植物生态学报, 2019, 43(1): 27-36 doi: 10.17521/cjpe.2018.0155

研究论文

不同林龄、树种落叶松人工林径向生长与气候变化的关系

温晓示1, 陈彬杭1, 张树斌1, 徐凯1, 叶新宇1, 倪伟杰2, 王襄平,,1,*

1 北京林业大学林学院, 北京 100083

2 辽宁省森林经营研究所, 辽宁丹东 118003

Relationships of radial growth with climate change in larch plantations of different stand ages and species

WEN Xiao-Shi1, CHEN Bin-Hang1, ZHANG Shu-Bin1, XU Kai1, YE Xin-Yu1, NI Wei-Jie2, WANG Xiang-Ping,,1,*

1 College of Forestry, Beijing Forestry University, Beijing 100083, China

2 Institute of Forest Management, Dandong, Liaoning 118003, China

通讯作者: wangxiangping@bjfu.edu.cn

编委: 汪思龙

责任编辑: 李敏

收稿日期: 2018-07-05   接受日期: 2019-01-04   网络出版日期: 2019-01-20

基金资助: 国家重点研发计划(2016YFC0502104)
国家重点研发计划(2017YFC0503901)
国家自然科学基金(31870430)
科技部科技基础性工作专项(2015FY210200-8)
国家水体污染控制与治理科技重大专项(2017ZX07101002)

Received: 2018-07-05   Accepted: 2019-01-04   Online: 2019-01-20

Fund supported: Supported by the National Key R&D Program of China(2016YFC0502104)
Supported by the National Key R&D Program of China(2017YFC0503901)
the National Natural Science Foundation of China(31870430)
the National Special Program on Basic Works for Science and Technology of China(2015FY210200-8)
the National Special Water Programs(2017ZX07101002)

摘要

研究人工林径向生长与气候变化的关系对全球气候变暖背景下人工林合理经营有着重要的意义。该文对在辽东山区广泛栽培的黄花落叶松(Larix olgensis)和日本落叶松(Larix kaempferi)人工林, 运用树木年轮气候学方法建立了辽宁草河口和湾甸子林场落叶松人工林年表, 分析了落叶松径向生长对气候变化的响应以及气候条件、树种、立地条件和林分因子(林龄、密度、蓄积量等)的相对影响程度。结果发现在影响年轮-气候关系的因素中, 气象因子的潜在蒸发散(PET)的影响力最大; 林龄、密度和蓄积量同时也具有重要的影响作用。中龄落叶松人工林径向生长主要与气温呈正相关关系, 成熟落叶松人工林径向生长主要与气温呈负相关关系; 而其他因素, 如树种、立地条件等的影响作用不大。这表明在气候变暖背景下随着林龄增加, 林分会逐渐受到气温升高导致的水分亏缺的限制, 导致明显的生长下降趋势, 因而气候变暖对成熟落叶松人工林威胁更为严重, 所以要注重对成熟林的优先保护, 同时可以预测, 随着东北地区今后气候进一步变暖, 可能将逐步影响到林龄更小的林分的生长, 因此需要进一步研究如何在落叶松人工林经营中采取科学的措施来更好地应对未来气候变化。

关键词: 黄花落叶松; 日本落叶松; 人工林; 气候变化; 年轮-气候关系; 林分因子

Abstract

Aims This study examined how climatic conditions, tree species and stand factors (i.e. stand age, stem density, and wood volume, etc.) affected the tree growth-climate relationships in larch plantations.
Methods The dendroecological method was used to determine the relative effects of climatic condition, tree species, site quality and stand factors on tree growth in larch plantations in response to climate change in Caohekou and Wandianzi of Liaoning Province, China.
Important findings The effects of potential evapotranspiration (PET) were strongest among all the variables in explaining the tree growth-climate relationships. Stand age, tree density and wood volume were also important factors influencing growth-climate relationships. Climate warming had differential effects on radial growth in plantations of different stand ages: while the growth of mid-age stands were positively correlated with temperature, the growth of mature stands had a negative response to warming, possibly due to increased susceptibility to warming-induced water stress with stand age. Tree species and site quality were weak modulators of growth- climate relationships in this study. Our finding of the negative impact of climate warming on mature larch plantations highlights the need to explore management methods in larch plantations for better adaptation to future climate change.

Keywords: Larix olgensis; Larix kaempferi; plantations; climate change; growth-climate relationship; stand factors

PDF (1127KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

引用本文

温晓示, 陈彬杭, 张树斌, 徐凯, 叶新宇, 倪伟杰, 王襄平. 不同林龄、树种落叶松人工林径向生长与气候变化的关系. 植物生态学报, 2019, 43(1): 27-36. DOI: 10.17521/cjpe.2018.0155

WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species. Chinese Journal of Plant Ecology, 2019, 43(1): 27-36. DOI: 10.17521/cjpe.2018.0155

全球气候变化会对陆地生态系统的结构、功能和分布产生重要的影响, 尤其在中高纬度地区受气候变化的影响更大(Hu et al., 2002)。全球变暖导致极端气候事件发生频率、发生强度、发生范围的增加, 对森林生态系统产生了较大的负面影响(Webb, 2001), 因此气候变暖对森林生态系统所造成的影响已经成为目前研究的热点问题。

在森林生态系统中, 气候变化及多种生态因子直接或间接作用于树木的生长过程(Kramer et al., 2000), 导致树木表现出相应的径向生长变化(Goldblum & Rigg, 2005), 树木年轮的宽窄承载着多种气候因子和生态因子的信息。运用树木年轮学方法可去除生长趋势和其他非气候因素的影响, 从而最大限度保留树轮宽度年表的气候信息(Fritts, 1976), 进而探讨影响树木径向生长的关键气候因子。

树木径向生长对气候变化的响应不仅受到气候因子的影响, 同时还受到其他因素的作用, 以往研究发现树木径向生长对气候变化的响应因树种、环境因素和地域的差异而有明显不同(Leal et al., 2007), 例如由于地理位置(如纬度、经度、海拔)的不同会导致气候条件的变化, 进而使落叶松等树种呈现出不同的年轮-气候关系(Wang et al., 2009; Wu et al., 2017)。林龄也是影响年轮-气候关系的一个重要因素, 有研究表明幼龄树和老龄树的径向生长与气候因子间的关系存在显著差异, 例如祁连山脉不同林龄的祁连圆柏(Sabina przewalskii)在气候响应方面存在明显的不同(Yu et al., 2008)。同时不同树种径向生长对气候变化的响应也存在差异, 比如梁鹏鸿等(2016)研究发现杨桦林、蒙古栎林、阔叶红松林对气候变化的响应不同, 从杨桦林到阔叶红松林, 树木径向生长对气候波动的敏感性逐步降低。

目前对落叶松的年轮研究多集中在大兴安岭、长白山一带的落叶松天然林, 对辽东山区落叶松人工林径向生长的研究相对较少, 而且多数研究只探讨了气候条件对年轮-气候关系的影响, 或者在同一地点研究树种、林分因子对年轮-气候关系的影响, 然而这些因素如何共同作用来影响树木径向生长对气候变化的响应还不明确, 这些因素的相对作用大小还不太清楚。辽东山区广泛栽培有黄花落叶松(Larix olgensis)和日本落叶松(Larix kaempferi)人工林, 其对气候变化响应的影响机制还需进一步研究, 比如气候条件、树种和林分因子对年轮-气候关系影响作用的相对大小如何?研究这些问题对气候变化背景下落叶松人工林合理经营有重要意义。

本文以辽宁草河口和湾甸子林场不同林龄的黄花落叶松和日本落叶松人工林为研究对象, 通过研究树木径向生长与气候变化的关系, 来探讨以下三个问题: (1)不同林龄黄花落叶松和日本落叶松人工林对历史气候变化的响应; (2)气候条件、树种和林分因子(林龄、密度、蓄积量)是否影响落叶松对气候变化的响应(即年轮-气候关系); (3)气候条件和林分因子对年轮-气候关系影响作用的相对大小。

