植物生态学报, 2021, 45(10): 1064-1074 doi: 10.17521/cjpe.2020.0061

综述

全球变化对食物网结构影响机制的研究进展

王晴晴, 高燕, 王嵘,,*

华东师范大学生态与环境科学学院, 浙江天童森林生态系统国家野外科学观测研究站, 上海 200241

Review on impacts of global change on food web structure

WANG Qing-Qing, GAO Yan, WANG Rong,,*

Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China

通讯作者: (rwang@des.ecnu.edu.cn)

编委: 陈世苹

责任编辑: 李敏

收稿日期: 2020-03-11   接受日期: 2020-08-03  

基金资助: 国家自然科学基金(31630008)

Corresponding authors: (rwang@des.ecnu.edu.cn)

Received: 2020-03-11   Accepted: 2020-08-03  

Fund supported: National Natural Science Foundation of China(31630008)

摘要

食物网主要依靠基于不同营养级间物种互作形成的上行与下行调控维持其结构。全球变化能够改变种间关系, 威胁生物多样性的维持, 然而目前对全球变化改变食物网结构的机制仍处于探索阶段。近年来通过大时空格局与多营养级食物网研究, 发现全球变化的作用机制主要可归结为3种: 物候错配、关键种丧失与生物入侵。该文聚焦于这3种机制, 综述各种机制造成的食物网结构变化并探讨相关的进化与生态驱动因素。三种干扰机制均通过改变原有种间关系, 影响食物网调控, 改变食物网结构。不同的是, 物候错配造成的种间关系变化是由于不同物种的物候对全球变化产生非同步响应所致; 关键种丧失则使营养级间取食/捕食关系发生变化甚至缺失; 而入侵物种通过竞争排除同营养级物种改变种间关系。最后, 该文提出食物网结构变化的实质是物种是否能够适应快速变化的生态环境, 并据此展望未来研究方向。随着全球变化影响日益加剧, 急需继续深入探索导致全球变化下食物网结构改变的机制, 为制定合理的生物多样性保护与生态修复规划提供重要理论支撑。

关键词: 全球变化; 种间关系; 食物网结构; 物候错配; 关键种丧失; 生物入侵

Abstract

The food web sustains its structure mainly by bottom-up and top-down regulations of the species interactions among different trophic levels. However, global changes can alter interspecific relationships and threaten the maintenance of biodiversity. It is still unclear how global change alters the structure of the food webs. In recent years, based on numerous studies on food webs composed of multi-trophic levels at large spatiotemporal scales, researchers have found that global changes alter food web structure mainly through three mechanisms: phenological mismatching, loss of key species and biological invasion. Here we focused on these three mechanisms and reviewed how these mechanisms regulate food web structure change, with further discussions on the driving factors in ecology and evolution. All these three mechanisms can alter the interspecific interactions, resulting in distortion of the regulation of food webs. The major difference among these three mechanisms is how interspecific interactions are changed. Phenological mismatching occurs due to the asynchronous responses in the phenology of different species to global changes, while the loss of key species can change or even entirely destroy some critical feeding/predation relationships, and invasive species often simplify the food web structure by causing strong interspecific competition to exclude species at the same trophic level. Finally, we pointed out that the changes in food web structure actually depend on the adaptation of species to the ongoing global changes and we further provided some insights into future research directions. With aggravated global change impacts, it is necessary to further study the mechanisms underlying how global changes influence food web structure, to reinforce the extant theoretical basis for formulating biodiversity conservation and ecological restoration measures.

Keywords: global change; interspecific interactions; food web structure; phenological mismatching; loss of keystone species; biological invasion

PDF (1157KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

引用本文

王晴晴, 高燕, 王嵘. 全球变化对食物网结构影响机制的研究进展. 植物生态学报, 2021, 45(10): 1064-1074. DOI: 10.17521/cjpe.2020.0061

WANG Qing-Qing, GAO Yan, WANG Rong. Review on impacts of global change on food web structure. Chinese Journal of Plant Ecology, 2021, 45(10): 1064-1074. DOI: 10.17521/cjpe.2020.0061

食物网是指由个体、种群与营养级之间形成的生物间取食关系网络, 也称为“消费者—资源”互作网络, 广义上认为除不同营养级间物种的拮抗关系外也考虑种间互惠关系以及同一营养级中物种的竞争关系(李妍等, 2008; Wabnitz et al., 2010)。食物网概念是基于Charles Elton在1927年提出的食物链理论发展而来的(Elton, 1958), 通过Raymond Lindeman和Robert May等生态学家的不断发展形成了系统的食物网理论(Lindeman, 1942; May, 1972; Pimm, 1979), 并在21世纪初将复杂网络理论引入食物网研究中(Dunne et al., 2002), 通过节点和路径的分布特征描述了系统的连通性和最优性, 为食物网研究提供了全新的理论框架, 促进食物网研究在近20年中快速发展。近年来, 我国学者在食物网相关研究领域已取得重要进展, 结合食物网结构与生物多样性, 研究垂直多样性和水平多样性以及时空尺度对食物网动态和稳定性的影响(Wang & Brose, 2018; Wang et al., 2019c)。

目前主要认为食物网主要依靠上行(bottom-up)与下行(top-down)调控来维持其结构、生物多样性与生态系统功能。Lindeman (1942)首次定量研究了能量在不同营养级之间的传递过程, 强调了食物网动态的上行调控机制。20世纪60年代, Hairston等美国生态学家提出的“绿色世界假说” (green world hypothesis), 强调捕食者对食草动物和植物的下行调控作用(Hairston et al., 1960)。上行与下行调控共存于绝大部分生态系统中, 两种调控共同作用从而限制各营养级中所有物种的种群大小是促使物种共存、维持生物多样性的重要机制(Terborgh et al., 2001; Ewers & Didham, 2006; Estes et al., 2011; Wang et al., 2019b, 2020)。

在人类世(Anthropocene)中人类活动造成了包括全球气候快速变化、生境破碎化与环境污染等一系列全球变化问题, 已在全球范围内造成了严重的生态后果(Tylianakis et al., 2008; Butchart et al., 2010)。例如, 在全球气温与降水量迅速变化的背景下, 众多物种的自然分布范围正发生巨大变化, 甚至灭绝(Gilman et al., 2010); 同时世界上几乎所有的森林生态系统均发生了片段化现象, 导致动植物栖息地大量丧失, 并引发大型猎食动物种类与数量快速下降(Taubert et al., 2018); 此外, 全球范围内频繁的人类活动例如国际贸易促使大量外来物种入侵, 直接改变入侵地生态系统中的物种组成与群落结构(Simberloff et al., 2013)。有研究估计人类活动已导致全球物种数量下降了18.3% (Murphy & Romanuk, 2014)。

全球变化可能直接使物种灭绝(Butchart et al., 2010; Cardinale et al., 2012), 也可能通过改变种间关系, 影响食物网结构(Memmott et al., 2004; Bascompte, 2009; 王玉玉等, 2013; Ripple et al., 2014)。然而, 种间关系的改变影响上行与下行效应进而改变食物网结构的潜在机制的研究仍处于探索阶段。近年来通过众多大时空尺度和多营养级食物网研究, 对这一问题有了一定的认识, 可大体归结为3种机制: 物候错配、关键种丧失与生物入侵。本文将聚焦于全球变化影响食物网结构这一主题, 介绍上述3种机制造成食物网上行与下行调控变化的过程与后果, 据此展望未来生物多样性保护与生态修复的研究方向。

1 全球变化影响食物网结构的机制

1.1 物候错配

食物网中互作物种的物候特征(例如植物的开花物候与传粉动物的活跃期和繁殖期; 浮游生物的种群峰值与鱼类的繁殖期等)往往存在时空耦合(Gilman et al., 2010)。然而, 由于不同物种的物候特征对全球变化的响应存在巨大差异, 使得原本耦合的关系发生错配, 即物候错配。物候错配改变了不同营养级物种的相互作用强度, 甚至消除这一关系, 阻碍能量由低营养级向高营养级流动, 导致高营养级物种多度下降甚至灭绝, 进而降低食物链长度与食物网复杂性(Gilman et al., 2010; Sydeman et al., 2015)。

目前普遍认为全球气候变暖是导致物候特征快速变化的主要驱动因素。Thackeray等(2016)通过综合分析10 003个涵盖812种海洋、淡水和陆地物种的长期物候观察记录(超过20年), 发现几乎所有物种的重要物候特征发生期均随着时间推移而提前, 但不同营养级物种提前的幅度不一样, 其中初级消费者物候特征发生期提前的时间最长, 平均达6.2天, 这种非同步的物候特征变化促使物候错配的发生。现有研究已找到了物候特征变化影响不同营养级间种间关系的证据, 例如全球范围内传粉者多度日益下降也与气候变暖有关。植物在变暖环境中提前开花, 使传粉昆虫活跃期与花期重叠时间减少, 导致动植物群落衰退(Gilman et al., 2010; Potts et al., 2010)。气候变化驱动的物候特征改变也已在一些特殊生态系统中被发现。通过采用内耳石测量法分析青藏高原湖泊中的特有鱼类色林错裸鲤(Gymnocypris selincuoensis)的繁殖物候, 发现其与20世纪70年代至21世纪初的气候变化有关, 该鱼类的繁殖期平均每10年提前2.9天, 这一大型鱼类的物候特征变化可能会影响本地水体生态系统的食物网结构及其种群更新(Tao et al., 2018)。

