阔叶红松林3种阔叶树种柄叶性状变异与相关性
Variations and correlations of lamina and petiole traits of three broadleaved species in a broadleaved Korean pine forest
通讯作者: *(liuzl2093@126.com)
编委: 郝占庆
责任编辑: 乔鲜果
收稿日期: 2022-01-27 接受日期: 2022-03-29
基金资助: |
|
Corresponding authors: *(liuzl2093@126.com)
Received: 2022-01-27 Accepted: 2022-03-29
Fund supported: |
|
叶包括叶片和叶柄, 二者在结构和功能上密切相关, 探究叶片性状和叶柄性状变异及性状间相关关系的影响因素对了解植物叶水平上的生物量分配策略具有重要意义。该研究以阔叶红松(Pinus koraiensis)林内3种主要阔叶树种白桦(Betula platyphylla)、紫椴(Tilia amurensis)、五角枫(Acer pictum subsp. mono)为研究对象, 每个树种选取小树(胸径: 1-6 cm)、中等树(胸径: 15-20 cm)、大树(胸径: 35-45 cm)各10株样树; 另针对大树, 考虑取样冠层位置对其结果的影响。通过测定叶片面积、叶片干质量、叶柄长和叶柄干质量, 主要探讨树种、植株大小和冠层位置(大树)对叶片性状和叶柄性状变异及其性状间相关性的影响。结果显示: (1)树种和植株大小对4个性状均存在显著影响, 3个树种小树的叶柄长和叶柄干质量显著小于大树, 紫椴和五角枫小树的叶片干质量也显著小于大树, 而白桦和紫椴小树的叶片面积显著大于大树; 对于大树, 冠层位置对4个性状变异的影响因树种而异。(2)叶片性状和叶柄性状表现为显著的异速生长关系, 且3个树种的回归斜率为紫椴>白桦>五角枫; 在白桦不同植株大小间的回归斜率为小树>大树>中等树, 而紫椴和五角枫大树的回归斜率最大; 对于大树, 在不同冠层位置叶片性状和叶柄性状间的相关关系存在共同斜率。研究结果表明叶片性状和叶柄性状的变异及其相关关系受树种和植株大小的显著影响, 冠层位置对大树柄叶性状变异及相关关系的影响则相对较小。
关键词:
Aims The lamina and petiole of a leaf are closely related in structure and function, of which the variation and correlation are important for understanding the strategies of biomass allocation at the leaf level.
Methods In this study, we sampled Betula platyphylla, Tilia amurensisand Acer pictum subsp. mono in a broadleaved Korean pine (Pinus koraiensis) forest in Northeast China and explored effects of species, tree size and canopy position on variations in and correlations between lamina and petiole traits. For each species, we selected 10 trees for small (diameter at breast height (DBH): 1-6 cm), intermediate (DBH: 15-20 cm), and large sizes (DBH: 35-45 cm), respectively. For the large-sized trees, we took canopy position into account. We measured lamina area (LA), lamina dry mass (LDM), petiole length (PL), and petiole dry mass (PDM).
Important findings (1) The four traits significantly varied with species and tree size. PL and PDM of the small trees were significantly lower than those of large trees for the three species. LDM of the small trees was significantly less than that of the large trees for T. amurensis and A. pictum subsp. mono, while LA of the small trees was significantly greater than that of the large trees for B. platyphyllaand T. amurensis. For the large trees, the effect of canopy position on the variations in the four traits was species-depended. (2) There was a significant allometric scaling relationship between the lamina and petiole traits for all the three species. The regression slopes ranked as T. amurensis > B. platyphylla> A. pictum subsp. mono; the slopes for B. platyphyllaranked as small size > large size > intermediate size, while the slopes for the large-sized trees were the greatest among different tree sizes for T. amurensisand A. pictum subsp. mono. Canopy position had no significant effect on the regression slope for the large-sized trees. These results showed that species and tree size significantly influenced the variations in and correlations between the lamina and petiole traits for the three temperate tree species, while canopy position had little effect for the large-sized trees.