1 研究方法

1.1 研究区概况

研究地点位于辽宁省本溪满族自治县草河口林场(123.90° E, 40.87° N)和清原满族自治县湾甸子林场(125.80° E, 41.58° N), 都位于辽东山区, 属于温带大陆性季风气候。草河口林场属于长白山系千山支脉, 年平均气温6.5 ℃, 年降水量926.3 mm, 无霜期127天; 湾甸子林场属于长白山系龙岗山支脉北坡, 年平均气温3.4 ℃, 年降水量810 mm, 无霜期125天。研究区的海拔并不高, 介于300-600 m之间, 没有明显的植被垂直分布。地带性植被类型为针阔混交林, 天然落叶松林在辽宁多有分布, 同时落叶松人工林面积也较大, 目前全省拥有落叶松人工林557 201.5 hm2。作为辽宁省主要的造林树种(董厚德, 2011), 日本落叶松为20世纪30年代由日本引进, 黄花落叶松早在1912年在辽宁就被采用为人工造林树种(董厚德, 2011)。

1.2 样本采集与年表建立

在草河口和湾甸子林场, 选择不同林龄、不同立地条件的黄花落叶松和日本落叶松人工林设置样地。其中, 草河口林场设置黄花落叶松样地4块、日本落叶松样地6块, 湾甸子林场设置黄花落叶松样地3块、日本落叶松样地4块。样地面积50 m × 20 m, 由10个10 m × 10 m的样格组成。对样地中的乔木进行调查, 记录物种组成, 然后测定胸径大于3 cm树木的胸径和树高。同时, 记录样地的经纬度、海拔、坡度等环境因子, 并根据森林二类清查资料对样地的立地条件按“好” “中” “差”进行分级(方精云等, 2009)。根据落叶松的生长阶段将不同林龄落叶松人工林划分为中龄林(20-30 a)、成熟林(大于40 a)(曾凡鹏等, 2016)。群落调查和年轮采样在2016年完成, 各样地林分结构特征和基本信息见表1

表1   草河口(CHK)、湾甸子(WDZ)黄花落叶松和日本落叶松的样地基本信息和林分结构特征

Table 1  Basic information of the study sites and stand structural characteristics of Larix olgensis and Larix kaempferi in Caohekou (CHK) and Wandianzi (WDZ)

样地编号
Plot ID
年平均气温
Annual mean air temperature (℃)
年降水量
Annual precipitation (mm)
树种
Tree species
林龄
Stand age
立地条件
Site quality
林分密度
Stem density (tree·hm-2)
蓄积量
Wood volume (m³·hm-2)
平均胸径
Mean DBH (cm)
CHK015.71874.84黄花落叶松 L. olgensis77好 Well570294.5622.72
CHK025.57880.13黄花落叶松 L. olgensis78差 Poor990324.9119.72
CHK035.90867.84日本落叶松 L. kaempferi24中 Good680105.0215.56
CHK045.97865.17日本落叶松 L. kaempferi25差 Poor880122.5715.23
CHK055.78869.58日本落叶松 L. kaempferi69中 Good540442.5426.93
CHK065.82868.24日本落叶松 L. kaempferi71中 Good300373.8133.89
CHK076.15858.84日本落叶松 L. kaempferi21好 Well580108.6217.14
CHK086.08861.56日本落叶松 L. kaempferi24好 Well520107.5518.05
CHK095.89868.66黄花落叶松 L. olgensis21好 Well620157.5018.95
CHK105.86869.79黄花落叶松 L. olgensis21好 Well620111.3117.36
WDZ014.19832.08黄花落叶松 L. olgensis49中 Good520353.5225.97
WDZ023.97839.94黄花落叶松 L. olgensis50差 Poor540322.1326.26
WDZ033.74848.05日本落叶松 L. kaempferi73好 Well1490761.1023.66
WDZ043.73848.42日本落叶松 L. kaempferi72中 Good1090608.3924.09
WDZ053.74844.35日本落叶松 L. kaempferi23好 Well1030272.7017.58
WDZ063.52852.33日本落叶松 L. kaempferi23好 Well960263.4918.67
WDZ073.91838.52黄花落叶松 L. olgensis20差 Poor1290169.1815.04

DBH, diameter at breast height.

新窗口打开| 下载CSV


在每个样地内, 主要选择林冠层树木及少量中小径级个体钻取树芯, 每个样地钻取30-40株。用生长锥在胸径处(距地面1.3 m)沿东北、西南方向各钻取一根树芯。把从野外采集回来的树芯按照标准的处理方法进行干燥、固定、打磨(Stokes, 1996), 直至能在显微镜下清楚的辨别每根树芯的早材和晚材。然后通过精度为0.001 mm的LINTAB 6年轮宽度测量仪(Rintech, Heidelberg, Germany)和TSAP软件对年轮宽度进行测定。应用COFECHA程序对年轮序列进行交叉定年(Holmes, 1983), 以保证定年和测量的准确性, 并去除问题较大的树芯。由于树木的生长不仅受环境和生态因子的影响, 而且还受到自身生理因子的控制, 所以通过ARSTAN程序采用负指数函数模拟树木的生长趋势, 并消除非气候因素和树木生长趋势的影响, 进而得到标准年表, 年表中的年轮宽度指数(RWI)为实际测得年轮宽度与去趋势后的年轮宽度值的比值(Fritts, 1976)。

1.3 气候数据

气候数据由英国东安格利亚大学气候研究所建立的全球气候数据库(CRU TS 3.22 Global Climate Database, http://www.cru.uea.ac.uk/)下载(Mitchell & Jones, 2005)。我国诸多学者利用CRU网格数据对不同区域的降水、气温、蒸发等气候要素进行研究, 结果表明CRU网格数据在揭示气候要素变化特征方面有着较高的可靠性(黄秋霞等, 2013; 戚颖等, 2014), 该数据在国内外年轮年代学研究中得到了广泛的应用。因此本文气候资料采用CRU TS 3.22的月平均气温、月降水量和帕尔默干旱指数(PDSI)等气候数据。由于各样地落叶松人工林林龄不同, 因此气候数据选取成熟林年表共有的时间段(1986- 2015年), 而中林龄年表长度较短, 选取年表全部时间段进行分析, 以保持各样地结果的可比性。考虑到“滞后效应”, 即上一年气候可能会对当年的树木生长产生影响(李江风, 2000), 选取前一年夏季到当年秋季的平均气温、PDSIRWI进行相关分析来研究落叶松人工林径向生长对气候变化的响应。

1.4 统计分析

为分析样地气候条件对落叶松年轮-气候关系的影响, 对相关气候数据进行提取和计算。根据调查样地的地理坐标, 利用ArcGIS 10.0从全球高分辨率气候数据库中提取各样地1-12月平均气温与降水量数据, 并计算下述指标: (1)年平均气温(MAT, ℃), 反映气温影响; (2)年降水量(MAP, mm), 反映水分的有效性; (3)潜在蒸散量(PET, mm), 是年轮-气候关系分析重要的气候指标, 反映能量有效性, 计算方法见文献(方精云, 1992)。这些气候指标的选取是因为热量积累、水分供应等因子对年轮-气候关系可能存在影响作用(Wang et al., 2009)。

首先用RWI和上年夏季到当年秋季各季节平均气温、PDSI进行相关分析。为了分析样地气候条件、立地条件、树种和林分因子对年轮-气候关系的影响大小, 对上述RWI与各季节气候指标的相关系数进行主成分分析(PCA), 利用一般线性模型(GLM)来分析探讨各种环境和生物因素对落叶松年轮-气候关系的影响。其中, 环境因素包括气候因子和立地条件。气候因子则包括潜在蒸发散、年降水量, 分别反映热量和水分的有效性, 因为以往研究表明热量和水分是影响东北地区森林生物量、生产力的关键气候要素(Wang et al., 2006; Xu et al., 2017)。第二类为生物因子, 包括树种(黄花落叶松和日本落叶松), 以及林分因子(密度、林龄和蓄积量), 有研究表明树种和林龄、蓄积量等林分因子可能会影响年轮-气候关系(Leal et al., 2007; Rais et al., 2014a)。

所有的数据分析均利用R 3.4.3软件进行, 检验水平设置值为0.1。

2 结果和分析

2.1 研究区气候变化趋势

CRU数据表明, 草河口林场由于纬度偏低, 年平均气温高于湾甸子林场, 但两个地点的水分条件没有明显的区别(图1)。半个世纪(1966-2015年)以来, 草河口地区的年平均气温以每年0.018 9 ℃ (R2 = 0.194, p < 0.01)的速度递增, 湾甸子地区的年平均气温以每年0.018 5 ℃ (R2 = 0.200, p < 0.01)的速度递增, 但PDSI变化都不显著。因此, 研究区近几十年来呈现出显著的气候变暖的趋势。

图1

图1   草河口(CHK)和湾甸子(WDZ)年平均气温(A)与帕尔默干旱指数(B)的变化趋势。

Fig. 1   Trends in annual mean air temperature (A) and palmer drought severity index (B) in Caohekou (CHK) and Wandianzi (WDZ).