物候错配不仅发生于生态系统内部, 不同生态系统中物种的物候特征变化能够在更大尺度上造成物候错配。1984-2004年间, 在荷兰分布的栖息于森林生境的长距离迁徙食虫鸟类的种类急剧减少, 这种现象的重要成因是由于全球变暖导致西欧的春天变得更为温暖, 不同森林生态系统中的昆虫物候特征也发生的快速变化致使鸟类食物资源供应峰值与长距离迁徙食虫鸟类的到达与滞留时间不匹配(Both et al., 2010)。

物候错配现象也在人工控制实验系统——青藏高原草甸中的常见植食昆虫夜蛾(Melanchra pisi)及其宿主植物条叶银莲花(Anemone trullifolia var. linearis)与龙胆属植物美丽龙胆(Gentiana formosa)中得到了验证。通常夜蛾幼虫主要以条叶银莲花为食, 而美丽龙胆通常在夜蛾幼虫密度达到高峰后才开花, 从而避免花序被夜蛾幼虫过度啃食。然而, 在为期3年的人工增温实验中, 美丽龙胆花期和条叶银莲花的营养繁殖物候在温度提升1.5 ℃的情况下提前了一周, 而夜蛾幼虫的出现却推迟了两周; 在升温状态下夜蛾幼虫密度增加了10倍, 但条叶银莲花的密度却仅下降了30%, 而物候特征变化使夜蛾幼虫主要取食美丽龙胆的花和胚珠, 对美丽龙胆造成的损伤增加了100倍(Liu et al., 2011)。这种急剧加强的营养级关联大大降低了美丽龙胆的繁殖能力, 因此气候变暖导致的物候错配是导致植被衰退的潜在因素。

全球气候变化的另一个主要特征是昼夜温差加大, 这一变化也能够导致物候错配。以瓶子草属植物Sarracenia purpurea叶片中的水生微生物群落为研究对象, 检验昼夜温差加大对不同微生物营养级的效应, 结果表明与正常昼夜温差中的群落相比, 处于第一营养级的细菌密度在实验初始阶段增加后开始迅速下降, 而位于第二营养级的原生生物由于生长节律与细菌群落动态错配造成食源匮乏, 导致其α多样性急剧降低(Zander et al., 2017)。

除全球气候变化外, 许多其他类型的人类干扰也能够改变区域气候。例如, 生境片段化将大生境斑块分割为大量小生境片段, 导致边缘效应增强, 改变原有的林内小气候并改变物候特征, 可能导致物候错配进而影响种间关系的稳定(Haddad et al., 2015; Wilson et al., 2016)。物候特征异步变化是导致物候错配的主要因素。在受干扰环境中物候特征变化速率可能与物种的世代周期有关, 世代周期越短的生物适应环境变化的速度越快, 这与草本、灌木和小型消费者(例如植食性昆虫)物候提前幅度较大一致(Both et al., 2009; Thackeray et al., 2016)。目前尚不清楚不同生物类群适应气候变化的潜在机制, 这可能涉及由温度变化引发激素分泌变化调整生长节律以及表观遗传因子引发的可塑性变化。但是, 物种对气候变化的耐受能力是有极限的, Trisos等(2020)研究了30 000种陆地和海洋生物能够承受的温度阈值并根据模型预测发现大量物种将由于全球气温持续升高而在近期集体灭绝。然而, 在某些生态系统中气候变化却未导致物候错配的发生(Hansson et al., 2013)。因此, 需要更多案例研究以全面分析导致物候特征变化异步性的生物(例如种内遗传变异水平)与环境因素(气候变暖程度、昼夜温差范围、生境斑块大小等)并帮助预测未来不同生态系统中食物网结构演变的趋势。此外, 地下生物群落尤其是土壤微生物与小型土壤动物群落对生态系统服务功能贡献巨大且对食物网结构具有重要的支持作用, 但由于物种鉴定困难等原因, 目前关于此类群落中物候错配的报道较少。未来可结合DNA条形码(表1)技术深入了解这些群落中的食物网结构与动态及其对气候变化的响应。

表1   文中相关专业术语解释

Table 1  Explanation of terminology in this review

专业术语 Terminology解释 Explanation
上行调控
Bottom-up control
通过低营养级物种的防御限制高营养级物种的可利用食物资源进而调控食物网中各物种的种群大小(Terborgh et al., 2001)。
The defenses of species at low trophic levels limit the availability of food resource for species at high trophic levels, regulating the population size of each species in a food web (Terborgh et al., 2001).
下行调控
Top-down control
通过高营养级物种对低营养级物种的捕食/取食控制食物网中各物种种群大小(Terborgh et al., 2001)。
Species at high trophic levels control the population size of each species in a food web through preying on or feeding on the species at low trophic levels (Terborgh et al., 2001).
DNA条形码技术
DNA barcoding
DNA条形码是指基因组中能够代表该物种的且在种间有足够变异的、易扩增的DNA片段。通过获取一个或多个DNA条形码片段信息并与数据库中相关序列进行对比可快速、精确地完成物种鉴定(Hebert et al., 2003)。
The DNA fragments can represent the genomic characters of a species but with sufficient interspecific genetic variations and can be easily amplified. Rapid and accurate species identification can be achieved by using one to several DNA barcode fragments and comparing the obtained sequence information with related sequences in gene databases (Hebert et al., 2003).
进化军备竞赛
Evolutionary arm race
自然选择在不断提高捕食者发现和捕获猎物效率的同时也会不断改进猎物及时发现和逃避捕食者的能力, 这种相互适应的进化历程被称为进化军备竞赛(You et al., 2013)。
As a result of reciprocal selection, the efficiency of predators in finding and capturing preys and the ability of preys in detecting and eluding predators are simultaneously and continuously improved. This type of coadaptation in evolutionary history is named as the evolutionary arms race (You et al., 2013).
内禀优势
Inherent superiority
外来种在繁殖和扩散的过程中, 某些固有特征(如生理、生态、遗传和行为等)相对于本地种具有竞争优势, 从而导致其成功入侵(Zou et al., 2007)。
In reproduction and dispersal processes, many alien species have advantages compared with native species, due to their inherent characteristics in some aspects like physiology, ecology, genetics, and behavior, consequently resulting in successful invasions (Zou et al., 2007).
入侵崩溃
Invasional meltdown
两个或多个外来物种间产生互惠关系, 促进它们在新生境中的种群建立、繁殖与扩散, 最终导致这些物种共同入侵(Ricciardi & MacIsaac, 2000)。
The population establishment, reproduction and dispersal of two or more alien species in the novel environments were facilitated by their reciprocal mutualism(s), ultimately leading to the co-invasion of these species (Ricciardi & MacIsaac, 2000).

新窗口打开| 下载CSV


1.2 关键种丧失

食物网中的关键种是对整个食物网的稳定具有重要作用的物种, 这些物种的丧失能够产生强大的营养级联效应, 直接或间接导致大量物种灭绝(Zhao et al., 2016)。关键种在食物网中往往处于连接较多的节点上或相互作用强度高的连接节点上, 此外, 能够对大量其他物种造成强烈间接影响的物种(例如顶级捕食者)也是关键种。全球变化导致生态系统中大量关键种丧失(Butchart et al., 2010; Wardle et al., 2011)。不同营养级中关键种丢失对食物网结构造成的影响与作用机制存在较大差异。

顶级捕食者是被广为认可的关键种, 其缺失引起生态系统下行调控机制丧失, 刺激消费者密度快速增加从而加大对生产者的取食力度, 抑制生产者, 最终导致整个食物网崩溃(图1)。Ripple等(2014)发现包括狮子(Panthera leo)与灰狼(Canis lupus)在内的7种大型肉食动物的消失对食物网中其他物种产生显著影响, 部分物种在这些顶级捕食者丧失后多度变化甚至超过100倍。顶级捕食者对食物网结构稳定性的贡献也体现于受损生态系统的修复过程中。通过恢复近岸生态系统中的顶级捕食者海獭(Enhydra lutris)的种群, 可以促进大叶藻(Zostera marina)海草床的恢复(Hughes et al., 2013)。这是因为海獭能够抑制蟹类对草食动物的捕食, 而草食动物增加使得导致大叶藻窒息死亡的附生海藻的数量下降。频繁的人类活动是造成顶级捕食者丧失的首要原因, 过度狩猎往往能在短期内大大减少大型肉食动物的数量, 同时全球范围内土地利用类型的改变缩小了顶级捕食者的栖息地, 并隔离残存种群, 进一步威胁到它们的生存(Ripple et al., 2014; Wilson et al., 2016)。此外, 全球气候变化引发的物候特征改变, 使长距离迁徙的食虫鸟类食源匮乏, 也是导致其种群快速下降的重要因素(Both et al., 2010)。

图1

图1   关键种丧失影响食物网结构示意图。黑色箭头表示营养级关系; 红色箭头表示消费者取食力度增强。关键顶级捕食者的缺失引起生态系统下行调控机制丧失, 刺激消费者密度快速增加从而加大对生产者的取食力度, 最终导致整个食物网崩溃; 关键消费者的丧失可能阻碍营养级间的正常能量流动, 抑制捕食者的能量来源, 同时改变表观竞争格局, 导致生产者之间竞争加剧, 物种数减少; 关键生产者的丧失能够增强消费者取食其他生产者的力度, 造成生产者大量灭绝, 最终威胁消费者和顶级捕食者的生存。

Fig. 1   Schematic diagram of the impacts of loss of keystone species on food web structure. The black arrows represent trophic relationships, and the red arrows indicate the strengthened consumption by consumers. Loss of key top predators causes the absence of top-down regulation, drastically increasing consumer density and feeding intensity on producers and consequently leading to meltdown of food webs. Local extinction of key consumers may restrict energy flow between trophic levels, detrimentally affecting top predators with a simultaneous consequence of aggravating inter-specific competition among producers, which can reduce the species richness of producers. Disappearance of key producers intensifies the feeding on the remnant producers, causing the extinction of these species and in turn threatening the existence of consumers and top predators.