Keywords:
引用本文
李露, 金光泽, 刘志理.
LI Lu, JIN Guang-Ze, LIU Zhi-Li.
叶是植物进行光合作用获取碳的主要器官和能量转换器, 一个完整的阔叶通常由叶片和叶柄两部分组成, 叶片可以拦截光并为光合作用提供场所(Blonder et al., 2011; Fajardo et al., 2020; Baird et al., 2021); 叶柄可以调节叶片的空间位置, 提供生物力学支撑和承担水分运输功能(Poorter & Rozendaal, 2008)。作为植物与环境连接的重要纽带, 叶性状随光照、水分等资源的不同而发生变化(Gspaltl et al., 2013; Osnas et al., 2018), 同时叶的大小也会影响植物的适应能力和竞争能力。尽管有不少研究描述了叶性状沿海拔、纬度、季节、冠层等尺度的变异(Weerasinghe et al., 2014; 杨继鸿等, 2019; Dong et al., 2020), 但近年来才开始关注叶内组成部分(叶片和叶柄)间的生长关系(Price & Weitz, 2012; 潘少安等, 2015)。
叶片和叶柄在结构及功能上密切相关。由于叶片的光截留经济学和叶柄的机械生物力学要求, 叶片的增大必然会增加叶柄上的生物量投资(Niinemets et al., 2006; Xiang et al., 2009)。不同大小的叶通过改变叶柄长度来减少个体内部对光的相互遮挡以进行有效的光捕捉(Takenaka, 1994; 潘少安等, 2015), 自遮阴大小和机械需求会不成比例地随着叶片大小的增加而增加(Xiang et al., 2009), 因此大叶片通常会比小叶片有更大比例的叶柄投资(Pickup et al., 2005)。以往对叶水平上生物量分配策略的研究表明叶片和叶柄之间具有异速生长关系(Li et al., 2008; 祝介东等, 2011; Price & Weitz, 2012), 这是植物叶性状间优化的标志性证据之一。尽管叶性状之间的关系已被前人研究所证明, 但影响叶片性状和叶柄性状变异的原因以及引起它们之间生长关系变化的因素仍不清晰。
种间变异和种内变异共同驱动叶性状的变异。结合种间变异和种内变异可以反映出物种对环境变化和资源竞争的响应(Albert et al., 2010; Plourde et al., 2015)。种间变异是自然群落中物种共存的基础(Díaz et al., 2016), 以往研究也更多关注性状的种间变异(Niklas et al., 2007; Dong et al., 2020), 叶习性和耐阴性是引起叶性状种间变异的核心因素(Lusk et al., 2008; 唐青青等, 2016)。然而, 近期研究表明种内变异也不容忽视, 可占性状总变异的25%以上(Albert et al., 2010)。种内变异通常包括个体间变异和个体内变异, 不同的植株大小和生境等因素可引起个体间变异(Poorter et al., 2006; 姚婧等, 2013; Dayrell et al., 2018), 然而有研究表明在局域尺度上, 环境因素对性状的影响程度远小于植株大小(Liu et al., 2020; 于青含等, 2020); 在个体内, 叶性状的变异主要源于叶着生的冠层位置以及方向的差异(Koike et al., 2001; Niinemets et al., 2015; 金明月等, 2018)。尽管引起叶性状变异的因素很多, 但对叶片性状和叶柄性状及其相关关系的系统研究还尚少。
不同大小的植株生长状况不同, 光环境和水胁迫随树高的变化对叶大小具有重要影响(Osada et al., 2002)。较高的植株可以获得更多的光, 但同时水分运输和遭受风拉拽的压力也会增大(Gspaltl et al., 2013)。随树高增加, 支持结构的导管直径会增大(Fajardo et al., 2020), 植物需要在叶柄上投入更多的生物量来保持机械稳定性(Galia Selaya et al., 2008)。小树通常生长在阴蔽的环境中, 为捕获更多的光会投资于叶面积的增大, 一般而言, 小树比大树具有更大的叶面积(姚婧等, 2013; Dayrell et al., 2018)。虽然叶性状在不同大小的植株个体间存在差异, 但叶片性状和叶柄性状在不同植株大小个体间的相关关系却很少被揭示。
