植物生态学报, 2022, 46(11): 1388-1399 doi: 10.17521/cjpe.2021.0396

研究论文

基于植物功能性状的暖温带5种灌木幼苗生长策略

祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁,*, 郭卫华,*

山东大学生命科学学院生态学与生物多样性研究所, 山东省植被生态工程技术研究中心, 山东青岛 266237

Growth strategies of five shrub seedlings in warm temperate zone based on plant functional traits

QI Lu-Yu, CHEN Hao-Nan, Kulihong SAIREBIELI, JI Tian-Yu, MENG Gao-De, QIN Hui-Ying, WANG Ning, SONG Yi-Xin, LIU Chun-Yu, DU Ning,*, GUO Wei-Hua,*

Institute of Ecology and Biodiversity, School of Life Sciences, Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, Shandong 266237, China

通讯作者: *(杜宁,ndu@sdu.edu.cn;郭卫华,whguo@sdu.edu.cn)

编委: 张守仁

责任编辑: 乔鲜果

收稿日期: 2021-11-4   接受日期: 2022-02-10  

基金资助: 国家科技基础性工作专项(2015FY110300)
山东省林业科技创新项目(2019LY010)

Corresponding authors: *(DU Ning,ndu@sdu.edu.cn;GUO Wei-Hua,whguo@sdu.edu.cn)

Received: 2021-11-4   Accepted: 2022-02-10  

Fund supported: The Special Foundation for National Science and Technology Basic Research Program of China(2015FY110300)
The Forestry Science and Technology Innovation Program of Shandong Province, China(2019LY010)

摘要

为了理解中国暖温带常见本地灌木和外来灌木的生长策略和生态位分化机制, 并为植被恢复和重建、区域生态环境可持续发展提供理论依据, 该研究选取3种中国暖温带常见本地灌木——荆条(Vitex negundo var. heterophylla)、酸枣(Ziziphus jujuba var. spinosa)、小花扁担杆(Grewia biloba var. parviflora)和2种外来灌木——紫穗槐(Amorpha fruticosa)和火炬树(Rhus typhina), 通过对植物功能性状的测量, 分析了不同物种幼苗生长策略的差异。该研究在山东大学莱芜房干生态实验站进行, 利用盆栽实验种植5种灌木的当年实生苗, 每个物种20个重复, 测量了叶结构性状、叶营养元素含量、叶绿素含量、叶气体交换参数、叶绿素荧光、生物量产量等性状指标。结果表明: 5种灌木在相同的生长环境下表现出了不同的生理生态特性。外来种火炬树和紫穗槐表现出较高的光合速率, 这对于两者充分利用林下光斑环境非常有利。紫穗槐支撑结构比例高达0.434, 有利于其叶片运动, 进而适应多变的光照环境, 较强的光合适应能力是2个外来种能够定居下来的重要原因。本地种荆条和酸枣对资源的利用比较保守, 两者气体交换值均较低, 充分地利用正午的光照是荆条叶片生理的一大特点。小花扁担杆的叶片有较强的气体交换能力, 但是通过叶绿素荧光分析发现, 其正午过后的实际量子产量恢复比较慢, 另外, 小花扁担杆叶片的比叶质量和叶绿素a/b都最小, 分别为44.539 g·m-2和2.215, 说明小花扁担杆具有一定的阴生性。良好的种子扩散能力(百粒质量小, 0.947 g)和叶散热能力(周长2/面积(γ′)值最高, 48.389)、保守的光能利用策略、较强的干扰后恢复能力(根冠比高, 5.051)使得荆条成为中国暖温带地区的广布优势种。

关键词: 生长策略; 叶性状; 生理生态学; 植物功能性状; 灌木

Abstract

Aims The subject of plant functional traits, which reflect plant growth and survival strategies, is an important trending topic in plant ecology. In this study, we selected three native warm temperate shrub species in China: Vitex negundo var. heterophylla, Ziziphus jujuba var. spinosa, Grewia biloba var. parviflora and two alien species: Amorpha fruticosa and Rhus typhina, to compare their growth and survival strategies.
Methods The differences in growth strategies were analyzed by measuring plant functional traits. This experiment was carried out at Fanggan ecological experimental station of Shandong University in Jinan. The seeds of five shrubs were germinated and 20 seedlings of each species were planted in pots containing a mixture of sand and humus (2:1, by volume). The leaf structural traits, leaf nitrogen, phosphorus and potassium, chlorophyll content, leaf gas exchange parameters, chlorophyll fluorescence, biomass, and seedling growth parameters were measured.
Important findings Physiological and ecological characteristics of five shrub seedlings were different under the same condition. 1) The alien species, i.e. R. typhina and A. fruticosa, showed high photosynthetic rates and had a strong ability to adjust to the instantaneous change of light intensity, which may be beneficial for plants to make full use of sunflecks under the canopy. The high supporting structure ratio of A. fruticosa is also more conducive to leaf movements, thus adjusting to the changeable light environment. The supporting structure ratio of A. fruticosa was as high as 0.434, which is conducive to its leaf movement and adjustment to the changeable light environment. The high photosynthetic capacity of R. typhina and A. fruticosa was the vital reason for the establishment of the two alien species. 2) The local species V. negundo var. heterophylla and Z. jujuba var. spinosa demonstrated relatively conservative utilization of resources, and in both of them low gas exchange values were measured. However, V. negundo var. heterophylla could make full use of the midday light. 3) G. biloba var. parviflora showed strong gas exchange capacity, and the actual quantum yield of diurnal variation of fluorescence was slow to recover in the afternoon as demonstrated by the chlorophyll fluorescence analysis. In addition, Grewia biloba var. parviflora had the lowest specific leaf mass (44.539 g·m-2) and chlorophyll a/b (2.215), which confirmed that it is a shade-tolerant plant. Traits such as good seed dispersal ability, leaf heat dissipation ability, conservative light energy utilization strategy, and strong ability to recover after disturbance, help V. negundo var. heterophylla become the dominant species in the warm temperate zone of China. In summary, our study is helpful to understand the growth strategy and niche differentiation mechanisms in several common shrubs of warm temperate zone of China and provides theoretical basis for vegetation restoration, vegetation reconstruction and sustainable development of regional ecological environment.

Keywords: growth strategy; leaf trait; physiological ecology; plant functional trait; shrub

PDF (2891KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

引用本文

祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略. 植物生态学报, 2022, 46(11): 1388-1399. DOI: 10.17521/cjpe.2021.0396

QI Lu-Yu, CHEN Hao-Nan, Kulihong SAIREBIELI, JI Tian-Yu, MENG Gao-De, QIN Hui-Ying, WANG Ning, SONG Yi-Xin, LIU Chun-Yu, DU Ning, GUO Wei-Hua. Growth strategies of five shrub seedlings in warm temperate zone based on plant functional traits. Chinese Journal of Plant Ecology, 2022, 46(11): 1388-1399. DOI: 10.17521/cjpe.2021.0396

灌丛是陆地生态系统的重要组成部分, 具有分布范围广、植物组成多样、生态系统服务功能丰富等特点, 在涵养水源、提高土壤肥力、维持生物多样性、促进生态系统能量流动和物质循环等方面具有重要作用(曹嘉瑜等, 2020; 马剑等, 2021)。在我国, 灌丛面积约占陆地总面积的1/5 (胡会峰等, 2006; 郭子豪等, 2021)。作为灌丛群落的重要组成部分, 灌木的生长和生存能力往往决定了群落整体的演变趋势, 因此比较不同灌木物种的生长策略对于理解物种间的生态位分化和群落的动态发展具有重要意义。

植物功能性状是植物个体在生长发育过程中与外界环境相互作用而形成的植物性状, 它既能够响应外界环境的变化, 又能对生态系统过程和功能产生影响(刘晓娟和马克平, 2015; Kattge et al., 2020)。植物功能性状是目前生态学研究的热点, 通过对植物功能性状的测量, 可以了解植物在不同环境下的生存策略, 分析植物群落的构建机制, 探究生物多样性对生态系统功能的影响, 并为植被恢复中物种的选取提供理论依据(Kattge et al., 2020)。大量的研究表明, 植物功能性状的比较, 是分析同域或异域物种生长策略差异的有效手段(Díaz et al., 2016; 何念鹏等, 2018)。功能性状具有种内可塑性, 不考虑种内变异的同域物种功能性状比较, 将对物种生长策略分析产生显著的影响, 而相同条件下的种植实验是规避种内性状表型可塑性的有效手段。