某些消费者也是关键种, 它们往往既以多种生产者为食, 也是众多捕食者的猎物。理论模型预测消费者关键种的丧失, 可能阻碍营养级间的正常能量流动, 抑制捕食者的能量来源, 影响捕食者多度与食物网稳定性(Kadoya et al., 2018)。同时, 消费者关键种丧失可能改变表观竞争格局, 导致植物间竞争加剧, 物种数减少, 降低食物网复杂性(图1)。传粉者、种子传播动物与根瘤菌是另一类消费者关键种, 它们与植物构成的互惠网络维持了植物种群的繁殖与更新。这一物种类群的衰退已对生物多样性与生态系统服务功能的维持构成严重威胁(Potts et al., 2010)。消费者关键种丧失与过度狩猎、生境片段化与气候变化等干扰因素有关(Potts et al., 2010; Ripple et al., 2015)。

生产者是食物网的基础, 对其上各营养级施加上行调控效应(Scherber et al., 2010)。关键生产者的丧失能够增强消费者取食其他生产者的力度, 造成生产者大量灭绝, 最终威胁消费者和顶级捕食者的生存, 导致食物网结构崩溃(图1)。群落中的优势植物物种往往被认为是关键种。然而, 生产者中的稀有物种也可能成为食物网中的关键种, 例如在岩质海岸生态系统中, 将占岩石表面固着生产者生物量小于10%的海藻与无脊椎动物移除使消费者生物量下降42%-47% (Bracken & Low, 2012)。因此, 为了确定关键生产者, 需在了解食物网结构的基础上, 进一步量化分析食物网中各连接的强度。现有研究表明陆地与水生生态系统中分解者多样性的丧失显著降低碳氮循环速率, 影响生态系统物质能量流动(Handa et al., 2014), 但是目前仍不明确关键分解者丧失对食物网结构的影响。

关键种丧失对食物网结构与稳定性造成何种程度的影响与食物网复杂性有关。在复杂食物网中往往很少存在关键种, 因为在这样的食物网中很少存在不可替代的物种。因而即便某一营养级中物种的多样性发生变化, 其效应可能仅能传递至相邻营养级(Scherber et al., 2010)。据此推测在高纬度高海拔地区, 由于本地生态系统中食物网结构简单, 关键种丧失将造成较为严重的影响。此外, 食物网结构形成的生态与进化机制目前仍有待研究。目前认为不同营养级间的互作物种可能存在进化军备竞赛(表1), 例如菜粉蝶(Pieris rapae)与其宿主植物拟南芥(Arabidopsis thaliana)在细胞色素P450基因家族与谷胱甘肽转移酶等涉及植物防御与动物解毒功能的基因在进化上存在显著相关性, 这在一定程度上解释了消费者与生产者间相互适应的方式(Nallu et al., 2017)。了解这种进化方式的起源与历程, 有助于揭示关键种的形成机制并预测其丧失带来的长期效应。

1.3 生物入侵的影响

生物入侵(biological invasion)是一个物种从原产地扩散到新环境后成功适应新环境并破坏本地生态系统、威胁生物多样性维持的过程(Simberloff et al., 2013)。外来物种入侵已成为一个备受关注的全球性环境问题, 它不仅降低生物多样性水平, 破坏生态系统功能, 而且干扰农业生产, 威胁人类健康(Wardle et al., 2011; Simberloff et al., 2013)。我国是受生物入侵严重干扰的国家, 目前已查明我国外来入侵物种数达529种, 分布于全国各地, 其中仅松材线虫(Bursaphelenchus xylophilus)一种就已毁灭松林33万余hm2, 对松林生态系统造成毁灭性打击(鞠瑞亭等, 2012)。全球变化是促进生物入侵的重要因素, 日益频繁的国际贸易导致外来入侵物种迅速增加, 同时人类干扰破坏本地生态系统导致生态位空缺也为外来物种提供了可乘之机(Hulme, 2009; Petitpierre et al., 2012)。此外, 全球气候变化也导致大量物种的分布范围快速扩张, 提高了外来物种入侵的风险(Butchart et al., 2010)。Zettlemoyer等(2019)发现外来物种相比于本地物种具有更强的物候可塑性, 更容易适应日益变暖的环境, 造成生物入侵。生物入侵能够改变种间关系造成严重生态后果, 因此伴随着生物入侵, 入侵地食物网结构往往发生剧烈变化(Wardle et al., 2011; 鞠瑞亭等, 2012)。

外来入侵物种对同营养级物种具有很强的竞争优势, 这可能是由于其具有内禀优势(表1), 资源利用效率高, 可塑性强等特点, 也可能是经历了快速适应性进化与天敌释放过程, 或者获得互利共生生物的协助(鞠瑞亭等, 2012)。因此在入侵地食物网中, 外来入侵物种通常没有强大的天敌且对低营养级物种的捕食强度很高, 排除同营养级物种后将大大降低食物网复杂性并阻碍营养与能量向高营养级流动(Ehrenfeld, 2010; Gallardo et al., 2016)。

目前普遍认为入侵植物对食物网结构的破坏最为严重。许多入侵植物能在入侵地获得本地传粉与种子传播动物以及共生微生物(如根瘤菌), 在剥夺本地植物互惠网络的同时促进其种群扩张(Traveset & Richardson, 2014)。例如, 外来千屈菜科植物Lythrum salicaria的花序密度远高于本地植物种类, 因而成功吸引更多的传粉昆虫为其传粉, 使传粉者造访本地植物花序的频率至少下降了20% (Goodell & Parker, 2017)。许多豆科入侵植物就在入侵地获得了共生根瘤菌, 从而大大提高了其在新环境中的适合度(Traveset & Richardson, 2014)。在缺乏消费者取食的情况下, 入侵植物通过竞争排除其他植物, 最后甚至可能导致本地消费者与捕食者灭绝, 引发整个食物网的崩溃(Pyšek et al., 2012; Gallardo et al., 2016)(图2)。例如, 外来植物互花米草(Spartina alterniflora)入侵上海崇明东滩湿地后, 造成本地优势植物海三棱藨草(Scirpus mariqueter)分布区迅速缩小, 改变了地表植物碎屑理化性质与植物根系氧气含量, 进而影响地下微生物与底栖动物群落组成, 最终降低鸟类尤其是长距离迁徙候鸟的多样性(鞠瑞亭等, 2012; Tong et al., 2018)。在水生生态系统中, 大型入侵水生植物能够从根本上改变本地食物网结构, 大大减少处于最高营养级的鱼类多度(Gallardo et al., 2016)。外来植物入侵还可能协助更多外来物种的成功侵入, 比如入侵松科植物与其共生菌根真菌(Dickie et al., 2010), 加剧生物入侵对食物网的影响, 造成入侵崩溃(表1)。此外, 入侵植物降低植物多样性, 能够改变土壤微生物群落, 影响地下食物网结构(Kardol & Wardle, 2010)。

图2

图2   外来物种入侵影响食物网结构示意图。黑色箭头表示营养级关系; 红色箭头表示消费者取食力度或捕食者捕食强度增强。入侵捕食者在竞争排除同营养级中乡土种的同时由于其捕食偏好改变消费者表观竞争格局并影响低营养级; 入侵消费者通过竞争减少消费者物种数对生产者产生较大的取食压力, 同时阻断顶级捕食者的食物来源, 进而破坏食物网的上行和下行调控, 改变食物网结构; 在缺乏消费者取食的情况下, 入侵生产者通过竞争排除其他生产者并阻断能量流动, 导致消费者与捕食者灭绝, 引发整个食物网的崩溃。

Fig. 2   Schematic diagram of the impacts of alien invasive species on food web structure. The black arrows represent trophic relationships, and the red arrows indicate the increased consumption or the strengthened predation. Invasive predators can exclude native predators by competition and alter the interspecific competition of consumer due to their feeding preference, impacting the species composition at lower trophic levels. Invasive consumers exclude native consumers, intensify feeding on some producers and restrict food resources of top predators, disturbing top-down and bottom-up regulations and changing food web structure. In the absence of natural enemies, invasive producers exclude native producers and cut off energy flow, leading to massive extinction of consumers and top predators and meltdown of food webs.


