构是组成叶片形态结构的骨架, 并与植物自身保护, 叶片内外物质、能量交换具有直接的联系, 是研究叶片形态与植物生存适应特征的核心内容。该类指标的尺度十分微小, 主要通过显微镜观察记录(陆时万等, 1991; 潘瑞炽, 2004; Lambers et al., 2008; 李和平, 2009)。叶片解剖结构的研究历史较长, 涉及内容广泛而深入, 在此基础上已有研究者对其特征、功能做了详细的总结报道(周智彬和李培军, 2002; 李芳兰和包维楷, 2005)。为此, 本文不再将其作为重点讨论内容。

第二类为叶片表观形态指标, 我们将该类进一步分为3组, 包括非量化形态指标、可量化形态指标和平面几何形态指标(包括衍生几何形态指标)。描述性形态指标是人们对叶片形态最直观的初始认识, 多用于简单区分物种间的不同; 可量化形态指标能够进一步细化区分植物物种间的不同, 同时可用于量化研究植物生理过程变量及其变化特征(Ehleringer et al., 1976; Ehleringer & Mooney, 1978; Ehleringer, 1980; Geller & Smith, 1982; 陆时万等, 1991; Smith et al., 1997; 中国科学院中国植物志编辑委员会, 1998); 平面几何形态指标(包括衍生几何形态指标)用于描述叶片平面几何特征, 从而为定量、精确地确定不同物种间的差异特征提供重要的可比参数(Parkhurst & Loucks, 1972, 陆时万等, 1991; 中国科学院中国植物志编辑委员会, 1998), 同时随着计算机图形学的发展以及叶片形态变化与植物生理过程关系研究的深入, 可量化形态指标与平面几何形态指标能够进一步为叶片生理过程机理模型提供参数(Nobel, 1991; 于贵瑞和王秋凤, 2010)。从现有研究分析, 该类指标既是人们认识叶片特征的出发点, 也是现阶段叶片形态研究中的重点和薄弱环节。

第三类为与叶片形态密切相关的叶性状指标(如比叶面积和叶片氮含量等), 由于该类指标与植物生理过程密切相关, 所以在近20年的相关研究中一直备受关注(Field & Mooney, 1986; Wright et al., 2001, 2004; 张林和罗天祥, 2004)。叶片形态与叶性状指标相关关系的研究, 有利于我们更为全面地认识叶片形态变化的生理生态学意义。

在有关叶片形态的研究中, 由于前人对于叶片解剖结构、叶性状(如叶寿命、比叶面积、叶氮含量等因子)的研究现状及未来发展已有了较为全面的回顾总结(周智彬和李培军, 2002; 张林和罗天祥, 2004; 李芳兰和包维楷, 2005; 孟婷婷等, 2007), 所以本文对叶片解剖结构及叶性状指标的内容不再展开讨论, 而重点关注叶片表观形态(或几何形态)的变化及对叶片物质、能量交换的影响。

2 形态对叶片物质能量交换过程影响的物理学原理

2.1 形态对叶片水分、CO2交换影响的原理

根据菲克定律(Fick’s Law), 叶片与外界物质交换与叶片内外物质浓度差及扩散阻力直接相关(公式(1))。

J= ΔC/r

J为单位时间单位面积的物质交换量, ΔC为叶片内外物质浓度差, r为叶片阻力。叶片阻力包括叶片内部阻力和叶片边界层阻力。叶片内部阻力指示了物质从叶片内部扩散到叶片表面的阻力, 包括了叶肉组织阻力、细胞间隙阻力、角质层阻力和气孔腔阻力。实际计算中考虑到角质层阻力和叶肉组织阻力十分微小, 常将其忽略, 并仅用细胞间隙阻力与气孔腔阻力来计算叶片内部阻力(称为气孔阻力, rst)。这样, 叶片内部物质扩散到叶外的阻力可以通过rstrb(叶片边界层阻力)计算, 所以叶片与外界物质交换方程变换为公式(2) (于贵瑞和王秋凤, 2010):

J= ΔC /( rst+ rb)

实际测定中, 气孔阻力可用气孔计测定(计算)。但是, 叶片边界层阻力获得较为困难, 现在常用模拟叶片结合热平衡法测定或通过计算机仿真模拟获得(Roth-Nebelsick, 2001; 张良成和郭延平, 2001)。然而, 由于真实叶片变化复杂, 且真实叶片与模拟叶片差别较大, 所以很难通过大量模拟获得每片叶子的边界层阻力。为简化叶片边界层阻力的模拟测定, 研究者常通过叶片边界层厚度与物质扩散系数计算获得叶片边界层阻力(公式(3)) (Nobel, 1991):

rb = δb/ Dj

式中, Dj为物质扩散系数(不同物质在不同温度下扩散系数不同, 可以通过扩散系数表查找获得, 如20 ℃环境下水蒸气在空气中的扩散系数为2.42 × 10 -5·

m3·s-1)。δb为叶片边界层厚度。计算过程中, 边界层厚度可用经验公式(公式(4))获得(Nobel, 1991):

$\delta_{b}=A \sqrt{l/v}$

式中, δb的单位为mm, l为沿风向流动方向的叶片平均长度(或叶片特征尺寸, 实际应用中常用叶片最大宽度替代), 单位为m, ν为环境风速,单位为m·s-1, A为经验常量, 在气温20-25 ℃环境下A等于4.0, 同时气温每增加10 ℃, A增加幅度约为3%。

2.2 形态对叶片表面能量交换影响的原理

根据叶片能量守恒定律, 叶片表面能量变化(S)决定于吸收(Sin)和逃逸(Sout)叶片表面的能量差值。到达叶片表面的能量包括叶片吸收的直接辐射和叶片从周围环境吸收的散射辐射。如果叶片距离地面较远, 那么叶片从周围环境吸收的散射将主要包括天空和云的散射辐射。气象学上将太阳直接辐射, 天空和云散射辐射的总量称为总辐射(Ss), 并且可以通过总辐射仪测定(Nobel, 1991; 周淑贞, 1997)。如果定义α为叶片对辐射的吸收率, 那么叶片吸收的辐射能量可表达为公式(5)。

Sin= αSs

逃逸叶片表面的能量包括叶片红外辐射、热对流、热传导、热湍流和表面水汽蒸发。根据斯蒂芬-波尔兹曼定律(Stefan-Boltzmann Law), 叶片红外辐射(JI)可表达为公式(6) (Nobel, 1991; 周淑贞, 1997)。

JI = αleafσT4

式中, αleaf为相对辐射率, 表示叶片辐射能力与同一温度下黑体辐射能力的比值; σ为斯蒂芬-波尔兹曼常数, 等于5.67 × 10 -8 W·m-2·K-4; T为绝对温度。

根据菲克定律, 通过热对流、热传导、热湍流带走的能量(JV)可表达为公式(7) (Nobel, 1991)。

$J_{V}=\frac{T_{leaf}-T_{air}}{r_{b}}=D_{j}=\frac{T_{leaf}-T_{air}}{\delta_{b}}$

式中, Tleaf为叶片表面温度, Tair为空气温度。

如果用Vh表示单位时间单位面积叶片水分蒸腾量, 用Evap表示单位水分体积蒸发所需的能量(Evap与温度直接相关, 25 ℃环境下Evap= 44 kJ·mol-1), 那么叶片表面水汽蒸发带走的能量(JH)可用公式(8)表示为:

JH= VhEvap

综合公式(5)-(8), 单位面积上叶片能量平衡可表达为公式(9)。

$S=S_{\text {in }}-S_{\text {out }}=\alpha S_{\mathrm{s}}-\alpha_{\text {leaf }} \sigma T^{4}-D_{\mathrm{j}} \frac{T_{\text {leaf }}-T_{\text {air }}}{\delta_{\mathrm{b}}}-V_{\mathrm{h}} E_{\text {vap }}$

3 旱区植物叶片形态变化的生理生态学意义

依据叶片形态在叶片物质能量交换过程中的物理学原理, 本节将重点讨论干旱区多年生植物在高辐射、高温和低水分环境下, 叶片形态的响应及适应特征。同时, 根据未来干旱地区气候变化预测, 讨论叶片形态变化对降水变化的响应与适应特征。