2.2 年表统计特征

通过负指数函数进行去趋势, 一共得到17个标准年表, 成熟林用于与气候进行分析的年表长度为1986-2016年, 而中林龄年表长度较短, 选取年表全部时间段与气候进行分析。各样地年表的统计参数如表2所示, CHK07的样芯长度最短, 只有15年, WDZ03的样芯长度最长, 达73年, 各样地的平均敏感度均大于0.140, 其中WDZ07最高, 为0.253。各样地的标准偏差(SD)介于0.142-0.278之间, 其中WDZ07的最大。17个样地树间相关系数为0.242- 0.603, CHK06最低, 草河口CHK10最高。CHK05的一阶自相关系数最高, 表明CHK05的落叶松径向生长受上一年气候因素的影响最大。各样地的样本总体代表性(EPS)均很高, 都明显超过0.85, 而且各样地信噪比都较高, 为11.489-51.739, 说明所建年表质量较好, 适合进一步进行轮宽与气候变化关系的分析(吴祥定, 1990)。表2 草河口(CHK)和湾甸子(WDZ)样地落叶松标准年表统计参数

Table 2   Summary of statistics for standard chronology in sampling plots of Caohekou (CHK) and Wandianzi (WDZ)

样地
Plot
树芯/株数
Number of cores/trees
样芯长度
Length of
series (a)
用于气候分析
的年表长度
Chronology
length for climate
analysis (a)
平均敏感度
Mean
sensitivity
标准偏差
Standard deviation
R1样本间平均相关系数
Mean correlations among
all radii
一阶自相
关系数
Autocorrelation order 1
信噪比
Signal-to- noise ratio
样本总体
代表性
Express
population signal
第一主成分所占方差量
PCA1 (%)
CHK0139/231950-20161986-20160.1700.2170.3400.61018.0640.9480.411
CHK0263/341950-20161986-20160.1990.2500.4310.58638.6940.9750.463
CHK0343/231996-20161996-20160.1600.1420.324-0.05414.3820.9350.396
CHK0446/231996-20161996-20160.1650.1510.3950.24420.8570.9540.432
CHK0538/201956-20161986-20160.1470.2120.3070.68013.7430.9320.368
CHK0649/271956-20161986-20160.1540.1670.2420.44913.4310.9310.283
CHK0739/202002-20162002-20160.2130.2170.4750.40933.5040.9710.524
CHK0838/202000-20162000-20160.1510.1450.2850.14215.1490.9380.354
CHK0946/261989-20161989-20160.1610.1860.4930.39236.9370.9740.535
CHK1040/221996-20161996-20160.1810.2390.6030.49151.7390.9810.639
WDZ0140/221968-20161986-20160.2000.1990.4140.26724.7180.9610.464
WDZ0241/211967-20161986-20160.2250.2200.5010.24636.0940.9730.533
WDZ0362/361944-20161986-20160.2040.2110.3130.34926.4600.9640.347
WDZ0444/241945-20161986-20160.1660.1780.2840.24711.4890.9200.329
WDZ0564/341994-20161994-20160.1430.1500.2780.27320.8240.9540.332
WDZ0642/281994-20161994-20160.1540.1550.4300.10026.4460.9640.470
WDZ0781/431971-20161986-20160.2530.2780.2470.44820.7140.9540.308

PCA1, variance in the first principal component.

新窗口打开| 下载CSV


2.3 径向生长与气候因子的关系

落叶松年轮-气候关系明显受到林龄等林分因素的影响, 比如图2中落叶松径向生长与上年夏季气温的相关关系随林龄增加呈显著下降的趋势(p < 0.001), 同样与上年秋季气温(p < 0.001)、当年夏季气温(p < 0.05)和当年秋季气温(p < 0.1)的相关关系随林龄增加呈显著下降的趋势。可以看出过去几十年的气候变暖对中龄落叶松人工林径向生长有促进作用, 而对成熟落叶松人工林有抑制作用。

图2

图2   草河口和湾甸子落叶松径向生长与不同季节气温相关关系随林龄的变化趋势。A, 上年夏季气温。B, 上年秋季气温。C, 当年夏季气温。D, 当年秋季气温。

Fig. 2   The trends of relationships between the radial growth of larch and air temperature in different seasons with increasing age of Caohekou and Wandianzi. A, Air temperature in summer of the previous year. B, Air temperature in autumn of the previous year. C, Air temperature in summer of the current year. D, Air temperature in autumn of the current year.


运用轮宽指数与气温和帕尔默干旱指数的相关系数作主成分分析, 结果见图3图3中, PCA1轴主要反映了地点(气候条件)的差异, 草河口样地和湾甸子样地分别位于图的左右侧。PCA2轴则主要反映了样地的林龄差异, 较小林龄和较大林龄样地分别位于图的上、下部。PCA1轴和2轴共解释了83.11%的变异, 说明PCA1、2轴能够很好地代表年轮和各种气候指标的关系, 因此下文中我们用PCA1轴、2轴的得分来反映年轮-气候关系, 进一步研究不同样地的气候条件、林分因子、树种等因素的影响。

图3

图3   草河口和湾甸子落叶松年轮宽度指数与气温(T)、帕尔默干旱指数(PDSI)的主成分分析。P表示上一年, C表示当年, Spr、Sum、Aut、Win分别表示春、夏、秋、冬季。

Fig. 3   Principal component analysis of ring width index of larch and air temperature (T), palmer drought severity index (PDSI) of Caohekou and Wandianzi. P designates the previous year, and C the current year. Spr, Sum, Aut and Win are abbreviations for spring, summer, autumn and winter, respectively.


RWI和季节气候因子的相关系数作主成分分析得前四轴载荷值, 由表3可知, PCA1轴的PDSI的载荷值都为正值, 因此主成分的正值越大, PDSI正相关关系越强, 主成分的负值越小, PDSI的负相关关系越强, 说明该轴主要反映了轮宽对水分条件历史变化的响应; PCA2轴的气温载荷值大多数为正值, 因此主成分的正值越大, 气温的正相关关系越强, 主成分的负值越小, 气温的负相关关系越强, 说明该轴主要反映了轮宽对历史气温变化的响应。

表3   季节气候因子在年轮宽度指数与气温、帕尔默干旱指数主成分分析各轴的载荷值

Table 3  Loading of seasonal climatic factors in each axis of the principal components of ring width index and air temperature, palmer drought severity index

变量 VariableComp. 1Comp. 2Comp. 3Comp. 4
P_Sum_T-0.2530.361-0.3180.233
P_Aut_T-0.1150.507-0.0480.084
P_Win_T-0.330-0.0350.4260.005
C_Spr_T-0.3100.134-0.4270.167
C_Sum_T-0.1710.3810.440-0.555
C_Aut _T0.1460.427-0.353-0.445
P_Sum_PDSI0.2190.4050.2120.475
P_Aut_PDSI0.2910.2610.3630.356
P_Win_PDSI0.3650.105-0.053-0.133
C_Spr_PDSI0.3590.1020.002-0.183
C_Sum_PDSI0.374-0.066-0.052-0.022
C_Aut_PDSI0.364-0.092-0.1780.019

P designates the previous year, and C is the current year, T is the mean air temperature, PDSI is the palmer drought severity index, Spr, Sum, Aut and Win are abbreviations for spring (March to May), summer (June to August), autumn (September to November), and winter (December to February), respectively.