入侵捕食者或者病原体在竞争排除同营养级中乡土种的同时可能由于其捕食偏好改变消费者表观竞争格局, 由此产生的营养级联效应可能导致消费者物种组成与群落结构的改变并影响低营养级物种(图2)。外来鱼类物种入侵能够抑制底栖动物与浮游生物数量, 从而促进浮游植物的生长(Gallardo et al., 2016)。此外, 某些入侵捕食者通过捕食在不同生境间迁徙的消费者, 从而改变本地植被组成。例如, 北极狐(Alopex lagopus)入侵阿留申群岛的部分岛屿后大肆捕猎海鸟, 导致海鸟数量快速下降, 由此造成鸟粪匮乏, 使得土壤肥力下降, 从而导致当地原有的草原植被类型向适应贫瘠土壤的苔原植被类型转变(Croll et al., 2005)。然而某些广食性外来捕食者的入侵也可能替代原有捕食者的作用, 通过下行调控维持食物网稳定。例如, 在澳大利亚干旱地区, 移除外来顶级捕食者澳洲野狗(Canis lupus dingo)致使消费者与中型捕食者赤狐(Vulpes vulpes)的密度提高, 从而使草地盖度与小型哺乳动物种类减少(Letnic et al., 2009)。

入侵消费者与入侵杂食动物对食物网影响的研究案例较少, 其潜在威胁可能是通过竞争排除减少消费者物种数并对生产者产生较大的取食压力, 同时阻断部分顶级捕食者的食物来源, 进而破坏食物网的上行和下行调控, 改变食物网结构(图2)。例如, Gibson等(2013)发现在泰国水库岛屿森林中, 本地小型哺乳动物由于外来啮齿动物的入侵而加速灭绝。此外, 入侵土壤微生物可能影响地表植物获取根瘤菌, 从而影响植物多样性以及食物网结构(Ehrenfeld, 2010; Kardol &Wardle, 2010)。

掌握生物入侵破坏食物网结构的机制, 对生态修复具有重大应用价值。尽管清除入侵物种是开展生态修复的基础, 但是针对不同入侵物种在对其进行清除后, 需开展不同的后续恢复措施。例如移除入侵植物后应该尽量恢复本地动植物群落, 通过占据生态位预防入侵植物再次侵袭的同时, 促进地下生物群落的恢复; 而消灭入侵捕食者后则需同时恢复本地顶级捕食者与消费者类群, 以确保营养级联效应与食物网下行调控的力度(Kardol & Wardle, 2010)。

2 讨论和展望

种间关系的稳定是维持食物网中上行与下行调控的基础, 也是促使物种共存与生物多样性的重要机制(Terborgh, 2015; Wang et al., 2019a, 2019b, 2020)。人类活动导致的全球变化除了能够直接导致物种灭绝, 还能通过改变种间关系破坏食物网结构, 威胁生物多样性的长期维持(Bascompte, 2009)。由上文所述, 全球变化造成物候错配改变不同营养级物种的互作关系强度, 影响物质能量流动与食物网调控, 进而改变食物网结构; 同时全球变化导致食物网关键种丧失能够造成营养级间捕食关系发生变化甚至缺失, 致使物种遭遇过度捕食而灭绝, 或者打破同一营养级中的种间竞争平衡而降低物种多样性; 此外, 入侵物种通过竞争排除同营养级物种阻断食物网中物质能量流动, 降低食物网结构复杂性。不同生态系统对上述三种干扰机制的响应可能与食物网中互作物种间协同进化历程、种间关系的专一性程度以及食物网内部的嵌套结构有关。

种间关系的维持往往伴随着互作物种间长期的协同进化, 通常这种进化关系越紧密种间关系越牢固, 受外界干扰而发生快速变化的可能性就较低; 而协同进化关系不紧密的互作物种在全球变化背景下更容易发生种间关系变化(例如种间互作强度变化、互惠关系向拮抗关系转变等), 进而导致食物网结构迅速改变(Futuyma & Agrawal, 2009; Kiers et al., 2010)。然而, 具有紧密协同进化关系的物种一般为专性物种(specialist), 双方任何一方灭绝经常会导致另一方也灭绝, 因此在全球变化干扰强度大的情况下与泛性物种(generalist)相比具有较高的灭绝风险(Weiner et al., 2014)(图1, 图2)。此外, 在复杂食物网中并非所有物种均与其他任一物种间存在种间关系, 往往形成与部分物种间互作关系密切而与其他物种间关系较为疏远的情况, 即形成了嵌套结构(Dalsgaard et al., 2013)。目前认为嵌套结构的存在能够有效阻止种间关系变化产生的影响蔓延至整个食物网, 因而促进群落稳定性和物种共存(Neutel et al., 2007)。

总而言之, 全球变化对食物网结构产生影响的实质是物种是否能够适应日益变化的生态环境, 形成生态-进化动态(eco-evolutionary dynamics)(Hoffmann & Sgrò, 2011; Zuppinger-Dingley et al., 2014)。同时种间关系与食物网结构受全球变化的影响程度主要取决于维系互作关系的关键性状是否受到变化环境的选择(Althoff et al., 2014)。然而, 目前在大多数生态系统中对食物网物种组成与结构仍未有清晰认识, 并且物种适应生物与非生物环境的机制研究也尚处于初始阶段。因此, 今后研究的重点应聚焦于生态网络分析尤其是地上-地下生物与植物-微生物的相互作用(Bardgett & van der Putten, 2014; Traveset & Richardson, 2014), 揭示完整食物网结构并全面评估全球变化造成的影响; 同时还应利用日益成熟的全基因组测序、表观遗传学分析与基因组关联分析技术, 确定调控物种关键适应性状特征的基因(Olsen et al., 2016; Nallu et al., 2017), 建立基因组-性状-环境因子动态数据库, 厘清全球变化背景下种间关系与食物网结构改变的机制, 以预测未来生物多样性变化的趋势并制定合理的生物多样性保护与生态修复措施。

参考文献

Althoff DM, Segraves KA, Johnson MTJ (2014).

Testing for coevolutionary diversification: linking pattern with process

Trends in Ecology & Evolution, 29, 82-89.

DOI:10.1016/j.tree.2013.11.003      URL     [本文引用: 1]

Bardgett RD, van der Putten WH (2014).

Belowground biodiversity and ecosystem functioning

Nature, 515, 505-511.

DOI:10.1038/nature13855      URL     [本文引用: 1]

Bascompte J (2009).

Disentangling the web of life

Science, 325, 416-419.

DOI:10.1126/science.1170749      PMID:19628856      [本文引用: 2]

Biodiversity research typically focuses on species richness and has often neglected interactions, either by assuming that such interactions are homogeneously distributed or by addressing only the interactions between a pair of species or a few species at a time. In contrast, a network approach provides a powerful representation of the ecological interactions among species and highlights their global interdependence. Understanding how the responses of pairwise interactions scale to entire assemblages remains one of the great challenges that must be met as society faces global ecosystem change.

Both C, van Asch M, Bijlsma RG, van den Burg AB, Visser ME (2009).

Climate change and unequal phenological changes across four trophic levels: constraints or adaptations

Journal of Animal Ecology, 78, 73-83.

DOI:10.1111/jae.2009.78.issue-1      URL     [本文引用: 1]

Both C, van Turnhout CAM, Bijlsma RG, Siepel H, van Strien AJ, Foppen RPB (2010).

Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats

Proceedings of the Royal Society B: Biological Sciences, 277, 1259-1266.

DOI:10.1098/rspb.2009.1525      URL     [本文引用: 2]

Bracken MES, Low NHN (2012).

Realistic losses of rare species disproportionately impact higher trophic levels

Ecology Letters, 15, 461-467.

DOI:10.1111/ele.2012.15.issue-5      URL     [本文引用: 1]

Butchart SHM, Walpole M, Collen B, van Strien AJ, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, et al. (2010).

Global biodiversity: indicators of recent declines

Science, 328, 1164-1168.

DOI:10.1126/science.1187512      PMID:20430971      [本文引用: 4]

In 2002, world leaders committed, through the Convention on Biological Diversity, to achieve a significant reduction in the rate of biodiversity loss by 2010. We compiled 31 indicators to report on progress toward this target. Most indicators of the state of biodiversity (covering species' population trends, extinction risk, habitat extent and condition, and community composition) showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity (including resource consumption, invasive alien species, nitrogen pollution, overexploitation, and climate change impacts) showed increases. Despite some local successes and increasing responses (including extent and biodiversity coverage of protected areas, sustainable forest management, policy responses to invasive alien species, and biodiversity-related aid), the rate of biodiversity loss does not appear to be slowing.

Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012).

Biodiversity loss and its impact on humanity

Nature, 486, 59-67.

[本文引用: 1]

Croll DA, Maron JL, Estes JA, Danner EM, Byrd GV (2005).

Introduced predators transform subarctic islands from grassland to tundra

Science, 307, 1959-1961.

PMID:15790855      [本文引用: 1]

Top predators often have powerful direct effects on prey populations, but whether these direct effects propagate to the base of terrestrial food webs is debated. There are few examples of trophic cascades strong enough to alter the abundance and composition of entire plant communities. We show that the introduction of arctic foxes (Alopex lagopus) to the Aleutian archipelago induced strong shifts in plant productivity and community structure via a previously unknown pathway. By preying on seabirds, foxes reduced nutrient transport from ocean to land, affecting soil fertility and transforming grasslands to dwarf shrub/forb-dominated ecosystems.

Dalsgaard B, Trøjelsgaard K, Martín González AM, Nogués- Bravo D, Ollerton J, Petanidou T, Sandel B, Schleuning M, Wang ZH, Rahbek C, Sutherland WJ, Svenning JC, Olesen JM (2013).

Historical climate-change influences modularity and nestedness of pollination networks

Ecography, 36, 1331-1340.

DOI:10.1111/j.1600-0587.2013.00201.x      URL     [本文引用: 1]

Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010).

Co-invasion by Pinus and its mycorrhizal fungi

New Phytologist, 187, 475-484.

DOI:10.1111/j.1469-8137.2010.03277.x      PMID:20456067      [本文引用: 1]

*The absence of co-evolved mutualists of plants invading a novel habitat is the logical corollary of the more widely recognized 'enemy escape'. To avoid or overcome the loss of mutualists, plants may co-invade with nonnative mutualists, form novel associations with native mutualists or form associations with native cosmopolitan mutualists, which are native but not novel to the invading plant. *We tested these hypotheses by contrasting the ectomycorrhizal fungal communities associated with invasive Pinus contorta in New Zealand with co-occurring endemic Nothofagus solandri var. cliffortioides. *Fungal communities on Pinus were species poor (14 ectomycorrhizal species) and dominated by nonnative (93%) and cosmopolitan fungi (7%). Nothofagus had a species-rich (98 species) fungal community dominated by native Cortinarius and two cosmopolitan fungi. *These results support co-invasion by mutualists rather than novel associations as an important mechanism by which plants avoid or overcome the loss of mutualists, consistent with invasional meltdown.