3.1 干旱区植物叶片形态变化与高温限制

温度对所有生物生理活动具有调节作用。通常, 只有保持在某个合理的温度区间, 生物有机体才能保证生理活动的正常运行, 高于或低于这个温度区间都将对生物的生存发展带来不利影响(潘瑞炽, 2004; Lambers et al., 2008)。从而温度成为生物学研究中揭示生物物质能量存储、交换过程的主要 因子。

在干旱地区, 高温限制是影响生长季节叶片光合作用、呼吸作用及水分和养分利用的直接因子(Osmond et al., 1987; Schulze et al., 1987; Lambers et al., 2008)。据2010年我们观测的气象数据, 我国民勤、磴口、敦煌最高气温均超过40 ℃ (未公开数据)。在生长季节晴朗的天气条件下, 干旱区植物叶片温度往往高于气温。据相关研究报道, 当空气温度达到30 ℃时, 荒漠地区植物叶片温度能够达到40-50 ℃, 这一温度已触及植物叶片能够承受的极限(Smith & Nobel, 1977; Smith, 1978; Osmond et al., 1987; Knight & Ackerly, 2003; Nicotra et al., 2008)。所以, 在极端高温环境下, 能否成功地降低叶片温度成为干旱地区植物生存的关键。

根据公式(9)可知, 控制植物叶片温度升高的方式可以通过节源(降低叶片吸收辐射比例)和开流(增加热对流、热传导、热湍流散热和水分蒸腾散热)实现。研究显示, 随着辐射的增加, 植物叶角、单位叶片面积上的叶片表面绒毛均出现增加趋势(Ehleringer et al., 1976; Ehleringer & Mooney, 1978; Medina et al., 1978; Ehleringer, 1980; Smith et al., 1997; Schrader et al., 2004; Picotte et al., 2009)。植物叶角增加可以直接降低叶片对辐射的吸收比例, 而叶片绒毛的增加能够增强叶片对辐射的反射比例(Ehleringer et al., 1976; Ehleringer & Mooney, 1978; Medina et al., 1978; Ehleringer, 1980; Smith et al., 1997; Picotte et al., 2007)。

水分蒸腾是降低植物叶片温度的重要方式(Lambers et al., 2008)。然而从清晨到中午, 随着时间的推移和植物体内水分的快速损失, 干旱区植物叶片水势往往具有降低的趋势(李向义等, 2004; 宋耀选等, 2005; 付爱红等, 2008), 即在高温限制逐步增强的过程中蒸腾降温逐步减弱, 而这一过程对干旱地区植物存活极为不利。为此, 在干旱、高辐射环境下, 植物将倾向于选择增加热对流、热传导、热湍流来增加叶片散热(公式(7)), 即通过叶片几何形态变化(如降低叶片尺寸(宽度)、增加裂叶或叶齿面积和深度)降低边界层阻力(Bragg & Westoby, 2002; McDonald et al., 2003; Thuiller et al., 2004; Rozendaal et al., 2006; Picotte et al., 2007, 2009; Yates et al., 2010)。需要强调的是, 在风速较低, 叶片水势下降迅速, 气孔开度降低或关闭的情况下, 通过降低边界层阻力(改变叶片形态)降低叶温的方式对植物躲避高温伤害尤为重要(Vogel, 2009; Yates et al., 2010)。

3.2 干旱区植物叶片形态与水分因子

水分是控制干旱地区植物存活发展的关键限定因子(Noy-Meir, 1973)。干旱地区物种(除一年生短命草本植物)为增加自身的生存适应能力, 一方面要尽可能地减少水分损失, 另一方面要极力提高水分利用效率。干旱地区植物减少水分损失往往是通过降低叶面积指数、单叶面积等来实现(McDonald et al., 2003; Rozendaal et al., 2006; Picotte et al., 2007; Lambers et al., 2008; 黄玫和季劲钧, 2010)。提高水分利用效率涉及叶片形态及叶片性状的多种变化。例如, 利用增加叶片表面绒毛等方式增加反射率, 从而降低叶温, 促进光合反应速率(Smith & Nobel, 1977; Ehleringer & Mooney, 1978; Ehleringer, 1980, 1982); 在单叶面积降低的同时往往伴随着叶片厚度、单位面积叶片重量和叶氮含量的增加(Abrams et al., 1994; Wright et al., 2001; Rozendaal et al., 2006), 由于叶片厚度和单位面积叶重量与叶片内外面积比、叶片内含物(如水分、大分子物质等)存在明显的正相关关系, 所以厚度和单位面积叶重量增加不仅可以增加叶片保水性, 而且可以减缓叶温升高的速率, 而叶氮含量的增加能够提高叶片的光合速率, 从而提高植物对有限水分的利用效率(Smith & Nobel, 1977; Field et al., 1983; Field & Mooney, 1986; Knight & Ackerly, 2003)。

干旱地区降水最为显著的特征表现为降水稀少, 年际及季节变化幅度巨大(陈佐忠和汪诗平, 2000)。这一背景植物叶片形态结构如何调整才能更好地适应水分动态的变化?相关研究结果显示, 植物在干旱年份叶片面积变小过程中, 叶片宽度具有优先降低的趋势; 而植物在湿润年份叶片面积变大的过程中, 叶片长度显现优先增长的特征(Balota et al., 2008; Picotte et al., 2009; 李永华, 2010)。

从数学角度考虑, 叶片长短轴(常表述为叶片长和宽)变化具有以下特征, 短轴优先变化利于叶面积快速变化, 而长轴优先变化有利于叶片周长的变化, 同时阻止叶面积的快速变化。根据3.1的分析, 我们很容易认识到, 干旱年份在水分压力明显增强的同时, 植物将面临更高的辐射及温度压力, 叶片宽度的优先降低一方面可以快速降低叶面积, 从而降低植物总体水分损失量, 另一方面将促使叶片阻力的快速降低, 从而增强植物叶片在低蒸腾水平下的降温能力。在湿润年份, 水分胁迫得以部分缓解, 使植物叶片长度优先增加, 一方面可以阻止由于叶面积快速增加带来的植物体水分大量损失, 另一方面能够在适当增加叶片光合面积的同时使叶片边界层阻力维持在较低的水平, 从而抵御高温的伤害。

4 叶片形态研究中的几个问题

4.1 应用叶片形态指标计算叶片边界层阻力

裂叶或叶齿是干旱区植物叶片较为普遍的表观特征。裂叶或叶齿不仅对环境变化具有较高的敏感性, 同时也直接影响植物适应干旱、高辐射环境的能力(Sisóet al., 2001; Nicotra et al., 2008; Royer et al., 2009)。虽然研究者认同叶片裂叶或叶齿变化与叶片边界层阻力有关, 但遗憾的是, 我们现有对叶片边界层阻力的认识仍维系于叶片宽度(以叶片宽度作为叶片特征长度), 无法直接证明裂叶或叶齿变化与叶片边界层阻力之间具有直接的相关关系, 从而无法深入解释裂叶或叶齿变化对叶片物质、能量交换的影响(Smith & Geller, 1980; Nobel, 1991; Schuepp, 1993; Sisóet al., 2001; Nicotra et al., 2008; Royer et al., 2009)。而解决这一问题的关键在于深入理解叶片边界层阻力的物理意义, 寻找更为合适的叶片形态学指标(或叶片特征长度), 通过对叶片形态指标与叶片边界层阻力相关关系的深入分析, 建立更为完善的叶片边界层阻力模型。

通过公式(3)和(4), 我们发现边界层厚度是联系叶片形态与叶片边界层阻力的直接桥梁。Schuepp (1993)认为叶片边界层平均厚度的物理意义应该根据叶片内部距离叶片边缘的权重平均距离进行定义。换句话说, 叶片某点的边界层厚度是由该点与叶片边缘的最近距离直接控制。研究者利用人工模型模拟、计算机仿真模拟以及热感相机测定技术证实, 不同形态叶片, 表面某点的流热传导速率随该点距离叶片边缘的距离增加而增加(Vogel, 1970; Roth-Nebelsick, 2001; Stokes et al., 2006; Vogel, 2009)。事实上, 虽然研究证明Schuepp (1993)关于叶片边界层平均厚度的定义是正确的, 但实际应用中我们仍很难应用数学积分和统计的方法对大量叶片求算其边界层厚度。然而, 如果换个角度分析, 首先对叶片进行网格化处理, 就可以清晰地认识到: 叶片边界层平均厚度(或阻力)应该与单位边距长度(周长)所包围的叶片面积(网格单元数目)直接相关(Roth-Nebelsick, 2001)。由于利用现代图像分析技术我们很容易获得叶片的周长和面积, 所以应用面积/周长比作为叶片的特征长度估算叶片边界层平均厚度(或边界层阻力)不仅具有可靠的理论依据, 而且在处理复杂叶片形态时具有巨大的实践价值。