P表示上一年, C表示当年, T为平均气温, PDSI为帕尔默干旱指数, Spr、Sum、Aut、Win分别表示春(3-5月)、夏(6-8月)、秋(9-11月)、冬季(12-2月)。

新窗口打开| 下载CSV


2.4 气候条件、林分因子对年轮-气候关系的影响

表4为环境因子、树种和林分因子对PCA1轴、2轴得分的单因素解释力(R2)。可以看出潜在蒸发散(PET)和蓄积量与PCA1轴的相关关系很显著(p < 0.001), 林分密度也达到了显著水平(p < 0.05), 这说明热量、水分条件、蓄积量和密度可能对年轮-气候关系有着重要的作用。林龄与PCA2轴存在显著相关关系(p < 0.001), 可以看出林分因子中的林龄对年轮-气候关系同样起到重要的作用。而立地条件、树种对PCA1、2轴均没有显著的解释力。

表4   环境因子、林分结构特征对年轮宽度指数与气温、帕尔默干旱指数的PCA1、2轴得分的解释力(R2)

Table 4  The explanatory power of environmental factors and stand structural characteristics on the scores of PCA axes 1 and 2 of ring width index and air temperature, palmer drought severity index (R2)

变量
Variable
年降水量
Mean annual precipitation
潜在蒸发量
Potential
evapotranspiration
林龄
Stand age
林分密度
Stem density
蓄积量
Wood volume
立地条件
Site quality
树种
Tree species
PCA1-0.522**-0.722***0.0910.287*0.512**0.0130.007
PCA2-0.0870.000-0.660***0.011-0.1970.0900.056

“-” indicates a negative correlation, *, p < 0.05; **, p < 0.01; ***, p < 0.001

“-”表示负相关

新窗口打开| 下载CSV


表5可以看出PET对PCA1轴具有特别显著的影响, 解释力最大, 高达72.17%; 林龄对PCA2轴具有显著的影响, 解释力为27.44%, 同时降水对PCA2轴的影响也达到了显著水平, 解释力为21.65%。这些结果证实了热量和水分的有效性对年轮-气候关系的影响最大, 林分因子中的林龄次之。考虑到气候因子和林分因子可能存在共线性, 在多元回归模型中调整了气候和林分因子的顺序, 由附录I和表5可以说明林分密度、蓄积量和气候因子存在共线性, 导致林分密度和蓄积量与PCA1轴的相关关系不显著(表5), 这说明林分因子(林龄、密度和蓄积量)和气候条件共同影响着年轮-气候关系。

附录I   年轮宽度指数与气温、帕尔默干旱指数的PCA1、2轴得分与环境因子、林分结构特征多元回归分析

Supplement I  Multiple regression analysis of the scores for PCA axes 1 and 2 of ring width index and air temperature, palmer drought severity index with environmental factors and stand structural characteristics

PCA1PCA2
df% SSpdf% SSp
树种 Tree species10.7290.53515.5670.167
林分密度 Stem density128.0430.004**10.6250.625
林龄 Stand age18.2250.061164.6050.000***
蓄积量 Wood volume134.0520.002**14.9560.190
潜在蒸发量Potential evapotranspiration111.5020.032*11.9050.400
年降水量 Annual precipitation12.5550.26010.6620.615
立地条件 Site quality21.0120.75522.3560.631
残差 Residuals813.882819.323

*, p < 0.05; **, p < 0.01; ***, p < 0.001.

新窗口打开| 下载CSV


表5   年轮宽度指数与气温、帕尔默干旱指数的PCA1、2轴得分与环境因子、林分结构特征多元回归分析

Table 5  Multiple regression analysis of the scores for the PCA axes 1 and 2 of ring width index and air temperature, palmer drought severity index with environmental factors and stand structural characteristics

PCA1PCA2
df% SSpdf% SSp
潜在蒸发量
Potential evapotranspiration
172.1700.000 2***10.0030.973
年降水量
Mean annual precipitation
10.8840.496121.6460.017*
立地条件 Site quality21.1220.733213.2910.123
树种 Tree species10.5910.576110.1290.075
林分密度 Stem density10.2120.73611.2190.498
林龄 Stand age17.9900.064127.4430.009**
蓄积量 Wood volume13.1500.21516.9450.128
残差 Residuals813.881819.323

*, p < 0.05; **, p < 0.01; ***, p < 0.001.

新窗口打开| 下载CSV


3 讨论

本研究结果表明, 研究地点的气候条件、林分因子对落叶松人工林径向生长对气候变化的响应(即年轮-气候关系)有显著影响。其中, 气候因子中热量和水分的有效性都有着重要作用; 林分因子中林龄、密度和蓄积量可能起主要作用, 而树种(黄花和日本落叶松)之间的差异影响似乎并不大。

3.1 气候条件与落叶松径向生长的关系

前人的研究表明由于地理位置的不同(如纬度、经度、海拔)会导致气候条件的变化, 进而使落叶松呈现出不同的年轮-气候关系(Wang et al., 2009)。不同的海拔树木径向生长对气候变化的敏感性不同(常锦峰等, 2009; 曾令兵等, 2012); 不同纬度红松(Pinus koraiensis)的径向生长对气候变化的响应也存在差异(刘敏等, 2016)。本研究与上述研究结果一致, 图3中PCA1轴主要反映了地点(气候条件)的差异, 因为草河口位于湾甸子的南部, 两地在气候上有一定的差异, 说明本研究中地理位置不同导致气候条件的差异是影响树木径向生长的重要因素, 表5中潜在蒸发散(PET)对PCA1轴的解释力(72.17%)最大, 而结合表5和附录I可以看出潜在蒸发量和林分密度、蓄积量存在共线性, 说明PET这么高的解释力(72.17%)包含了气候和林分密度、蓄积量的共同作用, 因此气候条件和林分密度、蓄积量共同影响年轮-气候关系。降水对PCA2轴的解释力也达到了显著水平, 为 21.6%。虽然草河口和湾甸子在地理位置上距离并不太远, 但PET在影响年轮-气候关系上仍然有这么高的解释力, 这充分说明气候条件是影响落叶松人工林径向生长对气候变化响应的重要因素。

3.2 林分因子与落叶松径向生长的关系

以前多数研究只探讨了气候条件对年轮-气候关系的影响, 或者在同一地点研究树种、林分因子对年轮-气候关系的影响, 然而这些因素如何共同作用来影响树木径向生长对气候变化的响应还不明确, 以及这些因素的相对作用大小也不太清楚。本文同时研究了气候条件、树种和林分因子对年轮-气候关系的影响, 进一步探讨了这些因素的相对作用大小。一些研究表明, 林龄是影响树木径向生长对气候变化响应的重要因素, 老龄林树木径向生长对水分因子的响应比幼龄林树木更加敏感(Wang et al., 2009; Merian & Lebourgeois, 2011; Schuster & Oberhuber, 2013), 本研究结果与之一致。由图2看出气温升高对林龄较小的落叶松人工林径向生长有促进作用, 而对林龄较大的林分有抑制作用。理论上来说, 在没有水分亏缺的情况下, 气候变暖是有利于树木生长的。径向生长和气温的负相关关系往往是由于气温升高造成的水分亏缺所导致, 这种情况常见于沿气候梯度开展的研究中(常锦峰等, 2009; 曾令兵等, 2012)。本研究发现的不同林龄林分生长与气温的相反关系, 可能反映了中龄林和成熟林之间水分生理的差异。因为中龄林在向成熟林生长发育的过程中, 树木径向生长所需要的营养和水分会增加, 当树龄增大到一定程度后, 随着生物量、树高等的增加, 树木内部的水分运输成为一个主要的限制因子(Ryan & Yoder, 1997)。此外, 林龄较大的树木的蒸腾作用也较幼龄林大得多, 水分需求更大。这两方面因素都导致在同样的降水条件下, 成熟林可能出现生理干旱, 而中龄林则不会。生理干旱会导致气孔过早关闭, 影响树木与外界进行气体交换, 进而限制树木的径向生长。因此本文结果说明, 气候变暖的确导致了水分有效性的下降, 已对林龄较大的林分产生了显著的不利影响。而林龄较小的林分由于水分需求和水分运输困难较小尚未导致生理干旱, 因此气候变暖反而有利于其生长。据此可以预测的是, 随着今后东北地区气候进一步变暖, 可能将逐步影响到林龄更小的林分的生长。对不同针叶树种年轮-气候关系的研究发现, 不同树种对干旱的响应存在差异(Lévesque et al., 2014); 同时有研究认为在较恶劣气候条件下不同树种对气候变化的响应是一致的, 而在相对温和的气候条件下不同树种对气候变化的响应差异较大(Ferrero et al., 2013), 本研究与上述研究结果不尽一致, 由表5可以看出树种对PCA1、2轴的解释力较低, 相对于其他环境、生物因素影响较小。这可能是因为黄花落叶松和日本落叶松同属于落叶松属植物, 分布的纬度差异不大, 种间差异相对不大, 因此对环境变化的适应方式比较相似, 所以在本研究中体现出树种对年轮-气候关系的影响相对于其他因素较小。林分密度会影响树木径向生长对气候变化的响应(Rais et al., 2014b), 通过疏伐实验发现低密度的林分对干旱的抵抗力和恢复力较强(D’Amato & Palik, 2013), 因为高密度的林分对水分的竞争更加激烈, 因此受水分胁迫更严重, 不利于树木的生长甚至导致死亡。同时有研究表明蓄积量对年轮-气候关系也有一定的影响作用, 因为蓄积量较大的林分对水分需求较大, 进而竞争较激烈, 因此对水分条件的响应更为敏感(Rais et al., 2014a)。在本研究中林分密度和蓄积量对年轮-气候关系也起到了重要的作用, 由表5和附录I可以看出林分密度、蓄积量和气候因子存在共线性, 林分密度和蓄积量对年轮- 气候关系都具有重要的影响(p < 0.01), 所以气候和林分密度、蓄积量共同影响着树木径向生长对气候变化的响应。在气候变化背景下, 成熟林一般蓄积量较大, 对水分需求较大, 容易产生生理干旱, 因此老林龄树木径向生长对水分因子更加敏感, 进而导致密度对林龄较大树木的限制作用更大(Primicia et al., 2015), 所以对人工林进行经营时, 要保证成熟林生长环境中水分充足, 可以通过疏伐、减少竞争来减缓气候变化对树木径向生长的影响。