Dunne JA, Williams RJ, Martinez ND (2002).

Food-web structure and network theory: the role of connectance and size

Proceedings of the National Academy of Sciences of the United States of America, 99, 12917-12922.

[本文引用: 1]

Ehrenfeld JG (2010).

Ecosystem consequences of biological invasions

Annual Review of Ecology, Evolution, and Systematics, 41, 59-80.

DOI:10.1146/ecolsys.2010.41.issue-1      URL     [本文引用: 2]

Elton CS (1958). The Ecology of Invasions by Animals and Plants. Springer, Boston.

[本文引用: 1]

Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, et al. (2011).

Trophic downgrading of planet earth

Science, 333, 301-306.

DOI:10.1126/science.1205106      URL     [本文引用: 1]

Ewers RM, Didham RK (2006).

Confounding factors in the detection of species responses to habitat fragmentation

Biological Reviews, 81, 117-142.

DOI:10.1017/S1464793105006949      URL     [本文引用: 1]

Futuyma DJ, Agrawal AA (2009).

Macroevolution and the biological diversity of plants and herbivores

Proceedings of the National Academy of Sciences of the United States of America, 106, 18054-18061.

[本文引用: 1]

Gallardo B, Clavero M, Sánchez MI, Vilà M (2016).

Global ecological impacts of invasive species in aquatic ecosystems

Global Change Biology, 22, 151-163.

DOI:10.1111/gcb.13004      PMID:26212892      [本文引用: 4]

The introduction of invasive species, which often differ functionally from the components of the recipient community, generates ecological impacts that propagate along the food web. This review aims to determine how consistent the impacts of aquatic invasions are across taxa and habitats. To that end, we present a global meta-analysis from 151 publications (733 cases), covering a wide range of invaders (primary producers, filter collectors, omnivores and predators), resident aquatic community components (macrophytes, phytoplankton, zooplankton, benthic invertebrates and fish) and habitats (rivers, lakes and estuaries). Our synthesis suggests a strong negative influence of invasive species on the abundance of aquatic communities, particularly macrophytes, zooplankton and fish. In contrast, there was no general evidence for a decrease in species diversity in invaded habitats, suggesting a time lag between rapid abundance changes and local extinctions. Invaded habitats showed increased water turbidity, nitrogen and organic matter concentration, which are related to the capacity of invaders to transform habitats and increase eutrophication. The expansion of invasive macrophytes caused the largest decrease in fish abundance, the filtering activity of filter collectors depleted planktonic communities, omnivores (including both facultative and obligate herbivores) were responsible for the greatest decline in macrophyte abundance, and benthic invertebrates were most negatively affected by the introduction of new predators. These impacts were relatively consistent across habitats and experimental approaches. Based on our results, we propose a framework of positive and negative links between invasive species at four trophic positions and the five different components of recipient communities. This framework incorporates both direct biotic interactions (predation, competition, grazing) and indirect changes to the water physicochemical conditions mediated by invaders (habitat alteration). Considering the strong trophic links that characterize aquatic ecosystems, this framework is relevant to anticipate the far-reaching consequences of biological invasions on the structure and functionality of aquatic ecosystems. © 2015 John Wiley & Sons Ltd.

Gibson L, Lynam AJ, Bradshaw CJA, He FL, Bickford DP, Woodruff DS, Bumrungsri S, Laurance WF (2013).

Near-complete extinction of native small mammal fauna 25 years after forest fragmentation

Science, 341, 1508-1510.

DOI:10.1126/science.1240495      PMID:24072921      [本文引用: 1]

Tropical forests continue to be felled and fragmented around the world. A key question is how rapidly species disappear from forest fragments and how quickly humans must restore forest connectivity to minimize extinctions. We surveyed small mammals on forest islands in Chiew Larn Reservoir in Thailand 5 to 7 and 25 to 26 years after isolation and observed the near-total loss of native small mammals within 5 years from <10-hectare (ha) fragments and within 25 years from 10- to 56-ha fragments. Based on our results, we developed an island biogeographic model and estimated mean extinction half-life (50% of resident species disappearing) to be 13.9 years. These catastrophic extinctions were probably partly driven by an invasive rat species; such biotic invasions are becoming increasingly common in human-modified landscapes. Our results are thus particularly relevant to other fragmented forest landscapes and suggest that small fragments are potentially even more vulnerable to biodiversity loss than previously thought.

Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010).

A framework for community interactions under climate change

Trends in Ecology & Evolution, 25, 325-331.

DOI:10.1016/j.tree.2010.03.002      URL     [本文引用: 4]

Goodell K, Parker IM (2017).

Invasion of a dominant floral resource: effects on the floral community and pollination of native plants

Ecology, 98, 57-69.

DOI:10.1002/ecy.1639      PMID:28052387      [本文引用: 1]

Through competition for pollinators, invasive plants may suppress native flora. Community-level studies provide an integrative assessment of invasion impacts and insights into factors that influence the vulnerability of different native species. We investigated effects of the nonnative herb Lythrum salicaria on pollination of native species in 14 fens of the eastern United States. We compared visitors per flower for 122 native plant species in invaded and uninvaded fens and incorporated a landscape-scale experiment, removing L. salicaria flowers from three of the invaded fens. Total flower densities were more than three times higher in invaded than uninvaded or removal sites when L. salicaria was blooming. Despite an increase in number of visitors with number of flowers per area, visitors per native flower declined with increasing numbers of flowers. Therefore, L. salicaria invasion depressed visitation to native flowers. In removal sites, visitation to native flowers was similar to uninvaded sites, confirming the observational results and also suggesting that invasion had not generated a persistent build-up of visitor populations. To study species-level impacts, we examined effects of invasion on visitors per flower for the 36 plant species flowering in both invaded and uninvaded fens. On average, the effect of invasion represented about a 20% reduction in visits per flower. We measured the influence of plant traits on vulnerability to L. salicaria invasion using meta-analysis. Bilaterally symmetrical flowers experienced stronger impacts on visitation, and similarity in flower color to L. salicaria weakly intensified competition with the invader for visitors. Finally, we assessed the reproductive consequences of competition with the invader in a dominant flowering shrub, Dasiphora fruticosa. Despite the negative effect of invasion on pollinator visitation in this species, pollen limitation of seed production was not stronger in invaded than in uninvaded sites, suggesting little impact of competition for pollinators on its population demography. Negative effects on pollination of native plants by this copiously flowering invader appeared to be mediated by increases in total flower density that were not matched by increases in pollinator density. The strength of impact was modulated across native species by their floral traits and reproductive ecology.© 2016 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.

Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD (2015).

Habitat fragmentation and its lasting impact on earth’s ecosystems

Science Advances, 1, e1500052. DOI: 10.1126/sciadv.1500052.

DOI:10.1126/sciadv.1500052      URL     [本文引用: 1]

Hairston NG, Smith FE, Slobodkin LB (1960).

Community structure, population control, and competition

The American Naturalist, 94, 421-425.

DOI:10.1086/282146      URL     [本文引用: 1]

Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, et al. (2014).

Consequences of biodiversity loss for litter decomposition across biomes

Nature, 509, 218-221.

DOI:10.1038/nature13247      URL     [本文引用: 1]

Hansson LA, Nicolle A, Granéli W, Hallgren P, Kritzberg E, Persson A, Björk J, Nilsson PA, Brönmark C (2013).

Food-chain length alters community responses to global change in aquatic systems

Nature Climate Change, 3, 228-233.

DOI:10.1038/nclimate1689      URL     [本文引用: 1]

Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003).

Biological identifications through DNA barcodes

Proceedings of the Royal Society B: Biological Sciences, 270, 313-321.

[本文引用: 2]

Hoffmann AA, Sgrò CM (2011).

Climate change and evolutionary adaptation

Nature, 470, 479-485.

DOI:10.1038/nature09670      URL     [本文引用: 1]

Hughes BB, Eby R, van Dyke E, Tinker MT, Marks CI, Johnson KS, Wasson K (2013).

Recovery of a top predator mediates negative eutrophic effects on seagrass

Proceedings of the National Academy of Sciences of the United States of America, 110, 15313-15318.

DOI:10.1073/pnas.1302805110      PMID:23983266      [本文引用: 1]

A fundamental goal of the study of ecology is to determine the drivers of habitat-forming vegetation, with much emphasis given to the relative importance to vegetation of "bottom-up" forces such as the role of nutrients and "top-down" forces such as the influence of herbivores and their predators. For coastal vegetation (e.g., kelp, seagrass, marsh, and mangroves) it has been well demonstrated that alterations to bottom-up forcing can cause major disturbances leading to loss of dominant vegetation. One such process is anthropogenic nutrient loading, which can lead to major changes in the abundance and species composition of primary producers, ultimately affecting important ecosystem services. In contrast, much less is known about the relative importance of apex predators on coastal vegetated ecosystems because most top predator populations have been depleted or lost completely. Here we provide evidence that an unusual four-level trophic cascade applies in one such system, whereby a top predator mitigates the bottom-up influences of nutrient loading. In a study of seagrass beds in an estuarine ecosystem exposed to extreme nutrient loading, we use a combination of a 50-y time series analysis, spatial comparisons, and mesocosm and field experiments to demonstrate that sea otters (Enhydra lutris) promote the growth and expansion of eelgrass (Zostera marina) through a trophic cascade, counteracting the negative effects of agriculturally induced nutrient loading. Our results add to a small but growing body of literature illustrating that significant interactions between bottom-up and top-down forces occur, in this case with consequences for the conservation of valued ecosystem services provided by seagrass.