在大树个体内, 冠层位置是叶光捕获和机械稳定性的重要决定因素(Poorter et al., 2006), 植株利用冠层的垂直高度形成了与光有效性、风速和水汽压相关的异质性环境, 从而影响叶片的光合作用和蒸腾作用(Pollastrini et al., 2017)。位于冠层上部的叶会遮蔽下部和内部的叶, 上部的叶适应强光且呼吸作用和光合能力均较高(Weerasinghe et al., 2014; Niinemets et al., 2015); 随冠层深度的增加光穿透率显著下降, 冠层下部的叶光截留效率随光利用率的降低而降低(Weerasinghe et al., 2014), 冠层内光照的局部变化会影响叶性状(Koike et al., 2001), 叶片面积、叶片质量和叶片厚度随冠层内光利用率的增加而增加已被众多研究所证明(Niinemets et al., 2015)。对于不同生长策略的物种, 在其冠层内均存在一个光梯度的性状响应谱, 但对不同冠层位置叶柄性状变异以及叶片性状和叶柄性状间相关关系的研究尚未见报道。
本研究以小兴安岭阔叶红松(Pinus koraiensis)林内3种主要落叶单叶乔木为研究对象, 分别为: 白桦(Betula platyphylla)、紫椴(Tilia amurensis)和五角枫(Acer pictum subsp. mono)。针对每个树种的小树、中等树、大树各选择10株样树; 对于大树, 将树冠从树冠顶端到第一活枝高平均分成上、中、下3层。测定指标包括叶片面积、叶片干质量、叶柄长和叶柄干质量, 其中用叶片面积、叶片干质量表征叶片大小, 叶柄长、叶柄干质量表征叶柄大小。本研究旨在探讨以下问题: 1)在树种间, 叶片和叶柄性状及其相关关系是否存在显著差异? 2)在个体间随着植株大小的变化, 叶片和叶柄性状是否存在显著差异? 对于大树, 在个体内随冠层位置的改变, 叶片和叶柄性状是否也存在显著差异? 植株大小对叶片和叶柄性状的影响是否会大于冠层位置? 3)不同大小的植株叶片性状和叶柄性状间是保持固定的异速生长状态还是发生了异速生长状态的变化? 同样, 在大树的不同冠层位置叶片性状和叶柄性状间的相关关系是否会发生变化?
1 材料和方法
1.1 研究区概况
研究地点(47.17° N, 128.88° E)位于黑龙江凉水国家级自然保护区, 保护区位于小兴安岭南坡, 森林总蓄积量为188万m3, 地带性植被是阔叶红松混交林。海拔280-707 m, 平均坡度10°-15°, 属于低山丘陵地貌。气候类型为温带大陆性季风气候。年平均气温-0.3 ℃, 年降水量676 mm, 全年平均降水日数120-150天, 年积雪日130-150天, 年平均相对湿度78%。
1.2 样本采集和性状测定
依托阔叶红松林9 hm2固定样地, 选取白桦、紫椴、五角枫作为研究对象, 且3个树种的耐阴性逐渐增强(Niinemets & Valladares, 2006)。于2020年8月, 在所选样地相同的坡向及近似的坡度条件下(坡度差异<5°), 每个树种选取30株生长状况良好的样树, 并参照凉水阔叶红松林不同生长阶段树木胸径(DBH)的生长规律(韩大校和金光泽, 2017), 每个树种小树(DBH: 1-6 cm)、中等树(DBH: 15-20 cm)、大树(DBH: 35-45 cm)各选取10株。在本研究中, 样树周围土壤养分相对一致(表1), 且任意两株样树之间的距离至少10 m, 以减少空间自相关对实验结果的影响。树高和第一活枝高均采用超声波测高测距仪测定, 样树信息见表1。针对小树和中等树, 每株样树随机选取15-30片完整的叶; 针对大树, 将树冠从树冠顶端到第一活枝高平均分成上、中、下3层, 在每一冠层分南、北2个方向, 共计6个采样方位,每个方位随机选取5片完整的叶。为防止叶片失水, 将取下来的样本即刻放入带有冰块的保温箱中, 带回实验室进行性状测定。