4 结论

本研究通过对辽东山区落叶松人工林进行群落调查, 运用树木年轮气候学的方法来探讨径向生长与气候变化的关系, 结果表明:1)在气候变化的背景下, 气温的适当升高有利于中龄落叶松人工林的生长, 而成熟落叶松人工林受到生理干旱的限制作用, 在对气候变化的响应中更为脆弱。2)落叶松人工林径向生长对气候变化的响应主要受气候条件和林分因子(密度、林龄和蓄积量)的影响, 其中气候条件(热量和水分的有效性)的影响比林分因子要大。3)对黄花落叶松和日本落叶松人工林进行经营时要因地制宜, 针对不同林龄的落叶松人工林采取不同的经营措施, 尤其对林龄较大的落叶松人工林需要进一步研究, 如何通过疏伐减少对水分的竞争, 以合理应对气候变化的威胁。

致谢 感谢北京林业大学林学院博士生梁鹏鸿、孙晗博士在工作中给予的帮助。

参考文献

Chang JF, Wang XP, Zhang XP, Lin X ( 2009).

Alpine timberline dynamics in relation to climatic variability in the northern Daxing’an Mountains

Mountain Research, 6, 703-711.

DOI:10.3969/j.issn.1008-2786.2009.06.010      URL     [本文引用: 2]

高山林线植被对气候变化十分敏感,已成为全球变化研究的热点。研究了大兴安岭北部大白山高山 林线的树木生长和群落璺新动态及其与气候变化、火干扰等因素的关系。结果表明,林线树木的生长对气候变化十分敏感,但其敏感性随着海拔的降低而减弱;在高 海拔,林线树木的径向生长与上年生长季后期(8月)降水负相关,而与上年初秋(9月)温度正相关,这些限制作用随着海拔的降低而逐渐消失;与此相反,低海 拔树木生长与当年冬末春初(3月)的温度负相关,但随着海拔上升这种限制作用消失。分析结果还表明,本地区的群落更新主要受火干扰驱动,而与气候变化没有 显著关系。不同树种在火灾后更新的时间存在差异,这种差异又因海拔的不同而异,反映出不同树种的更新策略及对环境变化适应能力的差异。大兴安岭北部的高山 林线在树木生长对气候变化的敏感性、与气候因子的关系及群落更新动态等方面均与干旱区林线有明显的差异,这些差异与气候条件、树种、更新驱动力等方面的不 同有密切的关系。

[ 常锦峰, 王襄平, 张新平, 林鑫 ( 2009).

大兴安岭北部大白山高山林线动态与气候变化的关系

山地学报, 6, 703-711.]

DOI:10.3969/j.issn.1008-2786.2009.06.010      URL     [本文引用: 2]

高山林线植被对气候变化十分敏感,已成为全球变化研究的热点。研究了大兴安岭北部大白山高山 林线的树木生长和群落璺新动态及其与气候变化、火干扰等因素的关系。结果表明,林线树木的生长对气候变化十分敏感,但其敏感性随着海拔的降低而减弱;在高 海拔,林线树木的径向生长与上年生长季后期(8月)降水负相关,而与上年初秋(9月)温度正相关,这些限制作用随着海拔的降低而逐渐消失;与此相反,低海 拔树木生长与当年冬末春初(3月)的温度负相关,但随着海拔上升这种限制作用消失。分析结果还表明,本地区的群落更新主要受火干扰驱动,而与气候变化没有 显著关系。不同树种在火灾后更新的时间存在差异,这种差异又因海拔的不同而异,反映出不同树种的更新策略及对环境变化适应能力的差异。大兴安岭北部的高山 林线在树木生长对气候变化的敏感性、与气候因子的关系及群落更新动态等方面均与干旱区林线有明显的差异,这些差异与气候条件、树种、更新驱动力等方面的不 同有密切的关系。

D’Amato AW, Palik BJ ( 2013).

Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems

Ecological Applications, 23, 1735-1742.

DOI:10.1890/13-0677.1      URL     PMID:24555305      [本文引用: 1]

Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (>50 years) replicated thinning experiment to determine if density reductions conferred greater resistance and/or resilience to droughts, assessed by the magnitude of stand-level growth reductions. Our results suggest that thinning generally enhanced drought resistance and resilience; however, this relationship showed a pronounced reversal over time in stands maintained at lower tree densities. Specifically, lower-density stands exhibited greater resistance and resilience at younger ages (49 years), yet exhibited lower resistance and resilience at older ages (76 years), relative to higher-density stands. We attribute this reversal to significantly greater tree sizes attained within the lower-density stands through stand development, which in turn increased tree-level water demand during the later droughts. Results from response-function analyses indicate that thinning altered growth-climate relationships, such that higher-density stands were more sensitive to growing-season precipitation relative to lower-density stands. These results confirm the potential of density management to moderate drought impacts on growth, and they highlight the importance of accounting for stand structure when predicting climate-change impacts to forests.

Dong HD ( 2011). Vegetation and Vegetation Division of Liaoning Province. Liaoning University Press, Shenyang.

[本文引用: 2]

[ 董厚德 ( 2011). 辽宁植被与植被区划. 辽宁大学出版社, 沈阳.]

[本文引用: 2]

Fang JY ( 1992).

Study on the geographic elements affecting temperature distribution in China

Acta Ecologica Sinica, 12, 97-104.

[本文引用: 1]

[ 方精云 ( 1992).

地理要素对我国气温分布影响的数量评价

生态学报, 12, 97-104.]

[本文引用: 1]

Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD ( 2009).

Methods and protocols for plant community inventory

Biodiversity Science, 17, 533-548.

DOI:10.3724/SP.J.1003.2009.09253      URL     [本文引用: 1]

植物群落是不同植物在长期环境变化中相互作用、相互适应而形成的组合。它提供着人类赖以生存的主要物质资源, 维系着地球生态系统的健康和功能, 也为各种动物和其他生物提供食物来源和栖息地, 是人类生存和发展不可或缺的物质基础, 具有不可替代的作用。我国植物群落类型多样, 在世界上首屈一指, 但我国至今尚没有一次全面和系统的植物群落清查, 不仅影响了人们对我国植物资源的了解、利用和保护, 也不利于我国生态学、环境科学和地理学等相关学科的发展。采用统一的方法体系和技术规范开展我国植物群落的清查工作势在必行, 并具有紧迫性。本文基于作者长期的野外工作实践和国内外的群落调查方法, 首先简要定义了与植物群落清查有关的重要概念, 在此基础上, 论述了调查样地的设置原则和体系、群落清查的技术指标和方法、主要优势种生态属性的测定方法和规范, 并介绍了大样地调查的主要步骤。通过本文的介绍、归纳和总结, 试图为制定我国植物群落清查的技术规范提供基础材料和技术储备。

[ 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 ( 2009).

植物群落清查的主要内容、方法和技术规范

生物多样性, 17, 533-548.]