叶是高等植物主要的同化器官, 叶性状是植物功能性状的重要组成部分, 叶性状分析对于了解物种的生长特性和生态学功能具有重要意义(Heilmeier, 2019; 李耀琪和王志恒, 2021)。叶的结构和化学组成变化造成的物种功能的差异是驱动物种共存和生态位分化的重要机制(Sack & Frole, 2006; Peppe et al., 2011)。Wright等(2004)建立了全球叶经济谱, 将“投资”和“收益”的概念融入生态学的研究中。外来种往往叶寿命较短, 采取资源快速投资收益方式, 具有高的比叶面积、叶绿素含量、叶氮含量、叶磷含量、光合速率和呼吸速率, 属于快速生长物种; 而本地种叶性状与外来种相反, 投资方式比较保守, 属于慢速生长物种(Wright et al., 2004; Lusk et al., 2019; Kumar et al., 2021)。一般来说, 相比于本地种, 采取积极资源获取策略的外来种在高资源栖息地更具有优势; 采取保守生长策略的本地种在低资源中更有优势(Funk, 2013)。此外, 除叶性状, 本地种和外来种在生物量分配与种子质量的适应策略方面也存在差异。在生物量分配方面, 外来种往往在叶和茎中分配的生物量更多(Wang et al., 2013), 而本地种则更倾向于将更多的生物量分配给地下部分。Poorter (2009)发现根生物量比等性状对于地下水和营养的获取具有重要的指示意义。在种子质量角度, 不同植物种子大小各不相同, 大的种子资源丰富, 存活率高, 以质量取胜; 小的种子则以数量取胜(Westoby et al., 1992)。

受人类活动的影响, 我国暖温带分布着大片的次生灌丛。在灌木层中, 荆条(Vitex negundo var. heterophylla)、酸枣(Ziziphus jujuba var. spinosa)和小花扁担杆(Grewia biloba var. parviflora)是常见的乡土树种。荆条是灌木层常见的优势种, 在海拔700 m以下的山地丘陵地区的阳坡和阴坡均有分布, 而酸枣和小花扁担杆多以伴生种出现, 其中小花扁担杆多生长于灌木层下层。而紫穗槐(Amorpha fruticosa)和火炬树(Rhus typhina)则是灌木层常见的外来种。在部分区域已形成生长优势, 两者都原产北美洲, 紫穗槐在20世纪20年代, 作为一种庭园观赏植物传入我国, 现在我国东北、华北、西北等地区均有栽培, 广泛栽植于河岸、河堤、沙地、山坡及铁路沿线。火炬树自1974年以来向全国各省区推广, 以黄河流域及其以北各省区栽培较多, 常分布于碱性土壤地区, 主要用于荒山绿化兼作盐碱荒地风景林树种(张川红等, 2005)。由于外来种的栽植和扩散, 以上几个物种常常在一个区域内共存, 存在竞争关系(Kunstler et al., 2016)。在山东灌丛的野外调查中也发现, 荆条是灌木层的优势物种, 分布广泛; 酸枣和小花扁担杆均为伴生物种, 但前者多分布在阳坡, 后者多分布在阴坡; 紫穗槐广泛应用于护坡等修复活动中, 而火炬树生长能力很强, 与本地种荆条竞争关系明显。尽管以上物种的功能性状及其对环境的响应策略已有研究报道(胡会峰等, 2006; 曹嘉瑜等, 2021), 但是不同物种在相同生境条件下的生长策略对比研究还较少, 本研究对灌木群落整体演变趋势具有重要意义。

本研究以中国暖温带本地灌木荆条、酸枣和小花扁担杆, 外来灌木紫穗槐和火炬树为研究对象, 通过对一年生幼苗功能性状的测量, 比较了它们生长策略的差异。旨在探讨: 本地种和外来种资源获取策略和适应对策有何不同? 外来种的竞争优势是如何通过功能性状体现出来的?

1 材料和方法

1.1 研究区域概况

本研究在山东大学莱芜房干生态实验站(36.43° N, 117.45° E)进行, 该生态站位于山东省济南市莱芜区西北部山区。该地区属于暖温带大陆性季风气候, 夏季高温多雨, 冬季寒冷干燥, 四季分明。年降水量600-800 mm, 年平均气温12.5 ℃ (Tan et al., 2018)。

1.2 实验设计

实验在房干生态实验站的大棚内进行, 将采集的荆条、酸枣、小花扁担杆、紫穗槐和火炬树种子在纱布上进行催芽, 等其发芽后播种在PVC塑料盆中, 塑料盆的上口直径、下口直径和高度分别为29、25、32 cm。待小苗生长到20 cm左右时进行间苗, 每盆保留1株长势一致且良好的小苗, 每个物种20盆重复。4个月后, 在植物生长旺盛的8月份进行功能性状指标的测定, 实验期间对小苗精心管理, 定期除虫, 保证适宜的水分和养分条件。

1.3 指标测定

叶结构性状: 每个物种选取生长健康的10片成熟叶(单叶或复叶), 各个物种的叶实物图见图1, 测量叶长度(L)、宽度(W)、叶柄长度(PL)、复叶柄长度(CPL), 叶扫描后用Image-Pro Plus 6.0图像处理软件测量叶周长(LP)、叶面积(Area)。将叶和叶柄分开后, 在85 ℃下烘干至恒质量, 分别记录单叶或复叶的叶干质量(LDWt)、叶柄干质量(PDWt)。根据以上的测量指标, 计算如下指标:叶散热能力γ′ (LP2/Area)、叶长叶宽比(L/W)、叶长叶柄长比(L/PL)、比叶质量(LMA = LDWt/Area)、叶生物量分配(LBP = LDWt/(LDWt + PDWt))。

图1

图1   暖温带5种灌木的叶形状实物图。A, 火炬树小叶。B, 火炬树羽状复叶。C, 紫穗槐小叶。D, 紫穗槐羽状复叶。E, 酸枣叶片。F, 小花扁担杆叶片。G, 荆条叶片。

Fig. 1   Pictures of five shrub leaves in warm temperate zone. A, Leaflet of Rhus typhina. B, Pinnately compound leaf of Rhus typhina. C, Leaflet of Amorpha fruticosa. D, Pinnately compound leaf of Amorpha fruticosa. E, Leaf of Ziziphus jujuba var. spinosa. F, Leaf of Grewia biloba var. parviflora. G, Palmately compound leaf of Vitex negundo var. heterophylla.


叶元素含量: 采集生长健康的成熟叶, 带回实验室烘干, 磨细过筛后的样品用H2SO4-H2O2消解后, 用蒸馏法测定全氮(N)含量, 钒钼黄比色法测定全磷(P)含量, 火焰光度法测定钾(K)含量。各指标均以单位质量含量表示, 每个物种4个重复。

叶绿素(Chl)含量: 每个物种选取6片叶, 进行Chl含量的测定, 叶用体积分数95%乙醇浸泡24 h后, 用722 s可见分光光度计(棱光科技有限公司, 上海)测定提取液在665和649 nm处的吸光度D665和D649, 通过以下公式计算Chl含量。

${{C}_{\text{Chl}\ \text{a}}}=13.95\times \text{D}665-6.88\times \text{D}649$
${{C}_{\text{Chl}\ \text{b}}}=24.96\times \text{D}649-7.32\times \text{D}665$
$\text{Chl a(b)}=\frac{{{C}_{\text{Chl}\ \text{a}(\text{b)}}}\times \text{ }\!\!~\!\!\text{ }V}{}$
$\text{Chl}=\text{Chl a}+\text{Chl b}$

式中, C为色素浓度,即指Chl a或Chl b的浓度, 单位为mg·L-1, 样品鲜质量单位为g, V为提取液体积,为12.5 mL。

叶气体交换: 在实验末期, 选取晴朗的天气, 利用便携式光合仪CI-340 (CID Bio-Science, Camas, USA)测定光合作用, 测量时间在9:30-11:30之间, 实验过程中光强均高于1 200 μmol·m-2·s-1, 此光强已达到C3木本植物的光饱和点(蒋高明, 2004)。最大净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2浓度(Ci)等指标被记录的同时, 同步记录光合有效辐射(PAR)和大气CO2浓度(Ca)等环境参数。计算瞬时水分利用效率(WUE) = Pn/Tr和表观光能利用效率(LUE) = Pn/PAR。

叶绿素荧光: 在实验末期, 选取晴朗的天气, 利用便携式调制叶绿素荧光仪Mini-PAM (Walz, Effeltrich, Germany)测定荧光日变化, 从4:30到19:30, 每隔1 h测定一次, 测定黎明前的最小荧光值(Fo)和最大荧光值(Fm), F′m为光照下的最大荧光, Ft为瞬时荧光, 每个物种重复测定6次。据此计算光系统II实际量子产量(Yield)、电子传递速率(ETR)、光化学淬灭系数(qP)、非光化学淬灭系数(NPQ), 其中0.5是假设吸收的光被两个光系统均分, 0.84是叶的吸光系数(张守仁, 1999)。

$\text{Yield}=({{{F}'}_{\text{m}}}-{{F}_{\text{t}}})/{{{F}'}_{\text{m}}}$
$\text{ETR}=\text{Yield}\times \text{PAR}\times 0.5\times 0.84$
$\text{NPQ}=({{F}_{\text{m}}}-{{{F}'}_{\text{m}}})/{{{F}'}_{\text{m}}}$

生物量: 在实验前期, 测量每个物种的种子百粒质量(HSM); 在实验末期, 每个物种选取5株进行生物量测定, 小心地从盆中取出植株, 用自来水将根冲洗干净, 然后分为根、茎、叶, 其中根分为主根和侧根, 茎分为主茎和分枝, 叶分为叶和叶柄, 在85 ℃下烘干至恒质量后称质量, 根据各部分的生物量计算生物量分配指标。