表1 阔叶红松林3种树种样树及土壤因子信息(平均值±标准误)
Table 1
树种 Species | 植株大小 Tree size | 胸径 DBH (cm) | 树高 Tree height (m) | 第一活枝高 FLBH (m) | 土壤氮含量 Soil N content (mg·g-1) | 土壤磷含量 Soil P content (mg·g-1) | 土壤pH Soil pH | 土壤含水量 Soil water content (g·g-1) |
---|---|---|---|---|---|---|---|---|
>白桦 Betula platyphylla | 小树 Small tree | 5.13 ± 0.08c | 6.30 ± 0.25c | - | 5.47 ± 0.44b | 1.06 ± 0.07a | 4.31 ± 0.04a | 0.91 ± 0.14a |
中等树 Middle tree | 18.83 ± 0.43b | 14.42 ± 0.34b | - | 9.28 ± 0.67a | 1.24 ± 0.08a | 4.33 ± 0.10a | 1.23 ± 0.14a | |
大树 Large tree | 41.00 ± 0.69a | 18.89 ± 0.44a | 6.44 ± 0.45 | 9.49 ± 1.16a | 1.15 ± 0.07a | 4.29 ± 0.12a | 1.32 ±0.22a | |
紫椴 Tilia amurensis | 小树 Small tree | 4.35 ± 0.23c | 4.40 ± 0.29c | - | 7.12 ± 0.62b | 1.34 ± 0.09a | 4.49 ± 0.16a | 1.10 ± 0.18a |
中等树 Middle tree | 17.70 ± 0.47b | 12.60 ± 0.76b | - | 6.88 ± 0.45b | 1.25 ± 0.07a | 4.34 ± 0.16a | 0.83 ± 0.05a | |
大树 Large tree | 43.04 ± 0.88a | 18.92 ± 0.82a | 6.84 ± 0.70 | 9.30 ± 0.66a | 1.24 ± 0.09a | 5.56 ± 0.12a | 1.09 ± 0.08a | |
五角枫 Acer pictum subsp. mono | 小树 Small tree | 3.22 ± 0.18c | 4.94 ± 0.31c | - | 5.89 ± 0.37b | 1.05 ± 0.09b | 5.11 ± 0.11b | 0.62 ± 0.04b |
中等树 Middle tree | 17.19 ± 0.58b | 11.18 ± 0.38b | - | 7.14 ± 0.57b | 1.23 ± 0.08b | 4.69 ± 0.18c | 1.07 ± 0.15a | |
大树 Large tree | 41.32 ± 0.70a | 14.00 ± 0.95a | 4.79 ± 0.48 | 10.09 ± 0.59a | 1.67 ± 0.09a | 5.74 ± 0.11a | 1.13 ± 0.06a |
同列不同小写字母表示各树种不同植株大小间差异显著(p < 0.05)。
DBH, diameter at breast height; FLBH, the first live branch height; N, nitrogen; P, phosphorus. Different lowercase letters in the same column indicate significant differences among tree sizes of the same tree species (p < 0.05).