4.2 叶片边界层阻力与气孔阻力的关系

叶片边界层阻力和气孔阻力是控制叶片内外物质交换的关键环节。我们注意到, 随着水分有效性的降低、单叶面积(宽度)的减小, 叶片边界层阻力具有降低的趋势(公式(4)), 即随着叶面积(宽度)的减小, 叶片水汽蒸腾速率有可能增加, 从而降低叶片水分利用效率。事实上, 干旱地区植物叶片水分蒸腾变化十分复杂。在不同温度、气孔阻力下, 随着叶片尺寸(宽度)的减小(或边界层阻力的降低), 叶片蒸腾速率可能出现或增加或降低或不变的复杂格局(Smith & Geller, 1980)。与此对应, 来自于叶片δ13C测定数据显示, 在降水量小于300 mm的干旱地区, 随着降水量的进一步减小, 植物叶片水分利用效率也出现或增加或降低或不变的复杂格局(Schulze et al., 1998, 2006; 苏波等, 2000; 王国安和韩家懋, 2001)。

为进一步解释叶片内外CO2、水分交换及叶片水分利用效率变化机理(公式(2)), 我们既要关注气孔变化对水、CO2交换影响的差异性, 又要深入理解边界层阻力与气孔阻力的共变规律(Jarvis & McNaughton, 1986; Wullschleger et al., 1998; Lam- bers et al., 2008)。

从现有研究水平看, 几乎没有直接的研究或数据说明二者共变过程或规律。间接的研究结果表明, 叶片边界层阻力降低(叶片变小或变窄)过程能够加速叶片蒸腾(公式(1)-(4)); 随着叶片植物水分的快速流失, 叶片水势降低, 叶片气孔开度会逐步降低, 甚至关闭(Tardieu & Simonneau, 1998; Lambers et al., 2008; 于贵瑞和王秋凤, 2010)。即叶片边界层阻力与气孔阻力具有负相关关系。如果这一关系得以证实, 并进一步获得气孔阻力随边界层阻力变化的幅度, 那么我们能够更好地理解干旱地区不同物种在未来环境变化过程中的生存能力及适应特征。

4.3 叶片形态在植物生理生态学模型中的应用

叶片形态的模拟是进一步将叶片形态引入植物生长动态模型或区域植被动态模型的基础。现阶段, 研究者已能够通过对叶片形态的数学分析建立静态的叶片形态模型(胡少军等, 2007; 吴谦等, 2008)。然而, 由于缺乏对叶片形态随环境变化机理及形态变化与植物生理生态过程内部耦合关系的清晰认识, 所以无法模拟“环境-叶片形态-叶片生理生态学过程”。从现有研究基础看, 我们迫切需要寻找既能指示植物生理生态学变化过程又能综合反映叶片形态特征的关键形态指标(例如面积/周长比, 叶面积), 同时通过叶片关键形态指标与环境因子关系的研究, 依据叶片物质能量交换的基础物理模型(参见2.1、2.2部分), 建立综合的“环境-叶片形态-叶片生理生态学过程”机理模型。

未来气候变化对植被动态的影响是现有干旱生态系统研究中的热点之一。建立在已有观测数据和相关假设的基础上, 有研究预测未来我国干旱荒漠地区降水量将出现不同程度的增加(Gao et al., 2001; 施雅风等, 2002, 2003; 王英等, 2006; Parry et al., 2007; 徐利岗等, 2009)。在这一背景下, 利用“环境-叶片形态-叶片生理生态学过程”动态机理模型, 从植物对环境变化响应最为敏感的叶片角度进行研究, 将为更好地揭示干旱区植物物种生存、演化及区域群落结构、动态, 为未来荒漠地区植被保护与恢复提供科学依据。

致谢

中央级公益性科研院所基本科研业务费专项(CAFYBB2007008)、林业公益性行业科研专项 经费(201104077)和国家自然科学基金(40971283) 资助。

参考文献

Abrams MD, Kubiske ME, Mostoller SA (1994).

Relating wet and dry year ecophysiology to leaf structure in contrasting temperate tree species

Ecology, 75,123-133.

[本文引用: 1]

Balota M, Payne WA, Evett SR, Peters TR (2008).

Morphological and physiological traits associated with canopy temperature depression in three closely related wheat lines

Crop Science, 48,1897-1910.

[本文引用: 1]

Bragg JG, Westoby M (2002).

Leaf size and foraging for light in a sclerophyll woodland

Functional Ecology, 16,633-639.

[本文引用: 1]

Chen ZZ (陈佐忠), Wang SP (汪诗平) (2000). Typical Steppe Ecosystem in China (中国典型草原生态系统). Science Press, Beijing. (in Chinese)

[本文引用: 1]

Deng Y (邓艳), Jiang ZC (蒋忠诚), Cao JH (曹建华), Li Q (李强), Lan FN (蓝芙宁) (2004).

Characteristics comparison of the leaf anatomy of Cyclobalanopsis glauca and its adaption to the environment of typical karst peak cluster areas in Nongla

Guihaia (广西植物), 24,317-322. (in Chinese with English abstract)

[本文引用: 1]

Ehleringer J (1980).

Leaf morphology and reflectance in relation to water and temperature stress

In: Turner NC, Kramer PJ eds. Adaptations of Plants to Water and Temperature Stress. John Wiley and Sons, New York. 295-308.

[本文引用: 4]

Ehleringer J (1982).

The influence of water stress and temperature on leaf pubescence development in Encelia farinosa

American Journal of Botany, 69,670-675.

[本文引用: 2]

Ehleringer J, Björkman O, Mooney HA (1976).

Leaf pubescence: effects on absorptance and photosynthesis in a desert shrub

Science, 192,376-377.

DOI      URL     PMID      [本文引用: 4]

The presence of leaf pubescence (leaf hairs) in Encelia farinosa, a desert species of the Composite family, reduces the absorptance of photosynthetically active radiation (400 to 700 nanometers) by as much as 56 percent more than a closely related but nonpubescent species, E. californica, a native of the relatively moist southern California coast. Pubescence in E. farinosa, which increases through the growing season, modifies the leaf energy balance and dramatically reduces the photosynthetic rate. The reduction in the photosynthetic rate is caused by decreased light absorption rather than decreased carbon dioxide conductance through the boundary layer.

Ehleringer JR, Mooney HA (1978).

Leaf hairs: effects on physiological activity and adaptive value to a desert shrub

Oecologia, 37,183-200.

URL     PMID      [本文引用: 4]

Ehlers JH (1915).

The temperature of leaves of Pinus in winter

American Journal of Botany, 2,32-70.

[本文引用: 1]

Field C, Merino J, Mooney HA (1983).

Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens

Oecologia, 60,384-389.

DOI      URL     PMID      [本文引用: 1]

In five California evergreen trees and shrubs cooccurring in this study but most common in habitats of different moisture availability, leaf nitrogen was a major determinant of photosynthetic capacity. Within each species, stomatal conductance was highly correlated with photosynthetic capacity, resulting in little variation in the concentration of CO2 in the intercellular spaces. Among species, intercellular CO2 concentrations varied significantly. Under controlled conditions, the leaves that realized the highest photosynthesis per unit of leaf nitrogen tended to realize the lowest photosynthesis per unit of water transpired. The ratio of photosynthesis to transpiration, an instantaneous measure of intrinsic water-use efficiency, was highest in the species commonly found in the direst habitats and lowest in the species most common in the wettes habitats.

Field C, Mooney HA (1986).

The photosynthesis-nitrogen relationship in wild plants. In:Givnish TJ ed . On the Economy of Form and Function

Cambridge University Press, Cambridge, UK.