根生物量比=根生物量/总生物量
茎生物量比=茎生物量/总生物量
叶生物量比=叶生物量/总生物量
根冠比=根生物量/(叶生物量+茎生物量)
侧根主根比=侧根生物量/主根生物量
分枝主茎比=分枝生物量/主茎生物量
叶柄叶比=叶柄生物量/叶生物量
支撑结构比= (茎生物量+叶柄生物量)/总生物量

1.4 数据处理

采用单因素方差分析检验不同物种功能性状间是否有显著差异, 当数据不满足正态性和方差齐性的要求时, 首先对数据进行对数转换, 方差分析的结果存在显著差异时用邓肯方法进行多重比较。采用Spearman系数进行叶性状间的相关性分析, 显著性检验均是在α = 0.05的水平上进行的, 使用SPSS 23.0软件进行统计分析, 使用OriginPro 2017软件包作图。

2 结果和分析

2.1 不同灌木叶特征、结构和物质含量的比较

表1可知, 5种灌木的叶结构性状差异较大。5个物种的叶面积为小花扁担杆>火炬树>荆条>酸枣>紫穗槐; 从表1图1均可看出, 外来物种紫穗槐与火炬树叶长宽比显著高于本地物种荆条、酸枣和小花扁担杆; 荆条和火炬树的γ′值均显著高于其他物种; 本研究中5个物种比叶质量为紫穗槐>酸枣>荆条>火炬树>小花扁担杆。

表1   5个暖温带灌木物种叶特征、结构和物质组成性状的比较(平均值±标准误)

Table 1  Compare of leaf features, structure and compositional traits among five shrub species in warm temperate zone (mean ± SE)

性状
Trait
荆条
Vitex negundo var.
heterophylla
酸枣
Ziziphus jujuba var. spinosa
小花扁担杆
Grewia biloba var.
parviflora
紫穗槐
Amorpha fruticosa
火炬树
Rhus typhina
Area (cm2)9.261 ± 1.045c4.652 ± 0.410c54.529 ± 3.560a4.509 ± 0.314c22.574 ± 0.817b
L/W2.380 ± 0.126b2.142 ± 0.052b1.476 ± 0.053c3.157 ± 0.165a3.296 ± 0.117a
L/PL6.088 ± 0.555c27.319 ± 2.846a8.940 ± 0.215c19.041 ± 0.811b-
γ48.389 ± 5.577a21.526 ± 0.981c20.755 ± 0.430c20.438 ± 0.708c36.152 ± 1.332b
LMA (g·m-2)48.094 ± 0.611bc49.303 ± 1.698ab44.539 ± 1.513c53.040 ± 1.342a46.389 ± 1.397bc
x(c) (cm·cm-1)0.417 ± 0.006c0.447 ± 0.006b0.402 ± 0.004d0.483 ± 0.004a0.392 ± 0.003d
N (g·kg-1)32.825 ± 0.581c42.105 ± 0.768a37.878 ± 1.221b36.800 ± 1.158b27.073 ± 1.103d
P (g·kg-1)3.540 ± 0.186b5.968 ± 0.111a5.593 ± 0.462a5.208 ± 0.548a5.793 ± 0.284a
K (g·kg-1)12.015 ± 0.889b15.040 ± 0.142a12.478 ± 0.514b9.895 ± 0.368c10.073 ± 0.540c
N:P9.371 ± 0.632a7.068 ± 0.236b6.908 ± 0.586b7.274 ± 0.689b4.710 ± 0.309c
Chl a (mg·g-1)1.565 ± 0.060c2.316 ± 0.112a2.055 ± 0.085b2.013 ± 0.040b1.771 ± 0.064c
Chl b (mg·g-1)0.667 ± 0.043c0.878 ± 0.057ab0.938 ± 0.064a0.812 ± 0.027abc0.726 ± 0.037bc
Chl a/b2.384 ± 0.1562.658 ± 0.0762.215 ± 0.0812.494 ± 0.0962.446 ± 0.035
LBP0.878 ± 0.004b-0.965 ± 0.001a0.790 ± 0.006c0.764 ± 0.007d

Area, 叶面积; Chl a, 单位质量叶绿素a含量; Chl b, 单位质量叶绿素b含量; Chl a/b, 叶绿素a、b含量比值; K, 叶全钾含量; LBP, 所有叶干质量/(所有叶干质量+所有叶柄干质量); LMA, 比叶质量; L/PL, 叶长/叶柄长; L/W, 叶长/叶宽; N, 叶全氮含量; N:P, 叶氮磷比; P, 叶全磷含量; x(c), 重心到基部距离与叶长比值; γ, 周长2/面积。不同小写字母表示物种之间存在显著差异(p < 0.05)。

Area, leaf area; Chl a, chlorophyll a content per unit mass; Chl b, chlorophyll b content per unit mass; K, leaf potassium content; LBP, leaf dry mass (LDWt)/(LDWt + petiole dry mass (PDWt)); LMA, LDWt/Area; L/PL, leaf length to petiole length; L/W, leaf length to width; N, leaf nitrogen content; N:P, leaf nitrogen content to phosphorus content ratio; P, leaf phosphorus content; x(c), ratio of distance from center of gravity to base to leaf length; γ, leaf perimeter (LP)2/Area. Different lowercase letters indicate significant differences among different species (p < 0.05).

新窗口打开| 下载CSV


对于不同灌木叶的N、P、K含量来讲, 酸枣叶中N、P、K含量最高, 火炬树叶的N含量最低, 荆条叶的P含量最低, 紫穗槐叶的K含量最低。单位质量的叶绿素含量与叶N含量有着良好的相关性(表2), 但是Chl a/b在不同物种间没有显著差异。

表2   5个暖温带灌木物种叶性状的Spearman相关性分析

Table 2  Spearman correlation analysis of leaf traits among five shrub species in warm temperate zone

LMAγL/WL/PLLBPNPKN:PChl aChl bChl a/bChl t
Area-0.0480.1680.525**-0.027-0.700**-0.600**0.096-0.814**-0.573**-0.172-0.089-0.134-0.146
LMA0.0710.425**0.281-0.2430.2690.1160.0980.170-0.083-0.2100.232-0.078
γ0.386**-0.486**-0.199-0.635**-0.400-0.1400.081-0.650**-0.575**-0.035-0.671**
L/W0.293-0.787**-0.367-0.050-0.490*-0.155-0.263-0.414*0.340-0.305
L/PL-0.446*0.579*0.4240.135-0.2620.557**0.425*0.3020.564**
LBP0.582*-0.1310.715**0.4910.1420.361-0.473*0.199
N0.3870.638**0.2800.722**0.4180.3250.689**
P0.118-0.704**0.480*0.3160.0970.423
K0.2810.2420.1890.2030.236
N:P-0.078-0.1560.156-0.051
Chl a0.796**0.1660.970**
Chl b-0.378*0.895**
Chl a/b-0.013

粗体表示相关具有显著性; *, p < 0.05; **, p < 0.01。Chl t,单位质量总叶绿素含量,其他性状的简称同表1

Bold indicates significant correlation; *, p < 0.05; **, p < 0.01. Chl t, the total chlorophyll content per unit mass, other abbreviations for traits see Table 1.

新窗口打开| 下载CSV


2.2 不同灌木叶生理性状的比较

不同物种的气体交换参数存在较大差异(图2)。与其他3个物种相比, 荆条和酸枣的气体交换参数值较低。紫穗槐的净光合速率、蒸腾速率和表观光能利用效率均显著高于其他物种(图2A、2B、2E), 但瞬时水分利用效率较低(图2D)。

图2

图2   5种暖温带灌木叶气体交换参数比较(平均值±标准误)。n = 4-8, 不同小写字母表示差异显著(p < 0.05)。

Fig. 2   Gas exchange parameters of the five shrub species in warm temperate zone (mean ± SE). n = 4-8, different lowercase letters indicate significant differences (p < 0.05). Ci, substomatal CO2 concentration; Gs, stomatal conductance; LUE, apparent light use efficiency; Pn, net photosynthesis rate; Tr, transpiration rate; WUE, water use efficiency.


图3可知, 5种灌木叶绿素荧光一天内测量时的温度无显著差异(p > 0.05), 但是光照情况略有不同。紫穗槐由于具有明显的叶运动现象, 中午接受的光合有效辐射减少, 实际量子产量上升, 非光化学淬灭较少(图3A、3C、3E)。其余4个物种在一天内均没有明显的叶运动, 相对而言, 荆条的实际量子产量比较高, 尤其是中午光照和温度都比较高时尤为明显(图3C), 而酸枣的正午实际量子产量最低, 与之相适应的是酸枣叶具有较强的非光化学淬灭系数。火炬树的电子传递能力以及非光化学淬灭系数均处于较高的水平。

图3

图3   5种暖温带灌木的叶绿素荧光日变化(平均值±标准误, n = 6)。ETR, 电子传递速率; NPQ, 非光化学淬灭系数; PAR, 光合有效辐射; T, 气温; Yield, 实际量子产量。

Fig. 3   Diurnal courses of chlorophyll fluorescence of the five shrub species in warm temperate zone (mean ± SE, n = 6). ETR, electron transport rate; NPQ, non photochemical quenching; PAR, photosynthetically active radiation; T, air temperature; Yield, actual quantum yield.