Hulme PE (2009).

Trade, transport and trouble: managing invasive species pathways in an era of globalization

Journal of Applied Ecology, 46, 10-18.

DOI:10.1111/jpe.2009.46.issue-1      URL     [本文引用: 1]

Ju RT, Li H, Shi ZR, Li B (2012).

Progress of biological invasions research in China over the last decade

Biodiversity Science, 20, 581-611.

DOI:10.3724/SP.J.1003.2012.31148      URL     [本文引用: 4]

[ 鞠瑞亭, 李慧, 石正人, 李博 (2012).

近十年中国生物入侵研究进展

生物多样性, 20, 581-611.]

DOI:10.3724/SP.J.1003.2012.31148      [本文引用: 4]

生物入侵已对入侵区的生态环境、社会经济和人类健康造成了严重的威胁, 成为了21世纪五大全球性环境问题之一。本文回顾了2000年以来, 中国生物入侵研究领域尤其是入侵种的多样性与格局、入侵机制及生态学效应、管理与控制等方面所取得的重要进展, 讨论了需进一步加强研究的领域, 以期为进一步拓展该领域研究的广度和深度、为我国的生物入侵预警预防和科学治理提供参考。据初步研究, 中国的入侵种数量已达529种, 其中陆生植物、陆生无脊椎动物和微生物为主要入侵类群; 原产地以北美洲和南美洲为主; 经济发达和气候温暖湿润的东部和南部省份入侵态势明显较西部和北部省份严重; 随着中国经济的进一步发展, 生物入侵问题将可能更加严峻。外来种的成功入侵是其内禀优势、资源机遇和人为干扰共同作用的结果; 其中, 表型可塑性、适应性进化、天敌释放、种间互利或偏利共生和新化感作用等因素对入侵起到了关键作用。生物入侵已对中国土著生态系统的生物多样性和生态系统服务功能造成了严重影响, 打破了生态系统的固有平衡, 危害或威胁到中国的农林牧渔业生产、交通航运、环境、人类健康和公共设施安全。针对生物入侵的管理与控制, 中国加强了包括检测监测、风险分析、生物防治、扩散阻断、根治灭除和生态恢复等技术体系的研究和实施, 并初步控制了一些重要入侵种的扩张。中国生物入侵需要在全境性科学考察、生物入侵的遗传学、基因组学、生态系统影响、全球变化和管理与控制技术创新等领域进一步加强跨领域的交叉合作和系统研究。

Kadoya T, Gellner G, McCann KS (2018).

Potential oscillators and keystone modules in food webs

Ecology Letters, 21, 1330-1340.

DOI:10.1111/ele.13099      PMID:29952127      [本文引用: 1]

Food web theory suggests that the placement of a weak interaction is critical such that under some conditions even one well-placed weak interaction can stabilise multiple strong interactions. This theory suggests that complex stable webs may be built from pivotal weak interactions such that the removal of even one to a few keystone interactions can have significant cascading impacts on whole system diversity and structure. However, the connection between weak interactions, derived from the theory of modular food web components, and keystone species, derived from empirical results, is not yet well understood. Here, we develop numerical techniques to detect potential oscillators hidden in complex food webs, and show that, both in random and real food webs, keystone consumer-resource interactions often operate to stabilise them. Alarmingly, this result suggests that nature frequently may be dangerously close to precipitous change with even the loss of one or a few weakly interacting species.© 2018 John Wiley & Sons Ltd/CNRS.

Kardol P, Wardle DA (2010).

How understanding aboveground belowground linkages can assist restoration ecology

Trends in Ecology & Evolution, 25, 670-679.

DOI:10.1016/j.tree.2010.09.001      URL     [本文引用: 3]

Kiers TE, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010).

Mutualisms in a changing world: an evolutionary perspective

Ecology Letters, 13, 1459-1474.

DOI:10.1111/j.1461-0248.2010.01538.x      PMID:20955506      [本文引用: 1]

Ecology Letters (2010) 13: 1459-1474 ABSTRACT: There is growing concern that rapid environmental degradation threatens mutualistic interactions. Because mutualisms can bind species to a common fate, mutualism breakdown has the potential to expand and accelerate effects of global change on biodiversity loss and ecosystem disruption. The current focus on the ecological dynamics of mutualism under global change has skirted fundamental evolutionary issues. Here, we develop an evolutionary perspective on mutualism breakdown to complement the ecological perspective, by focusing on three processes: (1) shifts from mutualism to antagonism, (2) switches to novel partners and (3) mutualism abandonment. We then identify the evolutionary factors that may make particular classes of mutualisms especially susceptible or resistant to breakdown and discuss how communities harbouring mutualisms may be affected by these evolutionary responses. We propose a template for evolutionary research on mutualism resilience and identify conservation approaches that may help conserve targeted mutualisms in the face of environmental change.© 2010 Blackwell Publishing Ltd/CNRS.

Letnic M, Koch F, Gordon C, Crowther MS, Dickman CR (2009).

Keystone effects of an alien top-predator stem extinctions of native mammals

Proceedings of the Royal Society B: Biological Sciences, 276, 3249-3256.

DOI:10.1098/rspb.2009.0574      PMID:19535372      [本文引用: 1]

Alien predators can have catastrophic effects on ecosystems and are thought to be much more harmful to biodiversity than their native counterparts. However, trophic cascade theory and the mesopredator release hypothesis predict that the removal of top predators will result in the reorganization of trophic webs and loss of biodiversity. Using field data collected throughout arid Australia, we provide evidence that removal of an alien top-predator, the dingo, has cascading effects through lower trophic levels. Dingo removal was linked to increased activity of herbivores and an invasive mesopredator, the red fox (Vulpes vulpes), and to the loss of grass cover and native species of small mammals. Using species distribution data, we predict that reintroducing or maintaining dingo populations would produce a net benefit for the conservation of threatened native mammals across greater than 2.42 x 10(6) km(2) of Australia. Our study provides evidence that an alien top predator can assume a keystone role and be beneficial for biodiversity conservation, and also that mammalian carnivores more generally can generate strong trophic cascades in terrestrial ecosystems.

Li Y, Li GY, Mu JP, Sun SC (2008).

Effects of consumer diversity on food web structure and ecosystem functioning: current knowledge and perspectives

Acta Ecologica Sinica, 28, 388-398.

[本文引用: 1]

[ 李妍, 李国勇, 慕军鹏, 孙书存 (2008).

消费者多样性对食物网结构和生态系统功能的影响

生态学报, 28, 388-398.]

[本文引用: 1]

Lindeman RL (1942).

The trophic-dynamic aspect of ecology

Ecology, 23, 399-418.

DOI:10.2307/1930126      URL     [本文引用: 2]

Liu YZ, Reich PB, Li GY, Sun SC (2011).

Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity

Ecology, 92, 1201-1207.

DOI:10.1890/10-2060.1      URL     [本文引用: 1]

May RM (1972).

Will a large complex system be stable

Nature, 238, 413-414.

DOI:10.1038/238413a0      URL     [本文引用: 1]

Memmott J, Waser NM, Price MV (2004).

Tolerance of pollination networks to species extinctions

Proceedings of the Royal Society B: Biological Sciences, 271, 2605-2611.

PMID:15615687      [本文引用: 1]

Mutually beneficial interactions between flowering plants and animal pollinators represent a critical 'ecosystem service' under threat of anthropogenic extinction. We explored probable patterns of extinction in two large networks of plants and flower visitors by simulating the removal of pollinators and consequent loss of the plants that depend upon them for reproduction. For each network, we removed pollinators at random, systematically from least-linked (most specialized) to most-linked (most generalized), and systematically from most- to least-linked. Plant species diversity declined most rapidly with preferential removal of the most-linked pollinators, but declines were no worse than linear. This relative tolerance to extinction derives from redundancy in pollinators per plant and from nested topology of the networks. Tolerance in pollination networks contrasts with catastrophic declines reported from standard food webs. The discrepancy may be a result of the method used: previous studies removed species from multiple trophic levels based only on their linkage, whereas our preferential removal of pollinators reflects their greater risk of extinction relative to that of plants. In both pollination networks, the most-linked pollinators were bumble-bees and some solitary bees. These animals should receive special attention in efforts to conserve temperate pollination systems.

Murphy GEP, Romanuk TN (2014).

A meta-analysis of declines in local species richness from human disturbances

Ecology and Evolution, 4, 91-103.

DOI:10.1002/ece3.2014.4.issue-1      URL     [本文引用: 1]

Nallu S, Hill J, Don K, Sahagun C, Zhang W, Meslin C, Snell-Rood E, Clark NL, Morehouse NI, Bergelson J, Wheat CW, Kronforst MR (2017).

The molecular genetic basis of herbivory between butterflies and their host-plants

Nature Ecology and Evolution, 2, 1418-1427.

DOI:10.1038/s41559-018-0629-9      URL     [本文引用: 2]

Neutel AM, Heesterbeek JAP, van de Koppel J, Hoenderboom G, Vos A, Kaldeway C, Berendse F, de Ruiter PC (2007).

Reconciling complexity with stability in naturally assembling food webs

Nature, 449, 599-602.

DOI:10.1038/nature06154      URL     [本文引用: 1]

Olsen JL, Rouze P, Verhelst B, Lin Y, Bayer T, Collen J, Dattolo E de Paoli E, Dittami SM, Maumus F (2016).