[本文引用: 2]

Flora of China Editorial Committee of Chinese Academy of Sciences (中国科学院中国植物志编辑委员会) (1998). Flora of China (中国植物志). Science Press, Beijing. (in Chinese)

[本文引用: 3]

Fu AH (付爱红), Chen YN (陈亚宁), Li WH (李卫红) (2008).

Change on water potential of differently shaped leaves in Populus euphratica in lower reaches of Tarim River, Xinjiang

Journal of Desert Research (中国沙漠), 28,83-88. (in Chinese with English abstract)

[本文引用: 2]

Fu W (傅伟), Wang TD (王天铎) (1994).

Effects of boundary layer conductance on leaf gas exchange

Acta Botanica Sinica (植物学报), 36,614-621. (in Chinese with English abstract)

[本文引用: 1]

Gao XJ, Zhao ZC, Ding YH, Huang RH, Giorgi F (2001).

Climate change due to greenhouse effects in China as simulated by a regional climate model

Advances in Atmospheric Sciences, 18,1224-1230.

[本文引用: 1]

Gates DM, Alderfer R, Taylor E (1968).

Leaf temperatures of desert plants

Science, 159,994-995.

URL     PMID      [本文引用: 1]

Geller GN, Smith WK (1982).

Influence of leaf size, orientation, and arrangement on temperature and transpiration in three high-elevation, large-leafed herbs

Oecologia, 53,227-234.

[本文引用: 2]

He WM (何维明), Zhang XS (张新时) (2001).

Ecological significance of change of leaf form in Sabina vulgaris

Acta Botanica Yunnanica (云南植物研究), 23,433-438. (in Chinese with English abstract)

[本文引用: 1]

Hovenden MJ, Vander Schoor JK (2004).

Nature vs nurture in the leaf morphology of Southern Beech

Nothofagus cunninghamii (Nothofagaceae). New Phytologist, 161,585-594.

[本文引用: 1]

Hu SJ (胡少军), He DJ (何东健), Gen N (耿楠), Guo YH (郭亚红) (2007).

3D reconstruction of wheat lamina shape based on image processing

Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 23,150-154. (in Chinese with English abstract)

[本文引用: 1]

Huang M (黄玫), Ji JJ (季劲钧) (2010).

The spatial-temporal distribution of leaf area index in China: a comparison between ecosystem modeling and remote sensing reversion

Acta Ecologica Sinica (生态学报), 30,3057-3064. (in Chinese with English abstract)

[本文引用: 1]

Huang ZY (黄振英), Wu H (吴鸿), Hu ZH (胡正海) (1997).

The structures of 30 species of psammophytes and their adaptation to the sandy desert environment in Xinjiang

Acta Phytoecologica Sinica (植物生态学报), 21,521-530. (in Chinese with English abstract)

[本文引用: 1]

Jarvis PG, McNaughton KG (1986).

Stomatal control of transpiration: scaling up from leaf to region

Advances in Ecological Research, 15,1-49.

[本文引用: 1]

Knight CA, Ackerly DD (2003).

Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: congeneric species from desert and coastal environments

New Phytologist, 160,337-347.

[本文引用: 2]

Lambers H, Chapin FS III, Pons TL (2008). Plant Physiological Ecology. Springer-Verlag, New York.

[本文引用: 8]

Li FL (李芳兰), Bao WK (包维楷) (2005).

Responses of the morphological and anatomical structure of the plant leaf to environmental change

Chinese Bulletin of Botany(植物学通报), 22,118-127. (in Chinese with English abstract)

[本文引用: 2]

Li HP (李和平) (2009). Plant Microtechnique and Microscopy (植物显微技术). Science Press, Beijing. (in Chinese)

[本文引用: 1]

Li XY (李向义), Zhao Q (赵强), He XY (何兴元), Lin LS (林丽莎) (2004).

The physiological and ecological charac- teristics of moisture in two plant species at the foreland of Qira Oasis

Arid Zone Research (干早区研究), 21,171-174. (in Chinese with English abstract)

[本文引用: 1]

Li YH (李永华) (2010). Response of Leaf Traits of Nitraria tangutorum Bobr and Nitraria sphaerocarpa Maxim to Increasing Water (白刺叶片性状对人工增水的响应). PhD dissertation, Chinese Academy of Forestry, Beijing. (in Chinese with English abstract)

[本文引用: 2]

López de Heredia U, Valbuena-Carabaña M, Córdoba M, Gil L (2009).

Variation components in leaf morphology of recruits of two hybridising oaks [ Q. petraea (Matt.) Liebl. and Q. pyrenaica Willd.] at small spatial scale

European Journal of Forest Research, 128,543-554.

DOI      URL     [本文引用: 1]

Lu SW (陆时万), Xu XS (徐祥生), Shen MJ (沈敏健) (1991). Botany (植物学). Higher Education Press, Beijing. (in Chinese)

[本文引用: 3]

Luo J (罗俊), Zhang H (张华), Chen YQ (陈由强), Xu JS (徐景升), Lin YQ (林彦铨), Chen RK (陈如凯) (2006).

Relationship of energy sugarcane leaf forms and gas exchange with its yield

Chinese Journal of Applied and Environmental Biology (应用与环境生物学报), 12,754-760. (in Chinese with English abstract)

[本文引用: 1]

McDonald PG, Fonseca CR, Overton JM, Westoby M (2003).

Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades?

Functional Ecology, 17,50-57.

DOI      URL     [本文引用: 2]

Medina E, Sobrado M, Herrera R (1978).

Significance of leaf orientation for leaf temperature in an Amazonian sclerophyll vegetation

Radiation and Environmental Biophysics, 15,131-140.

DOI      URL     PMID      [本文引用: 2]

The influence of leaf orientation on leaf temperature has been studied in an sclerophyll vegetation of the Amazon basin, which grows on white sandy soils of very low water retention capacity and variable depth of the water table. Leaf size of the species studied is mainly mesophyllous (sensu Raunkiaer). The high degree of leaf inclination in all species is very characteristic; 55% of the leaves present inclination angles (relative to the vertical) smaller than 45 degrees. Water potential is generally high, not being lower than -14 bars. Leaf resistance increases toward noon during the course of sunny days, indicating either water stress at leaf level or the influence of low relative humidity on stomata opening. Leaf temperature under sunny conditions reflects the influence of leaf orientation on the amount of radiation absorbed by the leaf. Temperature differences recorded range from 1.8--5.4 degrees C. The difference depends on leaf angle, leaf color and leaf diffusion resistance during the period of measurement. Analysis of the relationship between leaf angle and leaf temperature, using Gates leaf energy balance, shows that under the conditions prevailing at noon in sunny days, leaf angles smaller than 50 degrees are effective in reducing leaf temperature within a wide range of leaf resistances to water vapor transfer.

Meng TT (孟婷婷), Ni J (倪健), Wang GH (王国宏) (2007).

Plant functional traits, environments and ecosystem functioning

Journal of Plant Ecology (Chinese Version)(植物生态学报), 31,150-165. (in Chinese with English abstract)

[本文引用: 1]

Morrow PA, Slatyer RO (1971).

Leaf temperature effects on measurements of diffusive resistance to water vapor transfer

Plant Physiology, 47,559-561.

DOI      URL     PMID      [本文引用: 1]

T(cup), underestimation of leaf resistance occurs; the reverse applies when T(leaf)

Nath U, Crawford BC, Carpenter R, Coen E (2003).

Genetic control of surface curvature

Science, 299,1404-1407.

DOI      URL     PMID      [本文引用: 1]

Although curvature of biological surfaces has been considered from mathematical and biophysical perspectives, its molecular and developmental basis is unclear. We have studied the cin mutant of Antirrhinum, which has crinkly rather than flat leaves. Leaves of cin display excess growth in marginal regions, resulting in a gradual introduction of negative curvature during development. This reflects a change in the shape and the progression of a cell-cycle arrest front moving from the leaf tip toward the base. CIN encodes a TCP protein and is expressed downstream of the arrest front. We propose that CIN promotes zero curvature (flatness) by making cells more sensitive to an arrest signal, particularly in marginal regions.

Nicotra AB, Cosgrove MJ, Cowling A, Schlichting CD, Jones CS (2008).

Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species

Oecologia, 154,625-635.