2.3 不同灌木生物量分配的比较

表3可知, 5种灌木的生物量分配情况存在显著差异。荆条、紫穗槐和火炬树的种子百粒质量小, 酸枣最大。荆条根冠比显著高于其他4个物种, 而叶生物量比最低; 火炬树与之相反, 叶生物量比最大, 但茎生物量比最低。小花扁担杆、酸枣和紫穗槐的根、茎、叶的分配比例差异不大。火炬树和荆条的侧根主根比大于5, 显著高于其他几个物种。紫穗槐和火炬树对分枝的投入为0, 但叶柄叶比显著高于其他几个物种。紫穗槐的总体支撑结构比显著高于其他的物种, 这与器官水平上的结果(表1)一致。

表3   暖温带5个灌木物种的各器官生物量分配(平均值±标准误)

Table 3  Different organs biomass partitioning of five shrub species in warm temperate zone (mean ± SE)

性状
Trait
荆条
Vitex negundo var.
heterophylla
酸枣
Ziziphus jujuba var.
spinosa
小花扁担杆
Grewia biloba var.
parviflora
紫穗槐
Amorpha fruticosa
火炬树
Rhus typhina
HSM (g)0.947 ± 0.013c17.095 ± 0.119a4.605 ± 0.025b0.833 ± 0.007c0.919 ± 0.010c
RMR0.295 ± 0.015a0.187 ± 0.014bc0.162 ± 0.020c0.218 ± 0.017b0.181 ± 0.018bc
SMR0.284 ± 0.014b0.328 ± 0.020 a0.328 ± 0.012a0.340 ± 0.005a0.179 ± 0.005c
LMR0.420 ± 0.008c0.485 ± 0.012b0.510 ± 0.009b0.442 ± 0.021c0.639 ± 0.019a
R/S0.422 ± 0.031a0.231 ± 0.020b0.196 ± 0.030b0.281 ± 0.027b0.224 ± 0.027b
BR/AR5.051 ± 0.209a1.184 ± 0.121b1.629 ± 0.329b1.842 ± 0.248b5.485 ± 0.596a
B/MS0.266 ± 0.053c0.772 ± 0.080b1.109 ± 0.103a0d0d
P/L0.094 ± 0.006c-0.038 ± 0.003d0.271 ± 0.013b0.308 ± 0.016a
STMR0.320 ± 0.016b0.328 ± 0.020b0.346 ± 0.012b0.434 ± 0.004a0.329 ± 0.010b

B/MS, 分枝生物量/主茎生物量; BR/AR, 侧根生物量/主根生物量; HSM, 种子百粒质量; LMR, 叶生物量/总生物量; P/L, 叶柄生物量/叶生物量; RMR, 根生物量/总生物量; R/S, 根生物量/(叶生物量+茎生物量); SMR, 茎生物量/总生物量; STMR, 支撑结构比例。不同小写字母表示物种之间存在显著差异(p < 0.05)。

B/MS, branch mass/main stem mass; BR/AR, branch root mass/axial root mass; HSM: mass of 100 seeds; LMR, leaf mass/total mass; P/L, petiole mass /lamina mass; RMR, root mass/total mass; R/S, root mass/shoot mass; SMR, stem mass/total mass; STMR, supporting structure mass ratio. Different lowercase letters indicate significant differences among different species (p < 0.05).

新窗口打开| 下载CSV


3 讨论

3.1 本地种和外来种的生长策略

本地种将更多的生物量分配给地下, 资源获取策略相对保守。这种缓慢投资方式使得本地种在资源贫瘠的生境中更具有优势。从气体交换特征来看, 荆条和酸枣属于低光合低蒸腾的物种, 这主要归结于两者的气孔导度比较低。气孔是植物体进行气体交换和水分进出的通道, 气孔导度对于CO2的扩散具有很强的限制作用, 进而对光合作用起到限制作用(Drake et al., 2017; 叶子飘等, 2021), 同时也限制了蒸腾失水(Flexas et al., 2016), 说明荆条和酸枣对于资源的利用保守。叶片的结构性状与生理性状往往具有良好的对应关系。比如具有高比叶质量的物种叶氮含量和相对生长速率一般比较低(Poorter et al., 2009; 张泽文等, 2021), 本地物种酸枣和荆条具有较高的比叶质量, 导致它的生长速率相对较慢。具有叶齿的叶片具有生长上的优势, 特别是当处于不利的环境中时(Xu et al., 2008), 因为它对热量具有高的传导能力, 从而使叶片温度降低保持生理活性(Xu et al., 2008), γ′用来表示叶片的分裂程度, 而本地种荆条的γ′要远高于其他物种。在生物量分配方面, 广泛分布的本地种荆条的根生物量比显著高于外来种火炬树和紫穗槐。本地种荆条较高的根冠比使其具有很强的抗干扰能力和干扰后的恢复能力(戴晓兵, 1989; Naidu & Delucia, 1997; 赵思金等, 2008), 这是其分布范围广的重要原因, 赵思金等(2008)对灌木与草混播的灌木根系分布的研究发现, 荆条在群落中根系分布量的平均值最大; 戴晓兵(1989)对怀柔山区荆条的研究也发现, 其根系的生物量占总生物量的55%以上,且发现荆条根系的最高生长速度出现在5-7月, 而枝条的最高生长速度在7-10月, 这说明荆条首先长根占据有利的地下空间, 这有利于当雨季到来气候转暖以后充分吸收养分供给地上部分的生长, 这种对根的优先分配也是植物一项重要的储存策略。种子质量能够反应植物的生殖策略, 不同植物的种子质量能够相差到11个数量级(Moles et al., 2005), 大的种子以质量取胜, 小的种子以数量取胜, 并且更有利于随风传播。这就涉及生态学中不同物种的生态对策问题, r对策者以提高增殖能力和扩散能力获得生存, 而K对策者以提高竞争能力获得优胜(孙儒泳等, 1993)。本研究发现, 本地种酸枣和小花扁担杆更倾向于K对策(表3), 而荆条更倾向于r对策。

相对于本地种, 大多数的外来种具有积极的生长策略和资源获取策略。外来种一般具有较高的比叶面积、叶片养分(如N和P)含量和叶绿素含量, 从而提高自身的光合能力, 加快生物量的积累来适应外界环境(Kumar et al., 2021)。本研究发现外来种紫穗槐和火炬树具有很强的光合能力, 尤其对于瞬时变化的光照具有很强的适应能力。紫穗槐属于高光合高蒸腾的物种, 这尽管可以提高物种的光能利用效率, 但是水分利用效率不高是一大缺陷。火炬树属于高光合低蒸腾的物种, 其不仅具有高的光能利用效率而且具有高的水分利用效率, 在保持较低蒸腾作用的情况下, 利用有限水分进行较高程度的光合作用, 对树木的生长发育来说是一种最为经济有效的方式(郑淑霞和上官周平, 2006)。叶柄具有支撑叶片、传导水分的作用, 紫穗槐这种粗短的叶柄可能更有利于支撑运动的叶片, 而火炬树几乎没有叶柄, 这有利于水分的传输, 这点从叶长与叶柄长的比值也可以证实。高的叶长叶宽比可以减小叶片边缘距中脉的平均距离, 对于提高叶片水分传导的效率和机械支持力都具有重要的意义(Niinemets et al., 2007)。叶脉与叶柄相连, 在叶片内部起着支撑叶片和传导水分的作用, 发达的中脉及其维管组织不仅有利于提高水分的输导效率, 同时对叶片抵御干旱和大风也有着重要意义(史刚荣等, 2006; Scoffoni et al., 2017)。本研究中, 紫穗槐对支撑结构的较大投入既有叶片尺度上的(表1)也有整株个体尺度上的(表3)。从叶片的层面上来说, 具有复叶的物种对支撑结构的投入比较大, 尤其是火炬树和紫穗槐; 而从个体的层面上来说, 将叶柄、分枝、茎这些支撑结构都加和以后, 紫穗槐的支撑结构投入明显高于其他几个物种, 这样的分配对于维持水分的传导以及叶片的运动都有着重要的意义。外来物种凭借优越的光合能力, 促进了地上生物量的积累。与本地种相比, 外来种紫穗槐和火炬树地上生物量分配更多。且在种子质量方面, 外来种紫穗槐和火炬树为r对策者, 两者种子的扩散能力都比较强, 这对于外来种能够入侵林下非常重要。