The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea.

Nature, 530, 331-335.

DOI:10.1038/nature16548      URL     [本文引用: 1]

Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012).

Climatic niche shifts are rare among terrestrial plant invaders

Science, 335, 1344-1348.

DOI:10.1126/science.1215933      PMID:22422981      [本文引用: 1]

The assumption that climatic niche requirements of invasive species are conserved between their native and invaded ranges is key to predicting the risk of invasion. However, this assumption has been challenged recently by evidence of niche shifts in some species. Here, we report the first large-scale test of niche conservatism for 50 terrestrial plant invaders between Eurasia, North America, and Australia. We show that when analog climates are compared between regions, fewer than 15% of species have more than 10% of their invaded distribution outside their native climatic niche. These findings reveal that substantial niche shifts are rare in terrestrial plant invaders, providing support for an appropriate use of ecological niche models for the prediction of both biological invasions and responses to climate change.

Pimm SL (1979).

The structure of food webs

Theoretical Population Biology, 16, 144-158.

PMID:538731      [本文引用: 1]

Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010).

Global pollinator declines: trends, impacts and drivers

Trends in Ecology & Evolution, 25, 345-353.

DOI:10.1016/j.tree.2010.01.007      URL     [本文引用: 3]

Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012).

A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment

Global Change Biology, 18, 1725-1737.

DOI:10.1111/gcb.2012.18.issue-5      URL     [本文引用: 1]

Ricciardi A, MacIsaac HJ (2000).

Recent mass invasion of the North American Great Lakes by Ponto-Caspian species

Trends in Ecology & Evolution, 15, 62-65.

DOI:10.1016/S0169-5347(99)01745-0      URL     [本文引用: 2]

Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ, Smith DW, Wallach AD, Wirsing AJ (2014).

Status and ecological effects of the world’s largest carnivores

Science, 343, 1241484. DOI: 10.1126/science.1241484.

DOI:10.1126/science.1241484      URL     [本文引用: 3]

Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT, Galetti M, Hayward MW, Kerley GIH, Levi T, Lindsey PA, MacDonald DW, Malhi Y, Painter LE, Sandom CJ, Terborgh J, van Valkenburgh B (2015).

Collapse of the world’s largest herbivores

Science Advances, 1, e1400103. DOI: 10.1126/sciadv.1400103.

DOI:10.1126/sciadv.1400103      URL     [本文引用: 1]

Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze ED, Roscher C, Weigelt A, Allan E, Besler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, et al. (2010).

Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment

Nature, 468, 553-556.

DOI:10.1038/nature09492      URL     [本文引用: 2]

Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil BS, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vilà M (2013).

Impacts of biological invasions: What’s what and the way forward

Trends in Ecology & Evolution, 28, 58-66.

DOI:10.1016/j.tree.2012.07.013      URL     [本文引用: 3]

Sydeman WJ, Poloczanska E, Reed TE, Thompson SA (2015).

Climate change and marine vertebrates

Science, 350, 772-777.

DOI:10.1126/science.aac9874      URL     [本文引用: 1]

Tao J, He DK, Kennard MJ, Ding CZ, Bunn SE, Liu CL, Jia YT, Che RX, Chen YF (2018).

Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau

Global Change Biology, 24, 2093-2104.

DOI:10.1111/gcb.2018.24.issue-5      URL     [本文引用: 1]

Taubert F, Fischer R, Groeneveld J, Lehmann S, Muller MS, Rodig E, Wiegand T, Huth A (2018).

Global patterns of tropical forest fragmentation

Nature, 554, 519-522.

DOI:10.1038/nature25508      URL     [本文引用: 1]

Terborgh J, Lopez L, Nuñez P, Rao M, Shahabuddin G, Orihuela G, Riveros M, Ascanio R, Adler GH, Lambert TD, Balbas L (2001).

Ecological meltdown in predator-free forest fragments

Science, 294, 1923-1926.

PMID:11729317      [本文引用: 5]

The manner in which terrestrial ecosystems are regulated is controversial. The "top-down" school holds that predators limit herbivores and thereby prevent them from overexploiting vegetation. "Bottom-up" proponents stress the role of plant chemical defenses in limiting plant depredation by herbivores. A set of predator-free islands created by a hydroelectric impoundment in Venezuela allows a test of these competing world views. Limited area restricts the fauna of small (0.25 to 0.9 hectare) islands to predators of invertebrates (birds, lizards, anurans, and spiders), seed predators (rodents), and herbivores (howler monkeys, iguanas, and leaf-cutter ants). Predators of vertebrates are absent, and densities of rodents, howler monkeys, iguanas, and leaf-cutter ants are 10 to 100 times greater than on the nearby mainland, suggesting that predators normally limit their populations. The densities of seedlings and saplings of canopy trees are severely reduced on herbivore-affected islands, providing evidence of a trophic cascade unleashed in the absence of top-down regulation.

Terborgh JW (2015).

Toward a trophic theory of species diversity

Proceedings of the National Academy of Sciences of the United States of America, 112, 11415-11422.

DOI:10.1073/pnas.1501070112      PMID:26374788      [本文引用: 1]

Efforts to understand the ecological regulation of species diversity via bottom-up approaches have failed to yield a consensus theory. Theories based on the alternative of top-down regulation have fared better. Paine's discovery of keystone predation demonstrated that the regulation of diversity via top-down forcing could be simple, strong, and direct, yet ecologists have persistently failed to perceive generality in Paine's result. Removing top predators destabilizes many systems and drives transitions to radically distinct alternative states. These transitions typically involve community reorganization and loss of diversity, implying that top-down forcing is crucial to diversity maintenance. Contrary to the expectations of bottom-up theories, many terrestrial herbivores and mesopredators are capable of sustained order-of-magnitude population increases following release from predation, negating the assumption that populations of primary consumers are resource limited and at or near carrying capacity. Predation sensu lato (to include Janzen-Connell mortality agents) has been shown to promote diversity in a wide range of ecosystems, including rocky intertidal shelves, coral reefs, the nearshore ocean, streams, lakes, temperate and tropical forests, and arctic tundra. The compelling variety of these ecosystems suggests that top-down forcing plays a universal role in regulating diversity. This conclusion is further supported by studies showing that the reduction or absence of predation leads to diversity loss and, in the more dramatic cases, to catastrophic regime change. Here, I expand on the thesis that diversity is maintained by the interaction between predation and competition, such that strong top-down forcing reduces competition, allowing coexistence.

Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS, Burthe SJ, Helaouet P, Johns DG, Jones ID, Leech DI (2016).

Phenological sensitivity to climate across taxa and trophic levels

Nature, 535, 241-245.

DOI:10.1038/nature18608      URL     [本文引用: 2]

Tong X, Wang R, Chen XY (2018).

Expansion or invasion? A response to Nackley et al

Trends in Ecology & Evolution, 33, 234-235.

[本文引用: 1]

Traveset A, Richardson DM (2014).

Mutualistic interactions and biological invasions

Annual Review of Ecology, Evolution, and Systematics, 45, 89-113.

DOI:10.1146/annurev-ecolsys-120213-091857      [本文引用: 3]

Mutualisms structure ecosystems and mediate their functioning. They also enhance invasions of many alien species. Invasions disrupt native mutualisms, often leading to population declines, reduced biodiversity, and altered ecosystem functioning. Focusing on three main types of mutualisms (pollination, seed dispersal, and plant-microbial symbioses) and drawing on examples from different ecosystems and from species-and community-level studies, we review the key mechanisms whereby such positive interactions mediate invasions and are in turn influenced by invasions. High interaction generalization is "the norm" in most systems, allowing alien species to infiltrate recipient communities. We identify traits that influence invasiveness (e.g., selfing capacity in plants, animal behavioral traits) or invasibility (e.g., partner choice in mycorrhizas/rhizobia) through mutualistic interactions. Mutualistic disruptions due to invasions are pervasive, and subsequent cascading effects are also widespread. Ecological networks provide a useful framework for predicting tipping points for community collapse in response to invasions and other synergistic drivers of global change.

Trisos CH, Merow C, Pigot AL (2020).

The projected timing of abrupt ecological disruption from climate change

Nature, 580, 496-501.

DOI:10.1038/s41586-020-2189-9      URL     [本文引用: 1]

Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008).

Global change and species interactions in terrestrial ecosystems

Ecology Letters, 11, 1351-1363.

PMID:19062363      [本文引用: 1]

The main drivers of global environmental change (CO2 enrichment, nitrogen deposition, climate, biotic invasions and land use) cause extinctions and alter species distributions, and recent evidence shows that they exert pervasive impacts on various antagonistic and mutualistic interactions among species. In this review, we synthesize data from 688 published studies to show that these drivers often alter competitive interactions among plants and animals, exert multitrophic effects on the decomposer food web, increase intensity of pathogen infection, weaken mutualisms involving plants, and enhance herbivory while having variable effects on predation. A recurrent finding is that there is substantial variability among studies in both the magnitude and direction of effects of any given GEC driver on any given type of biotic interaction. Further, we show that higher order effects among multiple drivers acting simultaneously create challenges in predicting future responses to global environmental change, and that extrapolating these complex impacts across entire networks of species interactions yields unanticipated effects on ecosystems. Finally, we conclude that in order to reliably predict the effects of GEC on community and ecosystem processes, the greatest single challenge will be to determine how biotic and abiotic context alters the direction and magnitude of GEC effects on biotic interactions.

Wabnitz C, Balazs G, Beavers S, Bjorndal KA, Bolten AB, Christensen V, Hargrove S, Pauly D (2010).