DOI      URL     PMID      [本文引用: 3]

The thermal response of gas exchange varies among plant species and with growth conditions. Plants from hot dry climates generally reach maximal photosynthetic rates at higher temperatures than species from temperate climates. Likewise, species in these environments are predicted to have small leaves with more-dissected shapes. We compared eight species of Pelargonium (Geraniaceae) selected as phylogenetically independent contrasts on leaf shape to determine whether: (1) the species showed plasticity in thermal response of gas exchange when grown under different water and temperature regimes, (2) there were differences among more- and less-dissected leafed species in trait means or plasticity, and (3) whether climatic variables were correlated with the responses. We found that a higher growth temperature led to higher optimal photosynthetic temperatures, at a cost to photosynthetic capacity. Optimal temperatures for photosynthesis were greater than the highest growth temperature regime. Stomatal conductance responded to growth water regime but not growth temperature, whereas transpiration increased and water use efficiency (WUE) decreased at the higher growth temperature. Strikingly, species with more-dissected leaves had higher rates of carbon gain and water loss for a given growth condition than those with less-dissected leaves. Species from lower latitudes and lower rainfall tended to have higher photosynthetic maxima and conductance, but leaf dissection did not correlate with climatic variables. Our results suggest that the combination of dissected leaves, higher photosynthetic rates, and relatively low WUE may have evolved as a strategy to optimize water delivery and carbon gain during short-lived periods of high soil moisture. Higher thermal optima, in conjunction with leaf dissection, may reflect selection pressure to protect photosynthetic machinery against excessive leaf temperatures when stomata close in response to water stress.

Nobel PS (1991). Physicochemical and Environmental Plant Physiology. Academic Press, New York.

[本文引用: 9]

Noy-Meir I (1973).

Desert ecosystems: environment and producers

Annual Review of Ecology and Systematics, 4,25-51.

DOI      URL     [本文引用: 1]

Osmond CB, Austin MP, Berry JA, Billings WD, Boyer JS, Dacey JWH, Nobel PS, Smith SD, Winner WE (1987).

Stress physiology and the distribution of plants

BioScience, 37,38-48.

DOI      URL     [本文引用: 2]

Pallas JE, Michel BE Jr, Harris DG (1967).

Photosynthesis, transpiration, leaf temperature, and stomatal activity of cotton plants under varying water potentials

Plant Physiology, 42,76-88.

DOI      URL     PMID      [本文引用: 1]

Cotton plants, Gossypium hirsutum L. were grown in a growth room under incident radiation levels of 65, 35, and 17 Langleys per hour to determine the effects of vapor pressure deficits (VPD's) of 2, 9, and 17 mm Hg at high soil water potential, and the effects of decreasing soil water potential and reirrigation on transpiration, leaf temperature, stomatal activity, photosynthesis, and respiration at a VPD of 9 mm Hg.Transpiration was positively correlated with radiation level, air VPD and soil water potential. Reirrigation following stress led to slow recovery, which may be related to root damage occurring during stress. Leaf water potential decreased with, but not as fast as, soil water potential.Leaf temperature was usually positively correlated with light intensity and negatively correlated with transpiration, air VPD, and soil water. At high soil water, leaf temperatures ranged from a fraction of 1 to a few degrees above ambient, except at medium and low light and a VPD of 19 mm Hg when they were slightly below ambient, probably because of increased transpirational cooling. During low soil water leaf temperatures as high as 3.4 degrees above ambient were recorded. Reirrigation reduced leaf temperature before appreciably increasing transpiration. The upper leaf surface tended to be warmer than the lower at the beginning of the day and when soil water was adequate; otherwise there was little difference or the lower surface was warmer. This pattern seemed to reflect transpiration cooling and leaf position effects.Although stomata were more numerous in the lower than the upper epidermis, most of the time a greater percentage of the upper were open. With sufficient soil water present, stomata opened with light and closed with darkness. Fewer stomata opened under low than high light intensity and under even moderate, as compared with high soil water. It required several days following reirrigation for stomata to regain original activity levels.Apparent photosynthesis of cotton leaves occasionally oscillated with variable amplitude and frequency. When soil water was adequate, photosynthesis was nearly proportional to light intensity, with some indication of higher rates at higher VPD's. As soil water decreased, photosynthesis first increased and then markedly decreased. Following reirrigation, photosynthesis rapidly recovered.Respiration was slowed moderately by decreasing soil water but increased before watering. Respiration slowed with increasing leaf age only on leaves that were previously under high light intensity.

Pan RZ (潘瑞炽) (2004). Plant Physiology (植物生理学). Higher Education Press, Beijing. (in Chinese)

[本文引用: 2]

Parkhurst DF, Loucks OL (1972).

Optimal leaf size in relation to environment

Journal of Ecology, 60,505-537.

DOI      URL     [本文引用: 1]

Parry M, Canziani O, Palutikof J, van der Linden P, Hanson C (2007).

Climate change 2007: impacts, adaptation and vulnerability

In: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

[本文引用: 1]

Picotte JJ, Rhode JM, Cruzan MB (2009).

Leaf morphological responses to variation in water availability for plants in the Piriqueta caroliniana complex

Plant Ecology, 200,267-275.

DOI      URL     [本文引用: 4]

Distribution of plants and the expression of traits associated with environmental variation can be affected by both average conditions and the variance in conditions including extreme climatic events. We expect that these same factors should affect the distribution of plants in hybrid zones between ecologically distinct species where the hybrids should occupy ecotones or intermediate habitats. We evaluated water availability and leaf morphological differences among parental and hybrid populations of herbaceous perennial plants in the Piriqueta caroliniana complex along environmental gradients in Southeastern North America. We focus on two taxa in this group; the viridis morphotype, which occurs in southern Florida, and the caroliniana morphotype, which is distributed from northern Florida to southern Georgia. Advanced-generation hybrid derivatives of these morphotypes occupy a broad geographic region that extends across much of central Florida. Overall, we found that hybrid populations occurred in significantly drier locations, indicating that their habitat requirements are transgressive (i.e., exceeding parental values) rather than intermediate to the parental morphotypes. Water availability differed between the two sampling years, and plants displayed morphological changes in response to these changes in moisture. During the drier year, leaves were narrower and more hirsute, corroborating experimental results that these leaf traits are plastic, and confirming that plasticity occurs in natural habitats. Hybrids exhibited intermediate leaf traits (shape and size) across both years, and displayed transgressive (hair density) leaf traits during the drier year. The apparent canalization of the hybrids’ leaf morphological traits may contribute to their tolerance of variable environmental conditions and may partially explain why they have displaced the caroliniana morphotype in central Florida.]]>

Picotte JJ, Rosenthal DM, Rhode JM, Cruzan MB (2007).

Plastic responses to temporal variation in moisture availability: consequences for water use efficiency and plant performance

Oecologia, 153,821-832.

DOI      URL     [本文引用: 3]

The ability to appropriately modify physiological and morphological traits in response to temporal variation should increase fitness. We used recombinant hybrid plants generated by crossing taxa in the Piriqueta caroliniana complex to assess the effects of individual leaf traits and trait plasticities on growth in a temporally variable environment. Recombinant hybrids were used to provide a wide range of trait expression and to allow an assessment of the independent effects of individual traits across a range of genetic backgrounds. Hybrid genotypes were replicated through vegetative propagation and planted in common gardens at Archbold Biological Station in Venus, Florida, where they were monitored for growth, leaf morphological characters, and integrated water use efficiency (WUE) (C isotope ratio; δ13C) for two successive seasons. Under wet conditions only leaf area had significant effects on plant growth, but as conditions became drier, growth rates were greatest in plants with narrow leaves and higher trichome densities. Plants with higher WUE exhibited increased growth during the dry season but not during the wet season. WUE during the dry season was increased for plants with smaller, narrower leaves that had higher trichome densities and increased reflectance. Examination of alternative path models revealed that during the dry season leaf traits had significant effects on plant growth only through their direct effects on WUE, as estimated from δ13C. Over the entire growing season, plants with a greater ability to produce smaller and narrower leaves with higher trichome densities in response to reduced water availability had the greatest growth rate. These findings suggest that plants making appropriate changes to leaf morphology as conditions became dry had increased WUE, and that the ability to adjust leaf phenotypes in response to environmental variation is a mechanism by which plants increase fitness.]]>

Roth-Nebelsick A (2001).