随着物种的耐阴能力增加, 叶片的大小增加, 比叶质量减小(Niinemets, 1998; 张云舒, 2017), 在5个物种中, 小花扁担杆的叶面积最大, 比叶质量最小。另外, 本研究发现小花扁担杆叶片Chl a/b要比其他4种低一些, 这也是阴生叶片的特征, 因为Chl b是捕光天线复合物的主要色素成分, 因此Chl a/b间接反映了捕光复合物的大小, 林下植物反应中心复合物小而捕光复合物大, 阳生植物与之相反, 所以阴生植物比阳生植物具有更低的Chl a/b (Chow et al., 1990)。这有利于提高林下植物对红光的有效吸收, 以保持光合系统之间的能量平衡(蒋高明, 2004)。Chl a/b与环境因子尤其是光照的关系更大, 遮阴下Chl a/b的降低可使植物更好利用遮阴环境中的漫射光, 有利于适应弱光环境(李晓征等, 2006)。从叶片生理角度看, 小花扁担杆正午过后荧光日变化的实际量子产量恢复值也比较慢, 这也说明了其叶片可能对于高光强的适应能力有限, 其叶片体现出来一些阴生性。总之, 小花扁担杆具有较大的叶片面积、较低的比叶质量和Chl a/b、缓慢的实际量子产量恢复能力, 说明其具有阴生物种的特性。

3.2 灌木层的演替趋势

物种特性影响了群落演替的进程。荆条和酸枣都是暖温带的喜光本地种, 而荆条的分布范围更广, 这与它较强的种子传播能力有关, 同时荆条采取将更多的生物量优先分配在地下根中储存的策略, 这保证了其在植被受干扰, 植物地上部分受到破坏后可以继续生存, 抵抗干扰能力较强(Crow, 1988; Naidu & Delucia, 1997), 这也是荆条在人为干扰严重的华北山区能够在灌木层占据优势的重要原因。植物的耐阴性影响着森林演替动态中的物种组成(Poorter & Rozendaal, 2008), 演替早期低比叶质量的快速生长物种逐渐会被演替后期高比叶质量的缓慢生长物种所代替(Poorter, 2009)。演替早期植物或先锋植物被认为具有许多阳生植物的特征, 演替后期或顶极群落植物则是对遮阴条件具有较强忍耐力的类群(公绪云等, 2018)。本研究发现, 作为伴生种的小花扁担杆体现出了一定的阴生性, 其叶面积大且Chl a/b低, 因此随着群落演替的进行, 小花扁担杆在暖温带灌木层物种中可能会占据更大的优势。因为早期演替物种比晚期演替植物有更大的适应能力(史刚荣等, 2006; 公绪云等, 2018), 史刚荣等(2006)认为牡荆(Vitex negundo var. cannabifolia)和酸枣叶片结构会随着群落演替进程发生变化, 说明它们不仅对恢复演替早期的干旱生境具有较强的适应性, 而且对演替后期的阴蔽条件也具有一定忍受力, 在植被恢复演替中具有重要作用。外来物种在资源丰富的生境中具有生长和繁殖优势。火炬树克隆繁殖力极强(Wang et al., 2008; Tan et al., 2018), 种群迅速增长, 对本地种造成严重威胁(Yuan et al., 2013; Du et al., 2017), 这与火炬树克隆分株的枝叶侧向生长快于树高生长有关, 这可以促使火炬树克隆分株快速占据灌草丛上层, 利于火炬树单优群落不断的向外缘扩散(张明如等, 2008)。尽管火炬树在造林方面有优势, 在荒山植被修复中发挥着重要的作用, 但在中国已被列为入侵物种(Wang et al., 2008), 在种植火炬树时应该采取更加保守的策略。在经过近一个世纪的栽植驯化以后, 发现外来种紫穗槐并没有对本地生态环境造成入侵, 反而因其优良的耐寒、耐旱、耐湿、抗风沙、抗逆性等优良品质成为了防风固沙、水土保持的常用植物(闫永庆等, 2008; Zhang et al., 2013), 广泛地种植于铁路和公路两旁。关于暖温带的灌木层物种在未来气候变化的条件下如何演变, 值得进一步探究。

4 结论

中国暖温带灌木2个外来种和3个本地种体现出了不同的生长和资源利用策略: (1)外来种火炬树和紫穗槐表现出很好的光合优越性, 对于瞬时变化的光强具有很强的适应能力。(2)本地种荆条和酸枣对资源的利用比较保守。小花扁担杆具有阴生性, 在灌木层演替后期的阴蔽条件下更具有生长优势。(3)良好的种子扩散能力和叶散热能力、保守的光能利用策略、较强的干扰后恢复能力是荆条成为中国暖温带地区广布优势种的重要原因。

参考文献

Cao JY, Liu JF, Yuan Q, Xu DY, Fan HD, Chen HY, Tan B, Liu LB, Ye D, Ni J (2020).

Traits of shrubs in forests and bushes reveal different life strategies

Chinese Journal of Plant Ecology, 44, 715-729.

DOI:10.17521/cjpe.2020.0024      URL     [本文引用: 1]

[ 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健 (2020).

森林与灌丛的灌木性状揭示不同的生活策略

植物生态学报, 44, 715-729.]

[本文引用: 1]

Chow WS, Melis A, Anderson JM (1990).

Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis

Proceedings of the National Academy of Sciences of the United States of America, 87, 7502-7506.

DOI:10.1073/pnas.87.19.7502      PMID:11607105      [本文引用: 1]

The efficiency of photosynthetic electron transport depends on the coordinated interaction of photosystem II (PSII) and photosystem I (PSI) in the electron-transport chain. Each photosystem contains distinct pigment-protein complexes that harvest light from different regions of the visible spectrum. The light energy is utilized in an endergonic electron-transport reaction at each photosystem. Recent evidence has shown a large variability in the PSII/PSI stoichiometry in plants grown under different environmental irradiance conditions. Results in this work are consistent with the notion of a dynamic, rather than static, thylakoid membrane in which the stoichiometry of the two photosystems is adjusted and optimized in response to different light quality conditions. Direct evidence is provided that photosystem stoichiometry adjustments in chloroplasts are a compensation strategy designed to correct unbalanced absorption of light by the two photosystems. Such adjustments allow the plant to maintain a high quantum efficiency of photosynthesis under diverse light quality conditions and constitute acclimation that confers to plants a significant evolutionary advantage over that of a fixed photosystem stoichiometry in thylakoid membranes.

Crow TR (1988).

Reproductive mode and mechanisms for self-replacement of northern red oak (Quercus rubra)―A review

Forest Science, 34, 19-40.

[本文引用: 1]

Dai XB (1989).

The seasonal dynamics of the biomass of Vitex shrubland in mountainous area of Huairou County in Beijing

Journal of Integrative Plant Biology, 31, 307-315.

[本文引用: 2]

[ 戴晓兵 (1989).

怀柔山区荆条灌丛生物量的季节动态

综合植物生理学, 31, 307-315.]

[本文引用: 2]

Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, et al. (2016).

The global spectrum of plant form and function

Nature, 529, 167-171.

DOI:10.1038/nature16489      URL     [本文引用: 1]

Drake JE, Power SA, Duursma RA, Medlyn BE, Aspinwall MJ, Choat B, Creek D, Eamus D, Maier C, Pfautsch S, Smith RA, Tjoelker MG, Tissue DT (2017).

Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: a comparison of model formulations

Agricultural and Forest Meteorology, 247, 454-466.

DOI:10.1016/j.agrformet.2017.08.026      URL     [本文引用: 1]

Du N, Tan XF, Li Q, Liu X, Zhang WX, Wang RQ, Liu J, Guo WH (2017).

Dominance of an alien shrub Rhus typhina over a native shrub Vitex negundo var. heterophylla under variable water supply patterns

PLOS ONE, 12, e0176491. DOI: 10.1371/journal.pone.0176491.

DOI:10.1371/journal.pone.0176491      [本文引用: 1]

Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas-Carbo M, Tomàs M, Niinemets Ü (2016).

Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants

Plant, Cell & Environment, 39, 965-982.

[本文引用: 1]

Funk JL (2013).

The physiology of invasive plants in low-resource environments

Conservation Physiology, 1, cot026. DOI: 10.1093/conphys/cot026.

DOI:10.1093/conphys/cot026      [本文引用: 1]

Gong XY, Rao XQ, Zhou LX, Wang XL, Zhu XL, Cai XA (2018).

Dynamics of shade tolerance, biomass and individual growth of five understory plant species in Eucalyptus urophylla plantations

Acta Ecologica Sinica, 38, 1124-1133.

[本文引用: 2]

[ 公绪云, 饶兴权, 周丽霞, 王晓玲, 朱小林, 蔡锡安 (2018).

尾叶桉林下5种植物的耐阴性、生物量及其个体消长

生态学报, 38, 1124-1133.]

[本文引用: 2]

Guo ZH, Zhu XW, Chen QW, Yang SN, Gong HD (2021).

Ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in main shrubs in central Yunnan

Journal of Forest and Environment, 41, 358-365.

[本文引用: 1]

[ 郭子豪, 朱秀雯, 陈钱炜, 杨双娜, 巩合德 (2021).

滇中地区主要灌丛碳氮磷生态化学计量特征

森林与环境学报, 41, 358-365.]

[本文引用: 1]

He NP, Liu CC, Zhang JH, Xu L, Yu GR (2018).

Perspectives and challenges in plant traits: from organs to communities

Acta Ecologica Sinica, 38, 6787-6796.