Ecosystem structure and processes at Kaloko Honokohau, focusing on the role of herbivores, including the green sea turtle Chelonia mydas, in reef resilience

Marine Ecology Progress Series, 420, 27-44.

DOI:10.3354/meps08846      [本文引用: 1]

The formal protection of the Hawaiian green turtle Chelonia mydas in the 1970s has led to significant increases in the number of individuals recorded throughout the archipelago. Reduced growth rates and poor body condition of individuals at a number of foraging sites, including Kaloko-Honokohau National Historical Park (Kaloko), suggest that some aggregations have reached carrying capacity. To better understand the ecological structure and processes of the reef system at the park, we developed an ecosystem model that synthesized available data on Kaloko for the year 2005 and included 26 groups, spanning the entire trophic web. Model results showed that the combined grazing pressure of the different herbivore functional groups (i.e. reef fish, sea urchins, and green turtles) in Kaloko matched total algal production. Sea urchins exerted the strongest control over algal resources, partly because of their large biomass in park waters. Results confirmed that the Kaloko green turtle aggregation has reached carrying capacity. Green turtles help maintain low algal cover, and thus resilience of reefs in the face of disturbance, and should be explicitly included in studies of ecosystem dynamics on reefs. Our work also provides a 'current-condition' baseline for Kaloko, and a valuable tool for the assessment of the future marine ecosystem impacts of projected urban expansion plans around the park.

Wang R, Chen XY, Chen Y, Wang G, Dunn DW, Quinnell RJ, Compton SG (2019a).

Loss of top-down biotic interactions changes the relative benefits for obligate mutualists

Proceedings of the Royal Society B: Biological Sciences, 286, 20182501. DOI: 10.1098/rspb.2018.2501.

DOI:10.1098/rspb.2018.2501      URL     [本文引用: 1]

Wang R, Shi YS, Zhang YX, Xu GF, Shen GC, Chen XY (2019b).

Distance-dependent seed-seedling transition in the tree Castanopsis sclerophylla is altered by fragment size

Communications Biology, 2, 277. DOI: 10.1038/s42003-019-0528-x.

DOI:10.1038/s42003-019-0528-x      URL     [本文引用: 2]

Wang R, Zhang X, Shi YS, Li YY, Wu JG, He FL, Chen XY (2020).

Habitat fragmentation changes top-down and bottom-up controls of food webs

Ecology, 101, e03062. DOI: 10.1002/ecy.3062.

DOI:10.1002/ecy.3062      [本文引用: 2]

Wang SP, Brose U (2018).

Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis

Ecology Letters, 21, 9-20.

DOI:10.1111/ele.2018.21.issue-1      URL     [本文引用: 1]

Wang SP, Brose U, Gravel D (2019c).

Intraguild predation enhances biodiversity and functioning in complex food webs

Ecology, 100, e02616. DOI: 10.1002/ecy.2616.

DOI:10.1002/ecy.2616      [本文引用: 1]

Wang YY, Xu J, Lei GC (2013).

Proximate and ultimate determinants of food chain length

Acta Ecologica Sinica, 33, 5990-5996.

DOI:10.5846/stxb      URL     [本文引用: 1]

[ 王玉玉, 徐军, 雷光春 (2013).

食物链长度远因与近因研究进展综述

生态学报, 33, 5990-5996.]

[本文引用: 1]

Wardle DA, Bardgett RD, Callaway RM, der Putten WHV (2011).

Terrestrial ecosystem responses to species gains and losses

Science, 332, 1273-1277.

DOI:10.1126/science.1197479      PMID:21659595      [本文引用: 3]

Ecosystems worldwide are losing some species and gaining others, resulting in an interchange of species that is having profound impacts on how these ecosystems function. However, research on the effects of species gains and losses has developed largely independently of one another. Recent conceptual advances regarding effects of species gain have arisen from studies that have unraveled the mechanistic basis of how invading species with novel traits alter biotic interactions and ecosystem processes. In contrast, studies on traits associated with species loss are fewer, and much remains unknown about how traits that predispose species to extinction affect ecological processes. Species gains and losses are both consequences and drivers of global change; thus, explicit integration of research on how both processes simultaneously affect ecosystem functioning is key to determining the response of the Earth system to current and future human activities.

Weiner CN, Werner M, Linsenmair KE, Blüthgen N (2014).

Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines

Ecology, 95, 466-474.

[本文引用: 1]

Wilson MC, Chen XY, Corlett RT, Didham RK, Ding P, Holt RD, Holyoak M, Hu G, Hughes AC, Jiang L, Laurance WF, Liu JJ, Pimm SL, Robinson SK, Russo SE, Si XF, Wilcove DS, Wu JG, Yu MJ (2016).

Habitat fragmentation and biodiversity conservation: key findings and future challenges

Landscape Ecology, 31, 219-227.

DOI:10.1007/s10980-015-0312-3      URL     [本文引用: 2]

You MS, Yue Z, He WY, Yang XH, Yang G, Xie M, Zhan DL, Baxter SW, Vasseur L, Gurr GM, Douglas CJ, Bai JL, Wang P, Cui K, Huang SG, et al. (2013).

A heterozygous moth genome provides insights into herbivory and detoxification

Nature Genetics, 45, 220-225.

DOI:10.1038/ng.2524      URL     [本文引用: 2]

Zander A, Bersier L, Gray SM (2017).

Effects of temperature variability on community structure in a natural microbial food web.

Global Change Biology, 23, 56-67.

DOI:10.1111/gcb.13374      PMID:27234703      [本文引用: 1]

Climate change research has demonstrated that changing temperatures will have an effect on community-level dynamics by altering species survival rates, shifting species distributions, and ultimately, creating mismatches in community interactions. However, most of this work has focused on increasing temperature, and still little is known about how the variation in temperature extremes will affect community dynamics. We used the model aquatic community held within the leaves of the carnivorous plant, Sarracenia purpurea, to test how food web dynamics will be affected by high temperature variation. We tested the community response of the first (bacterial density), second (protist diversity and composition), and third trophic level (predator mortality), and measured community respiration. We collected early and late successional stage inquiline communities from S. purpurea from two North American and two European sites with similar average July temperature. We then created a common garden experiment in which replicates of these communities underwent either high or normal daily temperature variation, with the average temperature equal among treatments. We found an impact of temperature variation on the first two, but not on the third trophic level. For bacteria in the high-variation treatment, density experienced an initial boost in growth but then decreased quickly through time. For protists in the high-variation treatment, alpha-diversity decreased faster than in the normal-variation treatment, beta-diversity increased only in the European sites, and protist community composition tended to diverge more in the late successional stage. The mortality of the predatory mosquito larvae was unaffected by temperature variation. Community respiration was lower in the high-variation treatment, indicating a lower ecosystem functioning. Our results highlight clear impacts of temperature variation. A more mechanistic understanding of the effects that temperature, and especially temperature variation, will have on community dynamics is still greatly needed.© 2016 John Wiley & Sons Ltd.

Zettlemoyer MA, Schultheis EH, Lau JA (2019).

Phenology in a warming world: differences between native and non- native plant species

Ecology Letters, 22, 1253-1263.

DOI:10.1111/ele.13290      PMID:31134712      [本文引用: 1]

Phenology is a harbinger of climate change, with many species advancing flowering in response to rising temperatures. However, there is tremendous variation among species in phenological response to warming, and any phenological differences between native and non-native species may influence invasion outcomes under global warming. We simulated global warming in the field and found that non-native species flowered earlier and were more phenologically plastic to temperature than natives, which did not accelerate flowering in response to warming. Non-native species' flowering also became more synchronous with other community members under warming. Earlier flowering was associated with greater geographic spread of non-native species, implicating phenology as a potential trait associated with the successful establishment of non-native species across large geographic regions. Such phenological differences in both timing and plasticity between native and non-natives are hypothesised to promote invasion success and population persistence, potentially benefiting non-native over native species under climate change.© 2019 John Wiley & Sons Ltd/CNRS.

Zhao L, Zhang HY, O’Gorman EJ, Tian W, Ma A, Moore JC, Borrett SR, Woodward G (2016).

Weighting and indirect effects identify keystone species in food webs

Ecology Letters, 19, 1032-1040.

DOI:10.1111/ele.12638      PMID:27346328      [本文引用: 1]

Species extinctions are accelerating globally, yet the mechanisms that maintain local biodiversity remain poorly understood. The extinction of species that feed on or are fed on by many others (i.e. 'hubs') has traditionally been thought to cause the greatest threat of further biodiversity loss. Very little attention has been paid to the strength of those feeding links (i.e. link weight) and the prevalence of indirect interactions. Here, we used a dynamical model based on empirical energy budget data to assess changes in ecosystem stability after simulating the loss of species according to various extinction scenarios. Link weight and/or indirect effects had stronger effects on food-web stability than the simple removal of 'hubs', demonstrating that both quantitative fluxes and species dissipating their effects across many links should be of great concern in biodiversity conservation, and the potential for 'hubs' to act as keystone species may have been exaggerated to date.© 2016 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.

Zou JW, Rogers WE, Siemann E (2007).

Differences in morphological and physiological traits between native and invasive populations of Sapium sebiferum

Functional Ecology, 21, 721-730.

DOI:10.1111/fec.2007.21.issue-4      URL     [本文引用: 2]

Zuppinger-Dingley D, Schmid B, Petermann JS, Yadav V de Deyn GB, Flynn DFB (2014).

Selection for niche differentiation in plant communities increases biodiversity effects

Nature, 515, 108-111.

[本文引用: 1]

/