Computer-based analysis of steady- state and transient heat transfer of small-sized leaves by free and mixed convection

Plant, Cell & Environment, 24,631-640.

[本文引用: 3]

Royer DL, Kooyman RM, Little SA, Wilf P (2009).

Ecology of leaf teeth: a multi-site analysis from an Australian subtropical rainforest

American Journal of Botany, 96,738-750.

DOI      URL     PMID      [本文引用: 2]

Teeth are conspicuous features of many leaves. The percentage of species in a flora with toothed leaves varies inversely with temperature, but other ecological controls are less known. This gap is critical because leaf teeth may be influenced by water availability and growth potential and because fossil tooth characters are widely used to reconstruct paleoclimate. Here, we test whether ecological attributes related to disturbance, water availability, and growth strategy influence the distribution of toothed species at 227 sites from Australian subtropical rainforest. Both the percentage and abundance of toothed species decline continuously from riparian to ridge-top habitats in our most spatially resolved sample, a result not related to phylogenetic correlation of traits. Riparian lianas are generally untoothed and thus do not contribute to the trend, and there is little association between toothed riparian species and ecological attributes indicating early successional lifestyle and disturbance response. Instead, the pattern is best explained by differences in water availability. Toothed species' proportional richness declines with proximity to the coast, also a likely effect of water availability because salt stress causes physiological drought. Our study highlights water availability as an important factor impacting the distribution of toothed species across landscapes, with significance for paleoclimate reconstructions.

Rozendaal DMA, Hurtado VH, Poorter L (2006).

Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature

Functional Ecology, 20,207-216.

DOI      URL     [本文引用: 3]

Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004).

Thylakoid membrane responses to moderately high leaf temperature in Pima cotton

Plant, Cell & Environment, 27,725-735.

[本文引用: 1]

Schuepp PH (1993).

Tansley review No. 59. Leaf boundary layers

New Phytologist, 125,477-507.

DOI      URL     [本文引用: 5]

Schulze ED, Robichaux RH, Grace J, Rundel PW, Ehleringer JR (1987).

Plant water balance

BioScience, 37,30-37.

DOI      URL     [本文引用: 1]

Schulze ED, Turner NC, Nicolle D, Schumacher J (2006).

Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia

Tree Physiology, 26,479-492.

DOI      URL     PMID      [本文引用: 1]

300 mm of annual rainfall. Specific leaf area varied between 2 and 6 m2 kg(-1) and tended to increase with decreasing annual rainfall in some species, but not all, whereas delta 13C decreased with SLA. The relationship between delta 13C and SLA was highly species and soil-type specific. Leaf-area-based nitrogen (N) content varied between 2 and almost 6 g m(-2) and decreased with rainfall. Thus, thicker leaves were associated with higher N content and this compensated for the effect of drought on delta 13C. Nitrogen content was also related to soil type and species identity. Based on a linear mixed model, statistical analysis of the whole data set showed that 27% of the variation in delta 13C was associated with changes in SLA, 16% with soil type and only 1% with rainfall. Additionally, 21% was associated with species identity. For a subset of sites with > 300 mm rainfall, 43% of the variation was explained by SLA, 13% by soil type and only 3% by rainfall. The species effect decreased to 9% because there were fewer species in the subset of sites. The small effect of rainfall on delta 13C was further supported by a path analysis that yielded a standardized path coefficient of 0.38 for the effect of rainfall on SLA and -0.50 for the effect of SLA on delta 13C, but an insignificantly low standardized path coefficient of -0.05 for the direct effect of rainfall on delta 13C. Thus, in contrast to our hypothesis that delta 13C decreases with rainfall independent of soil type and species, we detected no statistically significant relationship between rainfall and delta 13C in leaves of trees growing at sites receiving

Schulze ED, Williams RJ, Farquhar GD, Schulze W, Langridge J, Miller JM, Walker BH (1998).

Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia

Australian Journal of Plant Physiology, 25,413-425.

[本文引用: 1]

Shi YF (施雅风), Shen YP (沈永平), Hu RJ (胡汝骥) (2002).

Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China

Journal of Glaciology and Geocryology(冰川冻土), 24,219-226. (in Chinese with English abstract)

URL     [本文引用: 1]

全球大幅度变暖,水循环加快,增强降水和蒸发.中国西北部从19世纪小冰期结束以来100a左右处于波动性变暖变干过程中.1987年起新疆以天山西部为主地区,出现了气候转向暖湿的强劲信号,降水量、冰川消融量和径流量连续多年增加,导致湖泊水位显著上升、洪水灾害猛烈增加、植被改善、沙尘暴减少.新疆其他地区以及祁连山中西段的降水和径流也有增加趋势.这样气候转型前景如何,是仅为年代际波动还是可发展为世纪性趋势,是只限于天山西部还是可能扩及整个西北以至华北.从引用现有区域气候模式预测,对径流变化模式预测和相似古气候情景的讨论,认为转向暖湿的趋势可以肯定,但目前尚不能确切预测转型扩大在时间上与空间上变化的速度和程度.

Shi YF (施雅风), Shen YP (沈永平), Li DL (李栋梁), Zhang GW (张国威), Ding YJ (丁永建), Hu RJ (胡汝骥), Kang ES (康尔泗) (2003).

Discussion on the present climate change from warm-dry to warm-wet in northwest China

Quaternary Sciences (第四纪研究), 23,152-164. (in Chinese with English abstract)

URL     [本文引用: 1]

由于全球显著变暖和水循环加快,使得中国西北主要是新疆地区于1987年气候发生突然变化,随着温度上升,降水量、冰川消融量和径流量连续多年增加,内陆湖泊水位显著上升,洪水灾害也迅猛增加,同时,植被有所改善,沙尘暴日数锐减,从而改变了19世纪末期至20世纪70年代的变暖变干趋势.以降水量增加超过蒸发量增加所导致的径流量增长及湖泊水位上升作为气候向暖湿转型的主要标准,西北地区目前的气候变化可分为3个区域,即1)显著转型区;2)轻度转型区;3)未转型区.作者初步认为,西北气候向暖湿转型可能是世纪性的,预期西北东部在21世纪上半期也会向暖湿转变,但预测有较大的不确定性.

Sisó S, Camarero J, Gil-Pelegrín E (2001).

Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species: a new interpretation of leaf lobation

Trees-Structure and Function, 15,341-345.

DOI      URL     [本文引用: 2]

Smith WK (1978).

Temperatures of desert plants: another perspective on the adaptability of leaf size

Science, 201,614-616.

DOI      URL     PMID      [本文引用: 1]

Surface temperatures of perennial plants in the Sonoran Desert of California ranged from 20 degrees C above air temperature to over 18 degrees C below air temperature during rapid growth periods following rain. Desert cactus with large photosynthetic stem surfaces had the highest temperatures and lowest transpiration rates. Perennial plants with relatively small leaves had moderate transpiration rates and leaf temperatures close to air temperature. Desert perennials with relatively large leaves had leaf temperatures well below air temperature along with the greatest accompanying transpiration rates of over 20 micrograms per square centimeter per second, but also had correspondingly low temperatures for maximum photosynthesis. The low leaf temperatures measured for these large-leafed species are an exception to the more common pattern for desert plants whereby a smaller leaf size prevents overheating and leads to reductions in transpiration and increased water-use efficiency. The contribution of a larger leaf size to a lower leaf temperature, and thus higher rate of photosynthesis for these large-leafed species, may represent an adaptive pattern previously unrecognized for desert plants.

Smith WK, Geller GN (1980).

Leaf and environmental parameters influencing transpiration: theory and field measurements

Oecologia, 46,308-313.

DOI      URL     PMID      [本文引用: 4]

The influence of variations in the boundary air layer thickness on transpirtion due to changes in leaf dimension or wind speed was evaluated at a given stomatal resistance (r s) for various combinations of air temperature (T a) and total absorbed solar energy expressed as a fraction of full sunlight (S ffs). Predicted transpiration was found to either increase or decrease for increases in leaf size depending on specific combinations of T a, S ffs, and r s. Major reductions in simulated transpiration with increasing leaf size occurred for shaded, highly reflective, or specially oriented leaves (S ffs=0.1) at relatively high T a when r s was below a critical value of near 500 s m(-1). Increases in S ffs and decreases in T a lowered this critical resistance to below 50 s m(-1) for S ffs=0.7 and T a=20 degrees C. In contrast, when r s was above this critical value, an increase in leaf dimension (or less wind) resulted in increases in transpiration, especially at high T a and S ffs. For several combinations of T a, S ffs, and r s, transpiration was minimal for a specific leaf size. These theoretical results were compared to field measurements on common desert, alpine, and subalpine plants to evaluate the possible interactions of leaf and environmental parameters that may serve to reduce transpiration in xeric habitats.