[本文引用: 1]

[ 何念鹏, 刘聪聪, 张佳慧, 徐丽, 于贵瑞 (2018).

植物性状研究的机遇与挑战: 从器官到群落

生态学报, 38, 6787-6796.]

[本文引用: 1]

Heilmeier H (2019).

Functional traits explaining plant responses to past and future climate changes

Flora, 254, 1-11.

DOI:10.1016/j.flora.2019.04.004      [本文引用: 1]

Climate change ("global warming") is expected to exert serious negative effects on biodiversity. Knowledge and understanding of non-anthropogenic climate changes in previous geological eras may improve predictions about ongoing trends. In this context plant functional traits can be useful tools - the ecotype variations and plasticity of morphological, physiological and developmental traits may help to determine which plants or plant groups might overcome present severely and rapidly changing environmental conditions. The mechanisms behind these trait-environment relationships will be relevant e.g. for a more realistic modelling of biogeochemical cycles and species distributions. In this Special Issue topics addressed above will be discussed in detail, grouped into the following sections: (1) Paleoclimate and paleovegetation, (2) Plant Silica and phytoliths, (3) Environmental gradients and intraspecific trait variation, (4) Experimental approaches to test effects of climate change on plant performance and functional traits, (5) Selection of traits - from empirical correlations to mechanistic responses, (6) Responses of plant functional traits and vegetation to global warming. Perspectives for future research on functional plant traits climate change are discussed for following fields: (i) Clear definition of relevant climate parameters, (ii) a more mechanistic approach for functional plant traits, (iii) intraspecific trait variation, (iv) plant functional traits with respect to disturbances, (v) transplant experiments using whole communities including soil environment, (vi) remote sensing (hyperspectral and LIDAR), (vii) more realistic approaches in vegetation modelling.

Hu HF, Wang ZH, Liu GH, Fu BJ (2006).

Vegetation carbon storage of major shrublands in China

Journal of Plant Ecology, 30, 539-544.

[本文引用: 2]

[ 胡会峰, 王志恒, 刘国华, 傅伯杰 (2006).

中国主要灌丛植被碳储量

植物生态学报, 30, 539-544.]

DOI:10.17521/cjpe.2006.0071      [本文引用: 2]

在广泛收集资料的基础上,利用植被平均碳密度方法,估算了我国6种主要灌丛植被的碳储量,并分析了其区域分布特征。主要结果如下:1) 6种灌丛植被总面积为15 462.64 ×104 hm2,总碳储量为1.68±0.12 Pg C(1 Pg=1015g),灌丛植被平均碳密度为10.88±0.77 Mg C&#8226;hm-2(1 Mg=106 g),不同植被类型差异较大,在5.92~17Mg C&#8226;hm-2之间波动。2) 从区域分布来看,西南3省(云南、贵州、四川)既是我国灌丛主要的分布地区之一,分布面积占6种灌丛总面积的23.5%,又是我国灌丛碳储量的主要储库,碳储量占整个6种灌丛碳储量的1/3(32.6%),适宜的水热条件决定了该地区的植被平均碳密度要高于全国平均水平。3) 与我国森林和草地的植被碳储量相比,这些灌丛碳储量相当于我国森林和草 地碳储量的27%~40%和36%~55%。

Jiang GM (2004). Physiological Plant Ecology. Higher Education Press, Beijing. 12.

[本文引用: 2]

[ 蒋高明 (2004). 植物生理生态学. 高等教育出版社, 北京. 12.]

[本文引用: 2]

Kattge J, Bönisch G, Díaz S, Lavorel S, Prentice IC, Leadley P, Tautenhahn S, Werner GDA, Aakala T, Abedi M, Acosta ATR, Adamidis GC, Adamson K, Aiba M, Albert CH, et al. (2020).

TRY plant trait database—Enhanced coverage and open access

Global Change Biology, 26, 119-188.

DOI:10.1111/gcb.14904      PMID:31891233      [本文引用: 2]

Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.© 2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Kumar M, Garkoti SC (2021).

Functional traits, growth patterns, and litter dynamics of invasive alien and co-occurring native shrub species of chir pine forest in the central Himalaya, India

Plant Ecology, 222, 723-735.

DOI:10.1007/s11258-021-01140-6      URL     [本文引用: 2]

Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JHC, Gourlet-Fleury S, et al. (2016).

Plant functional traits have globally consistent effects on competition

Nature, 529, 204-207.

DOI:10.1038/nature16476      URL     [本文引用: 1]

Li XZ, Hao RM, Ren Y (2006).

Effects of shading on growth and photosynthetic characteristics of Daphniphyllum macropodum in different ages

Guihaia, 26, 499-502.

[本文引用: 1]

[ 李晓征, 郝日明, 任燕 (2006).

遮荫处理对不同苗龄交让木的生长和光合特性的影响

广西植物, 26, 499-502.]

[本文引用: 1]

Li YQ, Wang ZH (2021).

Leaf morphological traits: ecological function, geographic distribution and drivers

Chinese Journal of Plant Ecology, 1154-1172.

[本文引用: 1]

[ 李耀琪, 王志恒 (2021).

植物叶形态的生态功能、地理分布与成因

植物生态学报, 45, 1154-1172.]

DOI:10.17521/cjpe.2020.0405      [本文引用: 1]

叶片是植物与环境进行水气交换的重要场所, 形态多变。叶片形态可直接影响植物的生理生化过程, 反映植物的资源获取策略。该文以叶片大小、叶形、叶缘特征(有无叶齿)和叶型(单、复叶)等形态性状为例, 总结了当前叶片形态的研究进展, 分析了叶形态性状的生态功能, 综述叶片形态的地理分布, 探讨叶片形态性状变化的驱动因素及其对生态系统功能的影响。现有研究主要聚焦于局域尺度的特定类群, 关注叶大小、叶缘具齿性以及叶型的地理分布与生态成因, 发现叶片的形态发育受基因调控, 叶形态性状与其他性状相互权衡, 其空间变异受气温和降水量共同驱动。以叶大小为代表的叶片形态性状影响水分和养分循环, 能够反映气候变化下的群落响应, 也可用于预测生态系统初级生产力。今后应结合新方法获得覆盖度高且区域无偏的数据, 探索叶形态在长时间尺度上的适应性进化, 研究叶形态特征及其对生态系统功能影响的尺度推绎。该文有助于从叶片的角度认识植物对环境变化的响应, 以性状为桥梁将个体适合度、群落动态与生态系统功能联系起来, 能够加深对植物群落生态学和功能生物地理学等相关领域研究进展的了解。

Liu XJ, Ma KP (2015).

Plant functional traits—Concepts, applications and future directions

Scientia Sinica (Vitae), 45, 325-339.

[本文引用: 1]

[ 刘晓娟, 马克平 (2015).

植物功能性状研究进展

中国科学: 生命科学, 45, 325-339.]

[本文引用: 1]

Lusk CH, Grierson ERP, Laughlin DC (2019).

Large leaves in warm, moist environments confer an advantage in seedling light interception efficiency

New Phytologist, 223, 1319-1327.

DOI:10.1111/nph.15849      PMID:30985943      [本文引用: 1]

Leaf size varies conspicuously along environmental gradients. Small leaves help plants cope with drought and frost, because of the effect of leaf size on boundary layer conductance; it is less clear what advantage large leaves confer in benign environments. We asked if large leaves give species of warm climates an advantage in seedling light interception efficiency over small-leaved species from colder environments. We measured seedling leaf, architectural and biomass distribution traits of 18 New Zealand temperate rainforest evergreens; we then used a 3-D digitiser and the Yplant program to model leaf area display and light interception. Species associated with mild climates on average had larger leaves and larger specific leaf areas (SLA) than those from cold climates, and displayed larger effective foliage areas per unit of aboveground biomass, indicating higher light interception efficiency at whole-plant level. This reflected differences in total foliage area, rather than in self-shading. Our findings advance the understanding of leaf size by showing that large leaves enable seedlings of species with highly conductive (but frost-sensitive) xylem to deploy large foliage areas without increasing self-shading. Leaf size variation along temperature gradients in humid forests may therefore reflect a trade-off between seedling light interception efficiency and susceptibility to frost.© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.

Ma J, Liu XD, He XL, Wang SL, He YY, Wu XR, Zhao JZ, Ma XE (2021).

Structural characteristics and diversity of typical shrub communities in Qilian Mountains

Arid Land Geography, 44, 1427-1437.

[本文引用: 1]

[ 马剑, 刘贤德, 何晓玲, 王顺利, 贺永岩, 武秀荣, 赵晶忠, 马雪娥 (2021).

祁连山典型灌丛群落结构特征及其多样性研究

干旱区地理, 1427-1437.]

[本文引用: 1]

Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Westoby M (2005).

A brief history of seed size

Science, 307, 576-580.