DOI:10.3724/SP.J.1003.2009.09253      URL     [本文引用: 1]

植物群落是不同植物在长期环境变化中相互作用、相互适应而形成的组合。它提供着人类赖以生存的主要物质资源, 维系着地球生态系统的健康和功能, 也为各种动物和其他生物提供食物来源和栖息地, 是人类生存和发展不可或缺的物质基础, 具有不可替代的作用。我国植物群落类型多样, 在世界上首屈一指, 但我国至今尚没有一次全面和系统的植物群落清查, 不仅影响了人们对我国植物资源的了解、利用和保护, 也不利于我国生态学、环境科学和地理学等相关学科的发展。采用统一的方法体系和技术规范开展我国植物群落的清查工作势在必行, 并具有紧迫性。本文基于作者长期的野外工作实践和国内外的群落调查方法, 首先简要定义了与植物群落清查有关的重要概念, 在此基础上, 论述了调查样地的设置原则和体系、群落清查的技术指标和方法、主要优势种生态属性的测定方法和规范, 并介绍了大样地调查的主要步骤。通过本文的介绍、归纳和总结, 试图为制定我国植物群落清查的技术规范提供基础材料和技术储备。

Ferrero ME, Villalba R, Membiela MD, Ripalta A, Delgado S, Paolini L ( 2013).

Tree-growth responses across environmental gradients in subtropical Argentinean forests

Plant Ecology, 214, 1321-1334.

DOI:10.1007/s11258-013-0254-2      URL     [本文引用: 1]

Subtropical forests in montane ecosystems grow under a wide range of environmental conditions. However, little is known about the growth responses of subtropical trees to climate along ecological gradients. To assess how, and to what extent climate controls tree growth, we analyzed tree responses to climate for 15 chronologies from 4 different species (Schinopsis lorentzii, Juglans australis, Cedrela lilloi, Alnus acuminata) across a variety of environments in subtropical forests from northwestern Argentina (22-28A degrees S, 64-66A degrees W). Using correlation and principal component analysis, site and species differences in tree-growth responses to precipitation and temperature were determined along the elevation gradient from the dry-warm Chaco lowlands to the wet-cool montane Yungas. Our results show that species responses differ according to the severity in climate conditions along the elevation gradient. At sites with unfavorable conditions, mainly located at the extremes of the environmental gradient, responses of different species to climate variations are similar; in contrast, at sites with relatively mild conditions, tree growth displays a large variety of responses reflecting differences in both local environmental conditions and species physiology. Our research suggests that individualistic responses to environmental variability would determine differences in the type and timing of the responses of dominant trees to climate, which ultimately may shift species' assemblages in montane subtropical regions of South America under future climate changes.

Fritts HC ( 1976).

Tree rings and climate

Scientific American, 226, 95-99.

[本文引用: 2]

Goldblum D, Rigg LS ( 2005).

Tree growth response to climate change at the deciduous boreal forest ecotone, Ontario, Canada

Canadian Journal of Forest Research, 35, 2709-2718.

DOI:10.1139/x05-185      URL     [本文引用: 1]

Holmes RL ( 1983).

Computer-assisted quality control in tree-ring dating and measurement

Tree-Ring Bulletin, 43, 69-75.

[本文引用: 1]

Hu FS, Lee BY, Kaufman DS, Yoneji S, Nelson DM, Henne PD ( 2002).

Response of tundra ecosystem in southwestern Alaska to Younger-Dryas climatic oscillation

Global Change Biology, 8, 1156-1163.

DOI:10.1046/j.1365-2486.2002.00550.x      URL     [本文引用: 1]

Climatic warming during the last glacial 搃nterglacial transition (LGIT) was punctuated by reversals to glacial-like conditions. Palaeorecords of ecosystem change can help document the geographical extent of these events and improve our understanding of biotic sensitivity to climatic forcing. To reconstruct ecosystem and climatic variations during the LGIT, we analyzed lake sediments from southwestern Alaska for fossil pollen assemblages, biogenic-silica content (BSiO 2 %), and organic-carbon content (OC%). Betula shrub tundra replaced herb tundra as the dominant vegetation of the region around 13 600 cal BP (cal BP: 14 C calibrated calendar years before present), as inferred from an increase of Betula pollen percentages from << 5% to >> 20% with associated decreases in Cyperaceae, Poaceae, and Artemisia . At c . 13 000 cal BP, a decrease of Betula pollen from 28 to << 5% suggests that shrub tundra reverted to herb tundra. Shrub tundra replaced herb tundra to resume as the dominant vegetation at 11 600 cal BP. Higher OC% and BSiO 2 % values suggest more stable soils and higher aquatic productivity during shrub-tundra periods than during herb-tundra periods, although pollen changes lagged behind changes in the biogeochemical indicators before c . 13 000 cal BP. Comparison of our palaeoecological data with the ice-core d 18 O record from Greenland reveals strikingly similar patterns from the onset through the termination of the Younger Dryas (YD). This similarity supports the hypothesis that, as in the North Atlantic region, pronounced YD climatic oscillations occurred in the North Pacific region. The rapidity and magnitude of ecological changes at the termination of the YD are consistent with greenhouse experiments and historic photographs demonstrating tundra sensitivity to climatic forcing.

Huang QX, Zhao Y, He Q ( 2013).

Climatic characteristics in Central Asia based on CRU data

Arid Zone Research, 30, 396-403.

URL     [本文引用: 1]

Based on the CRU data in Central Asia during the period of 1971 2000, in this paper the method of linear regression was used to analyze the climate change in Central Asia in recent 30 years. The results showed that the desert regions in Turkmenistan and Uzbekistan were the aridest areas with the highest temperature in Central Asia. Precipitation in Tajikistan and Kyrgyzstan in winter and spring was higher than that in summer and autumn, and temperature range was relatively low. In Kazakhstan, precipitation occurred mainly in summer, and it decreased from the west to the east; the range of temperature was high, and it was warmer in the west than that in the east. The annual range of temperature in Central Asia was low. There was a significant difference of climate between Xinjiang of China and the five countries in Central Asia, precipitation in Xinjiang occurred mainly in the Tianshan Mountains and in summer, where the warming trend was obvious, and the change trend of maximum and minimum temperature was opposite to that in the western part of Central Asia.

[ 黄秋霞, 赵勇, 何清 ( 2013).

基于CRU资料的中亚地区气候特征

干旱区研究, 30, 396-403.]

URL     [本文引用: 1]

Based on the CRU data in Central Asia during the period of 1971 2000, in this paper the method of linear regression was used to analyze the climate change in Central Asia in recent 30 years. The results showed that the desert regions in Turkmenistan and Uzbekistan were the aridest areas with the highest temperature in Central Asia. Precipitation in Tajikistan and Kyrgyzstan in winter and spring was higher than that in summer and autumn, and temperature range was relatively low. In Kazakhstan, precipitation occurred mainly in summer, and it decreased from the west to the east; the range of temperature was high, and it was warmer in the west than that in the east. The annual range of temperature in Central Asia was low. There was a significant difference of climate between Xinjiang of China and the five countries in Central Asia, precipitation in Xinjiang occurred mainly in the Tianshan Mountains and in summer, where the warming trend was obvious, and the change trend of maximum and minimum temperature was opposite to that in the western part of Central Asia.

Kramer K, Leinonen I, Loustau D ( 2000).

The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: An overview

International Journal of Biometeorology, 44, 67-75.

DOI:10.1007/s004840000066      URL     PMID:10993560      [本文引用: 1]

Abstract An overview is presented of the phenological models relevant for boreal coniferous, temperate-zone deciduous and Mediterranean coniferous forest ecosystems. The phenology of the boreal forests is mainly driven by temperature, affecting the timing of the start of the growing season and thereby its duration, and the level of frost hardiness and thereby the reduction of foliage area and photosynthetic capacity by severe frost events. The phenology of temperate-zone forests is also mainly driven by temperature. Since temperate-zone forests are mostly mixed-species deciduous forests, differences in phenological response may affect competition between tree species. The phenology of Mediterranean coniferous forests is mainly driven by water availability, affecting the development of leaf area, rather than the timing of phenological events. These phenological models were subsequently coupled to the process-based forest model FORGRO to evaluate the effect of different climate change scenarios on growth. The results indicate that the phenology of each of the forest types significantly affects the growth response to a given climate change scenario. The absolute responses presented in this study should, however, be used with caution as there are still uncertainties in the phenological models, the growth models, the parameter values obtained and the climate change scenarios used. Future research should attempt to reduce these uncertainties. It is recommended that phenological models that describe the mechanisms by which seasonality in climatic drivers affects the phenological aspects of trees should be developed and carefully tested. Only by using such models may we make an assessment of the impact of climate change on the functioning and productivity of different forest ecosystems.