针对每个样叶, 首先将叶片和叶柄进行分离。对于叶片, 测定叶片面积和叶片干质量, 用BenQ5560彩色扫描仪扫描叶片, 再用Adobe Photoshop CC和Batch软件计算叶片面积(cm2), 然后放入65 ℃烘箱烘干至恒质量测定叶片干质量(g)。对于叶柄, 测定叶柄长和叶柄干质量, 叶柄长采用刻度为0.1 cm的直尺测定, 然后将叶柄放入65 ℃烘箱烘干至恒质量测定叶柄干质量(g)。
针对每株样树, 在树干基部周围选取3个取样点(任意两个取样点之间的角度约为120°), 在每个取样点(去除凋落物层) 0-10 cm土层范围内使用土壤取样器采集土壤子样本, 将3个取样点的子样本完全混合作为土壤样本。采用烘干法测定每个样本的土壤含水量(g·g-1), 土壤pH的测定使用METTLER TOLEDO FE28酸度计, 土壤全氮含量(mg·g-1)和全磷含量(mg·g-1)的测定使用AQ400自动间断化学分析仪(SEAL Analytical, Mequon, USA)。
1.3 数据分析
利用最小显著差异(LSD)法对不同树种、不同植株大小以及大树不同冠层位置的叶性状进行差异显著性分析。利用嵌套方差分解量化种间、个体、叶着生方向和冠层位置对大树性状变异的解释量。为检验叶片和叶柄性状间相关关系的差异显著性, 首先对叶片面积、叶片干质量、叶柄长、叶柄干质量等性状值进行lg变换拟合正态分布后进行分析, 然后采用标准化主轴分析(SMA)对叶片和叶柄性状相关关系的斜率进行差异性检验, 如不存在差异, 再对其截距进行差异性检验。叶片和叶柄性状间的关系用方程y = bxa来描述, 线性转换为lgy = lgb + algx, x、y分别表示两个功能性状, lgb表示截距, a是斜率, 即异速生长参数或相对生长的指数, 当|a| = 1时, x、y为等速变化; 当|a|与1有显著差异时, x、y为异速变化。上述数据分析由R软件中的“agricolae”、“ape”和“smatr”包进行。所有统计分析均使用R 4.0.3软件进行。
2 结果
2.1 叶片和叶柄性状变异
图1
图1
阔叶红松林不同树种的叶片和叶柄性状在不同植株大小(A-D)和冠层位置(大树)(E-H)间的差异。S1, 白桦; S2, 紫椴; S3, 五角枫。箱体下方不同大写字母代表性状在3个树种间存在显著差异(p < 0.05)。箱体上方不同小写字母代表给定树种的叶片和叶柄性状在不同植株大小间或不同冠层位置(大树)间存在显著差异(p < 0.05)。
Fig. 1
Variations in lamina and petiole traits among tree sizes (A-D) or canopy positions (large tree)(E-H) of the three species in a broadleaved Korean pine forest. S1, Betula platyphylla; S2, Tilia amurensis; S3, Acer pictum subsp. mono. LA, lamina area; LDM, lamina dry mass; PDM, petiole dry mass; PL, petiole length. Different uppercase letters below the boxes indicated that lamina or petiole traits significantly varied with tree species (p < 0.05). Different lowercase letters above the boxes indicated that lamina or petiole traits significantly varied with different tree sizes or different canopy positions (large tree) for a given species (p < 0.05).
在种内, 植株大小对性状变异的影响大于冠层位置(表2)。因叶着生方向对性状变异的解释占比较小(附录I), 且方向对叶片和叶柄性状间相关关系均没有显著影响(存在共同斜率)(附录II), 因此对于大树个体内的差异, 本研究只对冠层位置进行讨论。
表2 阔叶红松林3种树种的性状在不同植株大小和不同冠层位置(大树)的变异系数
Table 2
树种 Species | 性状 Trait | 植株大小 Tree size (%) | 冠层位置Canopy position (%) |
---|---|---|---|
白桦 Betula platyphylla | 叶片面积 LA (cm2) | 35.36 | 27.40 |
叶片干质量 LDM (g) | 38.54 | 30.36 | |
叶柄长 PL (cm) | 28.43 | 27.73 | |
叶柄干质量 PDM (g) | 48.01 | 42.00 | |
紫椴 Tilia amurensis | 叶片面积 LA (cm2) | 31.88 | 31.78 |
叶片干质量 LDM (g) | 39.19 | 34.43 | |
叶柄长 PL (cm) | 18.29 | 14.40 | |
叶柄干质量 PDM (g) | 40.47 | 35.87 | |
五角枫 Acer pictum subsp. mono | 叶片面积 LA (cm2) | 38.61 | 36.41 |
叶片干质量 LDM (g) | 44.38 | 42.34 | |
叶柄长 PL (cm) | 39.40 | 33.06 | |
叶柄干质量 PDM (g) | 66.36 | 56.17 |
LA, lamina area; LDM, lamina dry mass; PDM, petiole dry mass; PL, petiole length.