DOI:10.1126/science.1104863      PMID:15681384      [本文引用: 1]

Improved phylogenies and the accumulation of broad comparative data sets have opened the way for phylogenetic analyses to trace trait evolution in major groups of organisms. We arrayed seed mass data for 12,987 species on the seed plant phylogeny and show the history of seed size from the emergence of the angiosperms through to the present day. The largest single contributor to the present-day spread of seed mass was the divergence between angiosperms and gymnosperms, whereas the widest divergence was between Celastraceae and Parnassiaceae. Wide divergences in seed size were more often associated with divergences in growth form than with divergences in dispersal syndrome or latitude. Cross-species studies and evolutionary theory are consistent with this evidence that growth form and seed size evolve in a coordinated manner.

Naidu SL, DeLucia EH (1997).

Growth, allocation and water relations of shade-grown Quercus rubra L. saplings exposed to a late-season canopy gap.

Annals of Botany, 80, 335-344.

DOI:10.1006/anbo.1996.0446      URL     [本文引用: 2]

Niinemets Ü (1998).

Are compound-leaves woody species inherently shade-intolerant? An analysis of species ecological requirements and foliar support costs

Plant Ecology, 134, 1-11.

DOI:10.1023/A:1009773704558      URL     [本文引用: 1]

Niinemets Ü, Portsmuth A, Tobias M (2007).

Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation?

Functional Ecology, 21, 28-40.

[本文引用: 1]

Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams JM, Correa E, Currano ED, Erickson JM, Hinojosa LF, Hoganson JW, et al. (2011).

Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications

New Phytologist, 190, 724-739.

DOI:10.1111/j.1469-8137.2010.03615.x      PMID:21294735      [本文引用: 1]

• Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies. • Here we quantify leaf-climate correlations from 92 globally distributed, climatically diverse sites, and explore potential confounding factors. Multiple linear regression models for mean annual temperature (MAT) and mean annual precipitation (MAP) are developed and applied to nine well-studied fossil floras. • We find that leaves in cold climates typically have larger, more numerous teeth, and are more highly dissected. Leaf habit (deciduous vs evergreen), local water availability, and phylogenetic history all affect these relationships. Leaves in wet climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP models offer moderate improvements in precision over univariate approaches (± 4.0 vs 4.8°C for MAT) and strong improvements in accuracy. For example, our provisional MAT estimates for most North American fossil floras are considerably warmer and in better agreement with independent paleoclimate evidence. • Our study demonstrates that the inclusion of additional leaf traits that are functionally linked to climate improves paleoclimate reconstructions. This work also illustrates the need for better understanding of the impact of phylogeny and leaf habit on leaf-climate relationships.© 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

Poorter L (2009).

Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests

New Phytologist, 181, 890-900.

DOI:10.1111/j.1469-8137.2008.02715.x      PMID:19140935      [本文引用: 3]

Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found in forests under different climatic control. Here, adult leaf and metamer traits were measured for 39 tree species from a tropical moist semi-evergreen forest (1580 mm rain yr(-1)) and 41 species from a dry deciduous forest (1160 mm yr(-1)) in Bolivia. Twenty-six functional traits were measured and related to species regeneration light requirements.Adult leaf traits were clearly associated with shade tolerance. Different, rather than stronger, shade adaptations were found for moist compared with dry forest species. Shade adaptations exclusively found in the evergreen moist forest were related to tough and persistent leaves, and shade adaptations in the dry deciduous forest were related to high light interception and water use.These results suggest that, for forests differing in rainfall seasonality, there is a shift in the relative importance of functional leaf traits and performance trade-offs that control light partitioning. In the moist evergreen forest leaf traits underlying the growth-survival trade-off are important, whereas in the seasonally deciduous forest leaf traits underlying the growth trade-off between low and high light might become important.

Poorter L, Rozendaal DMA (2008).

Leaf size and leaf display of thirty-eight tropical tree species

Oecologia, 158, 35-46.

DOI:10.1007/s00442-008-1131-x      PMID:18719946      [本文引用: 1]

Trees forage for light through optimal leaf display. Effective leaf display is determined by metamer traits (i.e., the internode, petiole, and corresponding leaf), and thus these traits strongly co-determine carbon gain and as a result competitive advantage in a light-limited environment. We examined 11 metamer traits of sun and shade trees of 38 coexisting moist forest tree species and determined the relative strengths of intra- and interspecific variation. Species-specific metamer traits were related to two variables that represent important life history variation; the regeneration light requirements and average leaf size of the species. Metamer traits varied strongly across species and, in contrast to our expectation, showed only modest changes in response to light. Intra- and interspecific responses to light were only congruent for a third of the traits evaluated. Four traits, amongst which leaf size, specific leaf area (SLA), and leaf area ratio at the metamer level (LAR) showed even opposite intra- and interspecific responses to light. Strikingly, these are classic traits that are thought to be of paramount importance for plant performance but that have completely different consequences within and across species. Sun trees of a given species had small leaves to reduce the heat load, but light-demanding species had large leaves compared to shade-tolerants, probably to outcompete their neighbors. Shade trees of a given species had a high SLA and LAR to capture more light in a light-limited environment, whereas shade-tolerant species have well-protected leaves with a low SLA compared to light-demanding species, probably to deter herbivores and enhance leaf lifespan. There was a leaf-size-mediated trade-off between biomechanical and hydraulic safety, and the efficiency with which species can space their leaves and forage for light. Unexpectedly, metamer traits were more closely linked to leaf size than to regeneration light requirements, probably because leaf-size-related biomechanical and vascular constraints limit the trait combinations that are physically possible. This suggests that the leaf size spectrum overrules more subtle variation caused by the leaf economics spectrum, and that leaf size represents a more important strategy axis than previously thought.

Sack L, Frole K (2006).

Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees

Ecology, 87, 483-491.

PMID:16637372      [本文引用: 1]

The hydraulic resistance of the leaf (R1) is a major bottleneck in the whole plant water transport pathway and may thus be linked with the enormous variation in leaf structure and function among tropical rain forest trees. A previous study found that R1 varied by an order of magnitude across 10 tree species of Panamanian tropical lowland rain forest. Here, correlations were tested between R1 and 24 traits relating to leaf venation and mesophyll structure, and to gross leaf form. Across species, R1 was related to both venation architecture and mesophyll structure. R1 was positively related to the theoretical axial resistivity of the midrib, determined from xylem conduit numbers and dimensions, and R1 was negatively related to venation density in nine of 10 species. R1 was also negatively related to both palisade mesophyll thickness and to the ratio of palisade to spongy mesophyll. By contrast, numerous leaf traits were independent of R1, including area, shape, thickness, and density, demonstrating that leaves can be diverse in gross structure without intrinsic trade-offs in hydraulic capacity. Variation in both R1-linked and R1-independent traits related strongly to regeneration irradiance, indicating the potential importance of both types of traits in establishment ecology.

Scoffoni C, Albuquerque C, Brodersen CR, Townes SV, John GP, Cochard H, Buckley TN, McElrone AJ, Sack L (2017).

Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline

New Phytologist, 213, 1076-1092.

DOI:10.1111/nph.14256      PMID:27861926      [本文引用: 1]

Ecosystems worldwide are facing increasingly severe and prolonged droughts during which hydraulic failure from drought-induced embolism can lead to organ or whole plant death. Understanding the determinants of xylem failure across species is especially critical in leaves, the engines of plant growth. If the vulnerability segmentation hypothesis holds within leaves, higher order veins that are most terminal in the plant hydraulic system should be more susceptible to embolism to protect the rest of the water transport system. Increased vulnerability in the higher order veins would also be consistent with these experiencing the greatest tensions in the plant xylem network. To test this hypothesis, we combined X-ray micro-computed tomography imaging, hydraulic experiments, cross-sectional anatomy and 3D physiological modelling to investigate how embolisms spread throughout petioles and vein orders during leaf dehydration in relation to conduit dimensions. Decline of leaf xylem hydraulic conductance (K ) during dehydration was driven by embolism initiating in petioles and midribs across all species, and K vulnerability was strongly correlated with petiole and midrib conduit dimensions. Our simulations showed no significant impact of conduit collapse on K decline. We found xylem conduit dimensions play a major role in determining the susceptibility of the leaf water transport system during strong leaf dehydration.© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

Shi GR, Tang Y, Zhang Z (2006).

Leaf anatomy of dominant plant species in the successional communities of Xiangshan Moutnain, Huaibei, China

Journal of Plant Ecology (Formerly Acta Phyloecologica Sinica), 30, 314-322.

[本文引用: 3]

[ 史刚荣, 汤盈, 张铮 (2006).

淮北相山恢复演替群落优势树种叶片的生态解剖

植物生态学报, 30, 314-322.]