Leal S, Melvin TM, Grabner M, Wimmer R, Briffa KR ( 2007).

Tree-ring growth variability in the Austrian Alps: The influence of site, altitude, tree species and climate

Boreas, 36, 426-440.

DOI:10.1080/03009480701267063      URL     [本文引用: 2]

We present an extensive new network of ring-width chronologies, comprising data from 100 sites within the Austrian Eastern Alps, made up of multiple tree species. Principal components analysis and cluster analysis were used to identify five separate high-frequency tree-growth signals from these data. Tree-growth variability at these sites is explained by site altitude and species differences that moderate the effects of the annually varying climatic forcing on tree growth. Recently developed, two-century long gridded climate data sets for the Greater Alpine Region were used to assess the relationship between climate and tree growth. Tree growth at low altitudes is controlled mainly by spring-summer moisture availability. At high altitudes precipitation is no longer a limiting factor and growth is mostly determined by summer temperature. In the intermediate altitudinal range, we did not find any direct relationships with specific climatic variables. High-altitude chronologies suitable for reconstructing past temperatures and low-altitude chronologies suitable for reconstructing past precipitation were identified.

Lévesque M, Siegwolf R, Saurer M, Eilmann B, Rigling A ( 2014).

Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions

New Phytologist, 203, 94-109.

DOI:10.1111/nph.12772      URL     PMID:24635031      [本文引用: 1]

Higher atmospheric CO2 concentrations (ca) can under certain conditions increase tree growth by enhancing photosynthesis, resulting in an increase of intrinsic water-use efficiency (iWUE) in trees. However, the magnitude of these effects and their interactions with changing climatic conditions are still poorly understood under xeric and mesic conditions.We combined radial growth analysis with intra- and interannual 020713C and 020718O measurements to investigate growth and physiological responses of Larix decidua, Picea abies, Pinus sylvestris, Pinus nigra and Pseudotsuga menziesii in relation to rising ca and changing climate at a xeric site in the dry inner Alps and at a mesic site in the Swiss lowlands.iWUE increased significantly over the last 50 yr by 809000929% and varied depending on species, site water availability, and seasons. Regardless of species and increased iWUE, radial growth has significantly declined under xeric conditions, whereas growth has not increased as expected under mesic conditions. Overall, drought-induced stomatal closure has reduced transpiration at the cost of reduced carbon uptake and growth.Our results indicate that, even under mesic conditions, the temperature-induced drought stress has overridden the potential CO2 090004fertilization090005 on tree growth, hence challenging today's predictions of improved forest productivity of temperate forests.

Li JF ( 2000). Research and Application of Dendrohydrology. Science Press, Beijing.

[本文引用: 1]

[ 李江风 ( 2000). 树木年轮水文学研究与应用. 科学出版社, 北京.]

[本文引用: 1]

Liang PH, Wang XP, Wu YL, Xu K, Wu P, Guo X ( 2016).

Growth responses of broad-leaf and Korean pine mixed forests at different successional stages to climate change in the Shengshan Nature Reserve of Heilongjiang Province, China

Chinese Journal of Plant Ecology, 40, 425-435.

DOI:10.17521/cjpe.2015.0357      URL     [本文引用: 1]

黑龙江黑河为我国红松(Pinus koraiensis)分布的北界,在研究红松林的生长、演替、分布,及其对气候变化的响应上有独特的意义。该文通过研究胜山保护区内阔叶红松林的演替系列(软阔叶林、硬阔叶林、阔叶红松近熟林和成熟林4个阶段),分析了树木径向生长与气候变化的关系在不同演替阶段的差异。结果表明:从演替早期的软阔叶林到晚期的红松成熟林,年表统计特征表明树木径向生长对气候波动的敏感性逐步降低。对年轮-气候关系的分析结果也表明气候对树木径向生长的影响随着演替的进展呈现规律性的变化。上年6月和12月的气温与红松成熟林的径向生长显著正相关,表现出明显的“滞后效应”。红松成熟林的轮宽指数与当年6月气温显著负相关,而与当年6月降水量显著正相关,反映出生长季水分对红松生长的限制。上述这些限制作用均随着演替的进展而增强,但在演替的早期影响不显著。相反,上年6月降水量与软阔叶林的生长显著负相关,但该限制作用在演替的中晚期消失。这些差异反映出随着演替的进展,优势树种对水分的需求逐步提高。滑动相关分析表明研究区近几十年明显的气候干暖化趋势对各林型的生长兼具有利和不利的影响。不同因素综合作用下,软、硬阔叶林阶段生长尚未产生清晰的长期变化趋势。但由于水分对红松林生长的限制作用增强,红松林生长明显下降。今后气候进一步干暖化可能对红松林的生长、恢复演替和分布有不利影响。

[ 梁鹏鸿, 王襄平, 吴玉莲, 徐凯, 吴鹏, 郭鑫 ( 2016).

黑龙江胜山保护区阔叶红松林不同演替阶段径向生长与气候变化的关系

植物生态学报, 40, 425-435.]

DOI:10.17521/cjpe.2015.0357      URL     [本文引用: 1]

黑龙江黑河为我国红松(Pinus koraiensis)分布的北界,在研究红松林的生长、演替、分布,及其对气候变化的响应上有独特的意义。该文通过研究胜山保护区内阔叶红松林的演替系列(软阔叶林、硬阔叶林、阔叶红松近熟林和成熟林4个阶段),分析了树木径向生长与气候变化的关系在不同演替阶段的差异。结果表明:从演替早期的软阔叶林到晚期的红松成熟林,年表统计特征表明树木径向生长对气候波动的敏感性逐步降低。对年轮-气候关系的分析结果也表明气候对树木径向生长的影响随着演替的进展呈现规律性的变化。上年6月和12月的气温与红松成熟林的径向生长显著正相关,表现出明显的“滞后效应”。红松成熟林的轮宽指数与当年6月气温显著负相关,而与当年6月降水量显著正相关,反映出生长季水分对红松生长的限制。上述这些限制作用均随着演替的进展而增强,但在演替的早期影响不显著。相反,上年6月降水量与软阔叶林的生长显著负相关,但该限制作用在演替的中晚期消失。这些差异反映出随着演替的进展,优势树种对水分的需求逐步提高。滑动相关分析表明研究区近几十年明显的气候干暖化趋势对各林型的生长兼具有利和不利的影响。不同因素综合作用下,软、硬阔叶林阶段生长尚未产生清晰的长期变化趋势。但由于水分对红松林生长的限制作用增强,红松林生长明显下降。今后气候进一步干暖化可能对红松林的生长、恢复演替和分布有不利影响。

Liu M, Mao ZY, Li Y, Sun T, Li XH, Huang W, Liu RP, Li YH ( 2016).

Response of radial growth of Pinus koraiensis in broad-leaved Korean pine forests with different latitudes to climatical factors.

Chinese Journal of Applied Ecology, 27, 1341-1352.

DOI:10.13287/j.1001-9332.201605.020      URL     [本文引用: 1]

运用树木年轮气候学方法,研究了不同纬度阔叶红松林红松径向生长趋势及其与气候因子的关系,以期揭示不同纬度红松径向生长对气候因子响应的差异以及气候变化影响下红松的动态特征、适应性及敏感性.结果表明:不同纬度红松径向生长对当地气候因子的响应存在差异,最南部的白石砬子自然保护区红松径向生长与生长季的平均相对湿度呈显著正相关,与平均最高气温呈显著负相关.中部的长白山自然保护区的低海拔区域红松径向生长与生长季的水分因子(降水、相对湿度和帕尔默干旱指数PDSI)呈显著正相关,而与平均最高气温呈显著负相关;凉水自然保护区红松径向生长与生长季的水分因子(相对湿度和PDSI)呈显著正相关,与气温因子(平均气温和平均最高气温)呈显著负相关.而最北部的胜山自然保护区红松径向生长则与大部分月份的气温因子呈显著正相关.当年6月气候因子是影响所有纬度红松径向生长的关键气候因子,4个样地都与当年6月平均最高气温呈显著负相关.在气温不断上升的近40年,最南部的红松径向生长呈显著下降趋势,最北部呈显著上升趋势,中部的变化不显著.如果未来气温升高而降水不变,红松分布区可能缩小.