2.2 叶片和叶柄性状相关关系
图2
图2
阔叶红松林叶片-叶柄性状相关关系在不同树种间的差异。S1, 白桦; S2, 紫椴; S3, 五角枫。LA, 叶片面积; LDM, 叶片干质量; PDM, 叶柄干质量; PL, 叶柄长。p值表示斜率(Slope)间差异的显著性; p < 0.05, 差异显著, 不具有共同斜率。图中彩色实线表示性状间相关关系显著; ***, p < 0.001。
Fig. 2
Differences in correlations between lamina-petiole traits in different tree species in a broadleaved Korean pine forest. S1, Betula platyphylla; S2, Tilia amurensis; S3, Acer pictum subsp. mono. LA, lamina area; LDM, lamina dry mass; PDM, petiole dry mass; PL, petiole length. p value represents the significance of difference in slopes; p < 0.05, the difference is significant and there is no common slope. The colored solid lines in the figure indicate that the correlations between traits were significant; ***, p < 0.001.
图3
图3
阔叶红松林3个树种叶片-叶柄性状相关关系在不同植株大小间的差异。H1, 小树; H2, 中等树; H3, 大树。LA, 叶片面积; LDM, 叶片干质量; PDM, 叶柄干质量; PL, 叶柄长。p值表示斜率(Slope)间差异的显著性; p < 0.05, 差异显著, 不具有共同斜率; p > 0.05, 差异不显著, 具有共同斜率。图中彩色实线表示性状间相关关系显著; **, p < 0.01; ***, p < 0.001。
Fig. 3
Differences in correlations between lamina-petiole traits in different tree sizes of the three tree species in a broadleaved Korean pine forest. H1, small tree; H2, middle tree; H3, large tree. LA, lamina area; LDM, lamina dry mass; PDM, petiole dry mass; PL, petiole length. p value represents the significance of difference in slopes; p < 0.05, the difference is significant and there is no common slope; p > 0.05, the difference is not significant and there is a common slope. The colored solid lines in the figure indicate that the correlations between traits were significant; **, p < 0.01; ***, p < 0.001.