DOI:10.17521/cjpe.2006.0042      [本文引用: 3]

对淮北相山混交林5个优势种叶片的生态解剖学观察表明,其叶片结构具有一定的旱生特征:表皮具发达的表皮毛或角质层,全栅等面叶或具发达的栅栏组织,维管组织发达。牡荆(Vitex negundo var. cannabifolia)和酸枣(Ziziphus jujuba var. spinosa)作为两个广布优 势树种,叶片结构表现出很大的可塑性:1)同一群落环境(混交林)中,叶片结构随着季节的变化表现出发育可塑性(5月初的叶片比9月中旬更具有阳生叶的特点);2)不同恢复 演替阶段的群落中,叶片结构随着群落环境的变化表现出环境可塑性,其变化趋势为:灌草丛(旱生/阳生)灌丛(旱生/阳生)落叶疏林(中生/阳生)人工侧柏(Platyclad us orientalis)林(中生/阴生)。这种可塑性既是植物适应其异质生境的一种重要机制,同时又是不同群落环境的反映。非参数相关分析表明,牡荆和酸枣的叶片结构受多个生态因子综合影响,其中水分和风速是影响叶片结构的主导因子。叶片的上表皮角质层厚度、气孔器密度、栅栏组织厚度 、叶片厚度、木质部厚度、韧皮部厚度、维管束厚度等性状均与土壤含水量和空气相对湿度呈显著负相关,与风速呈显著正相关。

Sun RY, Li B, Zhuge Y, Shang YC (1993). General Ecology. Higher Education Press, Beijing. 10.

[本文引用: 1]

[ 孙儒泳, 李博, 诸葛阳, 尚玉昌 (1993). 普通生态学. 高等教育出版社, 北京. 10.]

[本文引用: 1]

Tan XF, Guo X, Guo WH, Liu SN, Du N (2018).

Invasive Rhus typhina invests more in height growth and traits associated with light acquisition than do native and non-invasive alien shrub species

Trees, 32, 1103-1112.

DOI:10.1007/s00468-018-1698-8      URL     [本文引用: 2]

Wang GM, Jiang GM, Yu SL, Li YH, Liu H (2008).

Invasion possibility and potential effects of Rhus typhina on Beijing municipality

Journal of Integrative Plant Biology, 50, 522-530.

DOI:10.1111/j.1744-7909.2008.00660.x      URL     [本文引用: 2]

Wang WB, Wang RF, Lei YB, Liu C, Han LH, Shi XD, Feng YL (2013). High resource capture and use efficiency and prolonged growth season contribute to invasiveness of Eupatorium adenophorum. Plant Ecology, 214, 857-868.

[本文引用: 1]

Westoby M, Jurado E, Leishman M (1992).

Comparative evolutionary ecology of seed size

Trends in Ecology & Evolution, 7, 368-372.

DOI:10.1016/0169-5347(92)90006-W      URL     [本文引用: 1]

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004).

The worldwide leaf economics spectrum

Nature, 428, 821-827.

DOI:10.1038/nature02403      URL     [本文引用: 2]

Xu F, Guo WH, Xu WH, Wang RQ (2008). Habitat effects on leaf morphological plasticity in Quercus acutissima. Acta Biologica Cracoviensia Series Botanica, 50, 19-26.

[本文引用: 2]

Yan YQ, Zhu H, Liu XL, Shi XC, Zu YG (2008).

Effect of salt stress on Amorpha fruticosa L. growth and physiological index

Journal of Northeast Agricultural University, 39(12), 31-35.

[本文引用: 1]

[ 闫永庆, 朱虹, 刘兴亮, 石溪婵, 祖元刚 (2008).

盐胁迫对紫穗槐生长发育及生理特性的影响

东北农业大学学报, 39(12), 31-35.]

[本文引用: 1]

Ye ZP, Yu F, An T, Wang FB, Kang HJ (2021).

Investigation on CO2-response model of stomatal conductance for plants

Chinese Journal of Plant Ecology, 45, 420-428.

DOI:10.17521/cjpe.2020.0326      URL     [本文引用: 1]

[ 叶子飘, 于冯, 安婷, 王复标, 康华靖 (2021).

植物气孔导度对CO2响应模型的构建

植物生态学报, 45, 420-428.]

[本文引用: 1]

Yuan YF, Guo WH, Ding WJ, Du N, Luo YJ, Liu J, Xu F, Wang RQ (2013).

Competitive interaction between the exotic plant Rhus typhina L. and the native tree Quercus acutissima Carr. in Northern China under different soil N:P ratios

Plant and Soil, 372, 389-400.

DOI:10.1007/s11104-013-1748-3      URL     [本文引用: 1]

Zhang CH, Zheng YQ, Li JL, Yan HP, Wang L (2005).

Dispersal of staghorn sumac in Beijing areas

Acta Ecologica Sinica, 25, 978-985.

[本文引用: 1]

[ 张川红, 郑勇奇, 李继磊, 阎海平, 王玲 (2005).

北京地区火炬树的萌蘖繁殖扩散

生态学报, 25, 978-985.]

[本文引用: 1]

Zhang MR, Wen GS, Yan WH, Hou P, Zhai MP, Zhang J (2008).

Growth strategy of Rhus typhina clonal ramets in the hilly area of the Taihang Mountains

Journal of Zhejiang Forestry College, 25, 282-288.

[本文引用: 1]

[ 张明如, 温国胜, 颜文洪, 侯平, 翟明普, 张瑾 (2008).

太行山低山丘陵区火炬树克隆分株的生长策略

浙江林学院学报, 25, 282-288.]

[本文引用: 1]

Zhang SR (1999).

A discussion on chlorophyll fluorescence kinetics parameters and their significance

Chinese Bulletin of Botany, 16, 444-448.

[本文引用: 1]

[ 张守仁 (1999).

叶绿素荧光动力学参数的意义及讨论

植物学通报, 16, 444-448.]

[本文引用: 1]

Zhang XR, Tan XF, Wang RQ, Xu NN, Guo WH (2013).

Effects of soil moisture and light intensity on ecophysiological characteristics of Amorpha fruticosa seedlings

Journal of Forestry Research, 24, 293-300.

DOI:10.1007/s11676-013-0352-y      URL     [本文引用: 1]

Zhang YS (2017). Seasonal Variation in Leaf Functional Traits and Its Ecolgocial Significance: a Case Study with Major Woody Species from Tiantong Subtropical Evergreen Forest. PhD dissertation, Nanjing University, Nanjing. 105-157.

[本文引用: 1]

[ 张云舒 (2017). 天童亚热带常绿阔叶林主要物种叶生活史对策研究. 博士学位论文, 南京大学, 南京. 105-157.]

[本文引用: 1]

Zhao SJ, Han LB, Song GL, Zhang YX, Zhang CH (2008).

Study on Root distribution of four species of shrub in artificial shrub and grass mixture communities

Acta Botanica Boreali-Occidentalia Sinica, 28, 4799-4804.

[本文引用: 2]

[ 赵思金, 韩烈保, 宋桂龙, 张咏新, 张才厚 (2008).

不同人工灌木与草混播群落中4种灌木根系分布的研究

西北植物学报, 28, 4799-4804.]

[本文引用: 2]

Zheng SX, Shangguan ZP (2006).

Comparison of leaf gas exchange and chlorophyll fluorescence parameters in eight broad-leaved tree species

Acta Ecologica Sinica, 26, 1080-1087.

[本文引用: 1]

[ 郑淑霞, 上官周平 (2006).

8种阔叶树种叶片气体交换特征和叶绿素荧光特性比较

生态学报, 26, 1080-1087.]

[本文引用: 1]

Zhang ZE, Wu LQ, Sun H, Wen S, Li FR, Liu Q (2021).

Canopy weight than leaf weight in young Larix olgensis plantations

Chinese Journal of Applied Ecology, 32, 2729-2736.

[本文引用: 1]

[ 张泽文, 武莉琴, 孙赫, 温烁, 李凤日, 刘强 (2021).

人工长白落叶松幼龄林树冠比叶重

应用生态学报, 32, 2729-2736.]

DOI:10.13287/j.1001-9332.202108.002      [本文引用: 1]

比叶重(LMA)是构建生态系统过程模型的重要参数之一,准确预测树冠比叶重的动态变化对提高模型精度有重要意义。本研究以黑龙江省尚志市帽儿山林场人工长白山落叶松为对象,分别在生长季针叶不同发育时期对树冠内不同垂直位置的针叶比叶重进行测量,分析针叶比叶重在树冠垂直方向及针叶不同发育时期的变化规律,探讨导致其时间和空间差异的主要因子,建立长白落叶松幼龄林比叶重动态预估模型。结果表明: 比叶重在树冠垂直方向表现为随着相对着枝深度(RDINC)的增加而减小,完全展叶后比叶重在垂直方向的变化幅度明显高于展叶初期。比叶重在不同发育时期表现为随发育进程先增大后趋于稳定,该趋势随着树冠深度的增加而逐渐减弱。分别以RDINC和年度积日(DOY)为单一变量预测比叶重时,模型的调整后决定系数(R<sub>a</sub><sup>2</sup>)低于0.6,当同时以RDINC和DOY为自变量构建比叶重预估模型时,R<sub>a</sub><sup>2</sup>提高0.19,且模型检验效果良好(ME=0.54 g·m<sup>-2</sup>, MAE=5.74 g·m<sup>-2</sup>)。研究表明长白落叶松比叶重在树冠不同轮层和不同针叶发育期间均存在显著差异,以RDINC和DOY为自变量构建的比叶重预测模型可以很好描述长白落叶松比叶重的空间及生长季针叶发育期变化,为阐明树冠发育机理提供理论依据,为提高生态过程模型精度奠定基础。

/