[ 刘敏, 毛子军, 厉悦, 孙涛, 李兴欢, 黄唯, 刘瑞鹏, 李元昊 ( 2016).

不同纬度阔叶红松林红松径向生长对气候因子的响应

应用生态学报, 27, 1341-1352.]

DOI:10.13287/j.1001-9332.201605.020      URL     [本文引用: 1]

运用树木年轮气候学方法,研究了不同纬度阔叶红松林红松径向生长趋势及其与气候因子的关系,以期揭示不同纬度红松径向生长对气候因子响应的差异以及气候变化影响下红松的动态特征、适应性及敏感性.结果表明:不同纬度红松径向生长对当地气候因子的响应存在差异,最南部的白石砬子自然保护区红松径向生长与生长季的平均相对湿度呈显著正相关,与平均最高气温呈显著负相关.中部的长白山自然保护区的低海拔区域红松径向生长与生长季的水分因子(降水、相对湿度和帕尔默干旱指数PDSI)呈显著正相关,而与平均最高气温呈显著负相关;凉水自然保护区红松径向生长与生长季的水分因子(相对湿度和PDSI)呈显著正相关,与气温因子(平均气温和平均最高气温)呈显著负相关.而最北部的胜山自然保护区红松径向生长则与大部分月份的气温因子呈显著正相关.当年6月气候因子是影响所有纬度红松径向生长的关键气候因子,4个样地都与当年6月平均最高气温呈显著负相关.在气温不断上升的近40年,最南部的红松径向生长呈显著下降趋势,最北部呈显著上升趋势,中部的变化不显著.如果未来气温升高而降水不变,红松分布区可能缩小.

Mérian P, Lebourgeois F ( 2011).

Size-mediated climat-growth relationships in temperate forests: A multi-species analysis

Forest Ecology & Management, 261, 1382-1391.

DOI:10.1016/j.foreco.2011.01.019      URL     [本文引用: 1]

In most dendrochronological studies, climate rowth relationships are established on dominant trees to minimize non-climatic signals. However, response to environmental factors may be affected by tree-size, which begs the question of the representativeness of dominant trees on the stand level. To highlight the variations in climate rowth relationships among sizes and species, under a wide range of ecological conditions (climate and soil properties), 61 pure even-aged stands were sampled across France. At each stand, two tree-ring chronologies were established from 10 big- to 10 small-diameter trees. Our objectives were, (1) to assess variations in climate sensitivity between the two size-diameter classes, and (2) to investigate the role of species and ecological conditions on these variations. The climate-growth relationships were evaluated from 122 tree-ring chronologies (1 220 trees) through extreme growth years and correlation function analyses. Sensitivity to climate of shade-intolerant and moderately shade-tolerant species ( Picea abies (L.) Karst., Pinus sylvestris L. and Quercus petraea (Matt.) Liebl.) remained constant between the size-diameter classes for both temperature and hydric balance, while the shade-tolerant species Abies alba Mill. and Fagus sylvatica L. displayed significant differences, with larger trees being more sensitive to summer drought than smaller trees. This difference increased with increasing climatic xericity. Our results suggest that, for shade-tolerant species, (1) big trees could be more sensitive to climatic change especially under xeric climate, and (2) future tree ring studies should include trees stratified by size to produce unbiased estimation of sensitivity to climate.

Mitchell TD, Jones PD ( 2005).

An improved method of constructing a database of monthly climate observations and associated high-resolution grids

International Journal of Climatology, 25, 693-712.

DOI:10.1002/(ISSN)1097-0088      URL     [本文引用: 1]

Primicia I, Camarero JJ, Janda P, Čada V ( 2015).

Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate.

Forest Ecology and Management, 354, 77-86.

[本文引用: 1]

Qi Y, Wang B, Huang JB ( 2014).

Application of CRU dataset to calculation of ET0 of Heilongjiang Province

Journal of Hehai University (Natural Sciences), 42, 367-371.

[本文引用: 1]

[ 戚颖, 王斌, 黄金柏 ( 2014).

CRU数据集在黑龙江省ET0计算中的应用

河海大学学报(自然科学版), 42, 367-371.]

[本文引用: 1]

Rais A, Kuilen JWGV, Pretzsch H ( 2014 a).

Growth reaction patterns of tree height, diameter, and volume of Douglas-‌fir (Pseudotsuga menziesii( Mirb.) Franco) under acute drought stress in Southern Germany.

European Journal of Forest Research, 133, 1043-1056.

[本文引用: 2]

Rais A, Poschenrieder W, Pretzsch H, Kuilen JWGV ( 2014 b).

Influence of initial plant density on sawn timber properties for Douglas-fir (Pseudotsuga menziesii( Mirb.) Franco).

Annals of Forest Science, 71, 617-626.

[本文引用: 1]

Ryan MG, Yoder BJ ( 1997).

Hydraulic limits to tree height and tree growth

Bioscience, 47, 235-242.

DOI:10.2307/1313077      URL     [本文引用: 1]

Schuster R, Oberhuber W ( 2013).

Drought sensitivity of three co-occurring conifers within a dry inner alpine environment

Trees, 27, 61-69.

DOI:10.1007/s00468-012-0768-6      URL     [本文引用: 1]

Stokes MA ( 1996). An Introduction to Tree-Ring Dating. University of Arizona Press, Tucson, USA.

[本文引用: 1]

Wang XC, Zhang YD, Mcrae DJ ( 2009).

Spatial and age-‌dependent tree-ring growth responses of Larix gmelinii to climate in northeastern China.

Trees, 23, 875-885.

[本文引用: 4]

Wang XP, Fang JY, Tang ZY, Zhu B ( 2006).

Climatic control of primary forest structure and DBH-height allometry in Northeast China

Forest Ecology & Management, 234, 264-274.

[本文引用: 1]

Webb II T ( 2001).

Past global changes and their significance for the future

Journal of Paleolimnology, 26, 227-229.

DOI:10.1023/A:1011133708229      URL     [本文引用: 1]

Wu XD ( 1990).

Application of tree ring analysis to the study on environment variation

Quaternary Sciences, 2, 188-196.

[本文引用: 1]

[ 吴祥定 ( 1990).

树木年轮分析在环境变化研究中的应用

第四纪研究, 2, 188-196.]

[本文引用: 1]

Wu YL, Wang XP, Ouyang S, Xu K, Hawkins BA, Sun OJ ( 2017).

A test of BIOME-BGC with dendrochronology for forests along the altitudinal gradient of Mt. Changbai in Northeast China

Journal of Plant Ecology, 10, 415-425.

[本文引用: 1]

Xu K, Wang XP, Liang PH, An HL, Sun H, Han W, Li QY ( 2017).

Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests

Scientific Report, 7, 1945. DOI: 10.1038/s41598-017-02022-6.

DOI:10.1038/s41598-017-02022-6      URL     [本文引用: 1]

Yu GR, Liu YB, Wang XC, Ma KP ( 2008).

Age-dependent tree-ring growth responses to climate in Qilian juniper (Sabina przewalskii Kom.).

Trees, 22, 197-204.

[本文引用: 1]

Zeng FP, Chi GY, Chen X, Shi Y ( 2016).

The stoichiometric characteristics of C, N and P in soil and root of larch (Larix spp.) plantation at different stand ages in mountainous region of eastern Liaoning Province, China.

Chinese Journal of Ecology, 35, 1819-1825.

[本文引用: 1]

[ 曾凡鹏, 迟光宇, 陈欣, 史奕 ( 2016).

辽东山区不同林龄落叶松人工林土壤-根系C:N:P生态化学计量特征

生态学杂志, 35, 1819-1825.]

[本文引用: 1]

Zeng LB, Wang XP, Chang JF, Lin X, Wu YL, Yin WL ( 2012).

Alpine timberline ecotone tree growth in relation to climatic variability for Picea crassifolia forests in the middle Qilian Mountains, northwestern China.

Journal of Beijing Forestry University, 34(5), 50-56.

[本文引用: 2]

[ 曾令兵, 王襄平, 常锦峰, 林鑫, 吴玉莲, 尹伟伦 ( 2012).

祁连山中段青海云杉高山林线交错区树轮宽度与气候变化的关系

北京林业大学学报, 34(5), 50-56.]

[本文引用: 2]

/