Smith WK, Nobel PS (1977).

Influences of seasonal changes in leaf morphology on water-use efficiency for three desert broadleaf shrubs

Ecology, 58,1033-1043.

DOI      URL     [本文引用: 4]

Smith WK, Nobel PS (1978).

Influence of irradiation, soil water potential, and leaf temperature on leaf morphology of a desert broadleaf, Encelia farinosa Gray (Compositae)

American Journal of Botany, 65,429-432.

DOI      URL     [本文引用: 1]

Smith WK, Vogelmann TC, DeLucia EH, Bell DT, Shepherd KA (1997).

Leaf form and photosynthesis

BioScience, 47,785-793.

DOI      URL     [本文引用: 3]

Song YX (宋耀选), Zhou MX (周茂先), Zhang XY (张小由), Xiao HL (肖洪浪) (2005).

Relationship of water potential for some dominant plant species in Ejin Oasis to environmental factors

Journal of Desert Research (中国沙漠), 25,496-499. (in Chinese with English abstract)

URL     [本文引用: 1]

Stokes VJ, Morecroft MD, Morison JIL (2006).

Boundary layer conductance for contrasting leaf shapes in a deciduous broadleaved forest canopy

Agricultural and Forest Meteorology, 139,40-54.

DOI      URL     [本文引用: 1]

Su B (苏波), Han XG (韩兴国), Li LH (李凌浩), Huang JH (黄建辉), Bai YF (白永飞), Qu CM (渠春梅) (2000).

Responses of δ 13C value and water use efficiency of plant species to environmental gradients along the grassland zone of northeast China transect

Acta Phytoecologica Sinica (植物生态学报), 24,648-655. (in Chinese with English abstract)

URL     [本文引用: 1]

测定了中国东北森林—草原样带草原区15个常见植物种叶片的δ13C值,并以此作为植物长期水分利用效率的指示值,研究了不同植物种的水分利用效率对年均降水量、年均大气温度和海拔高度等环境梯度变化的响应。结果表明:有相当一部分植物种的δ13C值和水分利用效率均随年均降水量和年均温增加而呈不同程度的降低趋势(如羊草(Leymus chinensis(Trin.)Tzvel.)、家榆(Ulmus pumila L.)、小叶锦鸡儿(Caragana microphylla Lam.)、直立黄芪(Astragalus adsurgens Pall.)、地榆(Sanguisorba officinalis L.)和菊叶委陵菜(Potentila tanacetifolia Willd.ex Schlecht.)等),随海拔高度增高而呈不同程度的增加趋势(如扁蓿豆(Melissitus ruthenicus(L.)Peschkova)、羊草、家榆、小叶锦鸡儿、直立黄芪、地榆等):而少数几个种(如达乌里胡枝子(Lespedeza davurica(Laxm.)Schindl.),麻花头(Serratula centauroide L.)等)则与大多数种的情况截然相反,另外部分植物种则随环境因子变化不大(达乌里黄芪(Astragalus dahuricus (Pall.)DC.)、中间锦鸡儿(Caragana intermedia Kuang et H.C.Fu)和狭叶锦鸡儿(Caragana stenophylla Pojark.),冷蒿(Artemisia frigida Willd.)、糙叶黄芪(Astragalus scaberrimus Bunge)、甘草(Glycyrrhiza uralensis Fisch.)等)。这表明,不同植物种的水分利用状况对环境梯度变化的响应不同,不同植物种具有不同的适应环境变化的策略。在退化草地生态系统恢复的实践中,应该选择具有较强适应干旱环境的植物种作为恢复物种。

Su PX (苏培玺), Zhang LX (张立新), Du MW (杜明武), Bi YR (毕玉蓉), Zhao AF (赵爱芬), Liu XM (刘新民) (2003).

Photosynthetic character and water use efficiency of different leaf shapes of Populus euphratica and their response to CO 2 enrichment

Acta Phytoecologica Sinica (植物生态学报), 27,34-40. (in Chinese with English abstract)

URL     [本文引用: 2]

胡杨(Populus euphratica Oliv.)叶形多变化,大致归纳为杨树叶(卵圆形叶)和柳树叶(披针形叶)两大类。在内蒙古额济纳旗胡杨林自然保护区,选择成年树同时具有卵圆形叶和披针形叶的标准株,将枝条拉至同一高度,通过活体测定,比较了其光合特征、水分利用效率及对CO2加富的响应。结果表明:在目前大气CO2浓度下,当光强为1 000 μmol·m-2·s-1时,卵圆形叶(成年树主要叶片)(A)和披针形叶(成年树下部萌条叶片)(B)的净光合速率(Pn)分别为16.40 μmol CO2·m-2·s-1和9.38 μmol CO2·m-2·s-1;水分利用效率(WUE)分别为1.52 mmol CO2·mol-1 H2O和1.18 mmol CO2·mol-1 H2O;A的光饱和点和补偿点分别为1 600 μmol·m-2·s-1和79 μmol·m-2·s-1,B的相对应值则为1 500 μmol·m m-2·s-1和168 μmol·m-2·s-1。当CO2浓度加富到450 μmol·mol-1时,A的光饱和点升高了150 μmol·m-2·s-1,光补偿点降低了36 μmol·m-2·s-1;而B的光饱和点降低了272 μmol·m-2·s-1,光补偿点则升高了32 μmol·m-2·s-1。这表明,柳树叶的光合效率较低,以维持生长为主;随着树体长大,柳树叶难以维系其生长,出现杨树叶,杨树叶更能耐大气干旱,光合效率高,通过积累光合产物,使胡杨在极端逆境下得以生存并能达到较高的生长量,这就是胡杨从幼苗到成年树叶形变化的原因。随着CO2加富,两种叶片表现出截然相反的响应,柳树叶的光合时间缩短,光能利用率减小;而杨树叶的光合时间延长,光能利用率提高。如果地下水位下降,近地层空气变干燥,或随着大气CO2浓度升高,气候变暖,柳树叶可能会逐渐减少以至消失。

Tardieu F, Simonneau T (1998).

Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours

Journal of Experimental Botany, 49,419-432.

DOI      URL     [本文引用: 1]

Thuiller W, Lavorel S, Midgley G, Lavergne S, Rebelo T (2004).

Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa

Ecology, 85,1688-1699.

DOI      URL     [本文引用: 1]

Tie J (铁军), Jin S (金山), Li XJ (李旭娇), Zhang GP (张桂萍), Ru WM (茹文明), Zhang ZX (张志翔) (2008).

Leaf morphological structure and stomatal parameters of endangered plant Taxus chinensis var.

mairei. Journal of Northeast Forestry University(东北林业大学学报), 36(9),24-27. (in Chinese with English abstract)

[本文引用: 1]

Tsukaya H (2005).

Leaf shape: genetic controls and environmental factors

International Journal of Develop- mental Biology, 49,547-555.

[本文引用: 1]

Vogel S (1970).

Convective cooling at low airspeeds and the shapes of broad leaves

Journal of Experimental Botany, 21,91-101.

DOI      URL     [本文引用: 2]

Vogel S (2009).

Leaves in the lowest and highest winds: temperature, force and shape

New Phytologist, 183,13-26.

DOI      URL     [本文引用: 4]

Wang GA (王国安), Han JM (韩家懋) (2001).

Relations between δ 13C values of C 3 plants in Northwestern China and annual precipitation

Chinese Journal of Geology, (地质科学), 36,494-499. (in Chinese with English abstract)

[本文引用: 1]

Wang JF (王俊峰), Feng YL (冯玉龙) (2004).