图4
图4
阔叶红松林3个树种大树的叶片-叶柄性状相关关系在不同冠层间的差异。LA, 叶片面积; LDM, 叶片干质量; PDM, 叶柄干质量; PL, 叶柄长。p值表示斜率(Slope)间差异的显著性; p < 0.05, 差异显著, 不具有共同斜率(Common slope); p > 0.05, 差异不显著, 具有共同斜率。图中彩色实线表示性状间相关关系显著; *, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 4
Differences in correlations between lamina-petiole traits in different canopy positions of the large tree of the three species in a broadleaved Korean pine forest. LA, lamina area; LDM, lamina dry mas; PDM, petiole dry mass; PL, petiole lengths. p value represents the significance of difference in slopes; p < 0.05, the difference is significant and there is no common slope; p > 0.05, the difference is not significant and there is a common slope. The colored solid lines in the figure indicate that the correlations between traits were significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
3 讨论
3.1 叶片和叶柄性状变异
本研究结果表明不同树种的叶性状存在显著差异, 以往有研究表明性状变异在物种间发生的概率约为3/4 (Thomas et al., 2020)。一方面, 叶片形状是引起叶性状种间差异的因素之一(Kessler & Sinha, 2004), 3个树种的叶片形状存在明显差异, 白桦叶片为卵形, 紫椴叶片为心形, 五角枫叶片为掌形, 不同叶形的树种对支持结构投资的生物量会存在差异(Kessler & Sinha, 2004), 本研究结果与此相符。另一方面, 耐阴性也是决定叶性状种间差异的因素之一 (Lusk et al., 2008), 紫椴和五角枫是耐阴性较强的树种, 耐阴树种多为演替后期树种, 对光的需求相对较低; 而白桦为喜光树种, 喜光树种多为演替前期树种, 对光的需求量相对较大(Galia Selaya et al., 2008; Kenzo et al., 2015)。光截留经济学表明, 耐阴树种一般生长较大的叶以拦截更多的光(Yan et al., 2013); 由于喜光树种比耐阴树种具有更高的光合能力和呼吸速率, 而较高的蒸腾作用会让水分流失得更多(Kenzo et al., 2015), 这导致喜光植物的叶片小而厚, 而耐阴植物的叶片大而薄(Lusk et al., 2008; Ishii et al., 2012), 本研究结果支持该结论。
不同树高的植株接收到的光存在差异, 遭受水分胁迫和风拉拽压力也不同, 导致不同植株大小的叶性状也存在差异(Fajardo et al., 2020)。随着植株树高或胸径的增大, 水分胁迫和风速均增大, 植株不仅能获得更多的光, 单位叶片面积还能产生更多的支持结构增量(Gspaltl et al., 2013)。大树上部叶片因为接收到较强的光导致气孔关闭的频率随强蒸腾作用而增加, 水分胁迫增大(Niinemets et al., 2004); 同时高处风速较大需要更大的投资支持来承担风引起的动载荷, 大树需要投资更多的生物量给叶柄来抵抗水分运输和强风的压力, 在本研究中, 3个树种均是大树的叶柄性状值显著大于小树(图1)。对于叶片性状, 五角枫表现出和叶柄性状相似的规律, 但姚婧等(2013)在研究中指出五角枫小树有着较大的叶片面积, 本研究结论与之不一致, 这可能是由纬度、海拔或其他因素引起。白桦小树的叶片性状值最大, 小树一般处于光照水平较低的郁闭环境, 为提高自身光利用率, 它需要更大的叶片来获取光, 以往的研究也表明, 在小树阶段植物会通过产生大叶片来获取光(Poorter et al., 2006), 这是一种应对弱光环境的生态学策略, 本研究结论与金明月等(2018)对白桦叶性状在不同生长阶段变异的研究结果一致。不同植株大小的紫椴叶片性状变异不一致, 但紫椴小树的叶片面积显著大于中等树和大树, 在今后研究中还需进一步关注叶片面积和叶片干质量之间的关系是如何变化的。