The effect of light intensity on biomass allocation, leaf morphology and relative growth rate of two invasive plants

Acta Phytoecologica Sinica (植物生态学报), 28,781-786. (in Chinese with English abstract)

URL     [本文引用: 1]

比较研究了不同光强下生长的(透光率分别为12.5%、36%、50%、100%)两种入侵性不同的外来种——紫茎泽兰(Eupatorium adenophorum)和兰花菊三七(Gynura sp.)的生物量分配、叶片形态和生长特性。结果表明: 1)两种植物叶片形态对光环境的反应相似。弱光下比叶面积(SLA)、平均单叶面积(MLS)和叶面积比(LAR)较大,随着光强的升高,SLA、MLS、LAR和叶根比(LARMR)降低。2)100%光强下紫茎泽兰叶生物量比(LMR)、叶重分数(LMF)和叶面积指数高于低光强下的值,也高于兰花菊三七,支持结构生物量比(SBR)则相反。强光下紫茎泽兰叶片自遮荫严重,这可能是其表现入侵性的重要原因之一;兰花菊三七分枝较多,避免了叶片自遮荫,较多的分枝利于种子形成对其入侵有利。3)随生长环境光强的升高,两种植物的净同化速率(NAR)、相对生长速率(RGR)和生长对NAR的响应系数均升高(但100%光强下兰花菊三七RGR降低),平均叶面积比(LARm)和生长对LARm的响应系数均降低,但不同光强下LARm对生长的影响始终大于NAR。4)随着光强的减弱,两种植物都增加高度以截获更多光能,但它们的生物量分配策略不同,紫茎泽兰根生物量比(RMR)降低,SBR增大,而兰花菊三七SBR降低,RMR增大。紫茎泽兰的生物量分配策略更好的反应了弱光环境中的资源变化情况。结论:紫茎泽兰对光环境的适应能力强于兰花菊三七。

Wang Y (王英), Cao MK (曹明奎), Tao B (陶波), Li KR (李克让) (2006).

The characteristics of spatio-temporal patterns in precipitation in China under the background of global climate change

Geographical Research (地理研究), 25,1031-1040. (in Chinese with English abstract)

URL     [本文引用: 1]

2002年中国约730个气象台站观测数据,利用空间插值和Mann-Kendall时间序列趋势分析方法并结合GIS技术,分析了过去50多年中国降水量的时空变化特征。结果表明,全国平均年降水量从60年代到90年代呈明显下降趋势,但在90年代后期出现回升,其中夏季和冬季降水量已达到50年代和60年代的水平。同时,降水量变化呈现显著的区域分异特征:华北、华中、东北南部地区持续下降,长江流域以南地区明显增加,而新疆北部、东北北部和青藏高原西部60年代到70年代下降,80年代后期有所回升。中国北方有从干旱到湿润转变的迹象,但华北和东北南部地区仍然处于持续的干旱期。中国降水量的总体下降及90年代后期的回升与全球变化趋势基本一致,但区域变化格局与全球中高纬度地区降水增加、热带和亚热带地区减少的特征正好相反。]]>

Wright IJ, Reich PB, Westoby M (2001).

Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats

Functional Ecology, 15,423-434.

[本文引用: 2]

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004).

The worldwide leaf economics spectrum

Nature, 428,821-827.

DOI      URL     PMID      [本文引用: 1]

Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.

Wu Q (吴谦), Zhang HQ (张怀清), Chen YF (陈永富) (2008).

Dynamic simulation about tree leaves based on the combination of growth regulation and image

Forestry Research (林业科学研究), 21,122-125. (in Chinese with English abstract)

[本文引用: 1]

Wullschleger SD, Meinzer FC, Vertessy RA (1998).

A review of whole-plant water use studies in tree

Tree Physiology, 18,499-512.

DOI      URL     PMID      [本文引用: 1]

Weighing lysimeters, large-tree potometers, ventilated chambers, radioisotopes, stable isotopes and an array of heat balance/heat dissipation methods have been used to provide quantitative estimates of whole-tree water use. A survey of 52 studies conducted since 1970 indicated that rates of water use ranged from 10 kg day(-1) for trees in a 32-year-old plantation of Quercus petraea L. ex Liebl. in eastern France to 1,180 kg day(-1) for an overstory Euperua purpurea Bth. tree growing in the Amazonian rainforest. The studies included in this survey reported whole-tree estimates of water use for 67 species in over 35 genera. Almost 90% of the observations indicated maximum rates of daily water use between 10 and 200 kg day(-1) for trees that averaged 21 m in height. The thermal techniques that made many of these estimates possible have gained widespread acceptance, and energy-balance, heat dissipation and heat-pulse systems are now routinely used with leaf-level measurements to investigate the relative importance of stomatal and boundary layer conductances in controlling canopy transpiration, whole-tree hydraulic conductance, coordinated control of whole-plant water transport, movement of water to and from sapwood storage, and whole-plant vulnerability of water transport to xylem cavitation. Techniques for estimating whole-tree water use complement existing approaches to calculating catchment water balance and provide the forest hydrologist with another tool for managing water resources. Energy-balance, heat dissipation and heat-pulse methods can be used to compare transpiration in different parts of a watershed or between adjacent trees, or to assess the contribution of transpiration from overstory and understory trees. Such studies often require that rates of water use be extrapolated from individual trees to that of stands and plantations. The ultimate success of this extrapolation depends in part on whether data covering short time sequences can be applied to longer periods of time. We conclude that techniques for estimating whole-tree water use have provided valuable tools for conducting basic and applied research. Future studies that emphasize the use of these techniques by both tree physiologists and forest hydrologists should be encouraged.

Xu F, Guo WH, Xu WH, Wang RQ (2008).

Habitat effects on leaf morphological plasticity in Quercus acutissima

Acta Biologica Cracoviensia Series Botanica, 50,19-26.

[本文引用: 1]

Xu F, Guo WH, Xu WH, Wei YH, Wang RQ (2009).

Leaf morphology correlates with water and light availability: What consequences for simple and compound leaves?

Progress in Natural Science, 19,1789-1798.

[本文引用: 1]

Xu LG (徐利岗), Zhou HF (周宏飞), Liang C (梁川), Wu AQ (吴安琪) (2009).

Multi-time scale variability of preci- pitation in the desert region of North China

Journal of Hydraulic Engineering(水利学报), 40,1002-1011. (in Chinese with English abstract)

[本文引用: 1]

Xu WD (徐文铎), He XY (何兴元), Chen W (陈玮), Wen H (闻华) (2006).

Morphological-ecological characters and growth patterns of main tree species leaves in urban forest of Shenyang

Chinese Journal of Applied Ecology(应用生态学报), 17,1999-2005. (in Chinese with English abstract)

[本文引用: 1]

Xue W (薛伟), Li XY (李向义), Zhu JT (朱军涛), Lin LS (林丽莎), Wang YJ (王迎菊) (2011).

Effects of shading on leaf morphology and response characteristics of photosynthesis in Alhagi sparsifolia

Chinese Journal of Plant Ecology(植物生态学报), 35,82-90. (in Chinese with English abstract)

[本文引用: 1]

Yates MJ, Verboom GA, Rebelo AG, Cramer MD (2010).

Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region

Functional Ecology, 24,485-492.

[本文引用: 2]

Yu GR (于贵瑞), Wang QF (王秋凤) (2010). Ecophysiology of Plant Phytosynthesis, Transpiration, and Water Use (植物光合、蒸腾与水分利用的生理生态学). Science Press, Beijing. (in Chinese)

[本文引用: 5]

Zhang L (张林), Luo TX (罗天祥) (2004).

Advances in ecological studies on leaf lifespan and associated leaf traits

Acta Phytoecologica Sinica (植物生态学报), 28,844-852. (in Chinese with English abstract)

[本文引用: 2]

Zhang LC (张良成), Guo YP (郭延平) (2001).

Determination of leaf boundary layer resistance using the energy balance method

Plant Physiology Communications (植物生理学通讯), 37,238-241. (in Chinese with English abstract)

[本文引用: 2]

Zhou SZ (周淑贞) (1997). Meteorology and Climatology (气象学与气候学). Higher Education Press, Beijing. (in Chinese)

[本文引用: 2]

Zhou ZB (周智彬), Li PJ (李培军) (2002).

A review on the phytotomy research of xerophytes in China

Arid Zone Research (干旱区研究), 19,35-40. (in Chinese with English abstract)

[本文引用: 2]

/