冠层高度影响叶周边的环境, 对于大树, 从树冠上层到下层, 不同冠层位置的叶片因接收到的光照不同而存在差异, 而叶可以通过改变其形态特征和光合特性来适应不同的光照环境(Yoshimura, 2010)。上层叶在空间上形成遮阴导致冠层内的光强不均一, 上层的光辐射通常最大且温度最高, 导致上层叶片有较高的光合能力和较大的蒸腾速率(Coble et al., 2016), 以往研究表明, 为避免过热的不利条件, 在高强度光照的环境中一般生长小叶片, 而大叶在低强度光照的环境中则是比较有利的(Dong et al., 2020), 这可能是耐阴树种上层的叶片面积显著小于下层的原因, 以往也有研究表明紫椴的叶面积随冠层高度的降低而增大, 而叶片干质量随冠层高度变异较小(纪蒙等, 2019), 本研究结论与此一致。紫椴和五角枫叶片相对较大, 而白桦叶片较小, 相比大叶树种, 白桦在上层强光环境下相对有利, 同时由于光截留的“最佳”设计, 较小叶片可以使光相对均匀地分布在冠层间, 这导致白桦的叶片面积在冠层间没有显著差异。白桦和紫椴的叶柄长在不同冠层间没有显著差异, 而五角枫上层的叶柄长显著小于下层(图1)。五角枫的叶柄长度普遍较长, 一般而言, 平均风速会随冠层高度的增加而增加(Niklas, 1999), 叶柄长度的改变代表着叶对风速垂直梯度的适应性响应。紫椴和五角枫的叶柄干质量在冠层间没有显著差异, 而白桦上层的叶柄干质量显著大于下层(图1), 这与白桦上层的叶片干质量显著大于下层相关, 叶柄需要为叶片提供机械支持和水分运输, 较大叶片干质量的叶片要求叶柄有更大的木质部横截面积(Niinemets & Kull, 1999)。阔叶林中大树的形态和生理分化是随着冠层内光照条件的变化而发生的, 植物根据光的变化调整叶的生化特性以达到最佳收益。
3.2 叶片和叶柄性状间的异速生长关系
本研究结果表明叶片和叶柄表现为异速生长关系(图2-4), 这已被以往研究(祝介东等, 2011; Price & Weitz, 2012; 潘少安等, 2015)所证明, 其中Li等(2008)对93种温带木本植物叶片面积、叶片质量和叶柄质量的研究表明, 叶片和叶柄间的异速生长关系会因叶习性、叶形态和海拔高度的不同而发生变化。在叶水平上, 叶片的增大会伴随叶柄不成比例地增大(Xiang et al., 2009), 这是因为叶柄不仅要运输水分, 还要支撑叶柄和叶片产生的静载荷以及抵抗风引起的动载荷(Niklas, 1999; Sun et al., 2006; Li et al., 2008), 叶柄的功能和力学作用决定了在叶水平上叶片和叶柄间的异速生长关系。本研究结果还表明叶片干质量对叶柄大小的响应大于叶片面积, 叶片面积会影响叶片的能量平衡(Díaz et al., 2016), 而叶片干质量可以解释叶片的建造成本(Niinemets et al., 2006)。以往有关叶片面积与叶片干质量生长关系的研究以及“收益递减”假说皆表明, 在单个叶片水平上叶片面积的增长速度要小于叶片干质量的增长速度(Niklas et al., 2007), 本研究结果支持该结论。在本研究中, 3个树种叶片-叶柄性状相关关系的斜率均为紫椴>白桦>五角枫(图2), 紫椴的叶片最大, 五角枫的叶柄最长(图1), 并且以往的研究表明大叶片比小叶片有着更大比例的叶柄投资(Pickup et al., 2005), 本研究结果与之一致。柄叶相关关系在不同物种之间存在差异, 表明其依赖于植物的形态和生态特征, 为了解这种变异, 有必要对种内叶片和叶柄的功能形态进行更详细的研究。
在不同大小的植株个体间, 紫椴叶片面积和叶柄性状的相关关系中大树的斜率最大, 五角枫叶片干质量和叶柄性状的相关关系也表现出相同的规律(图3), 姚婧等(2013)在对五角枫叶性状生长关系随发育阶段变化的研究表明, 随叶干质量的增加成年树会对同化和支持结构投资更多的生物量, 本研究支持该结论。紫椴和五角枫是演替中后期树种, 因而习惯于阴蔽的环境, 为提高截光效率, 一般生长有较大的叶片, 而大树要克服水分运输到更高高度的不利条件, 在支撑结构上需要投资更多的生物量(Fajardo et al., 2020)。紫椴叶片干质量和叶柄性状在不同植株大小间存在共同斜率, 而五角枫叶片面积和叶柄性状在不同植株大小间存在共同斜率(图3), 叶的“收益递减”假说表明, 叶片面积的变化速率小于叶片干质量(Niklas et al., 2007), 紫椴叶片较大, 导致叶片干质量在不同植株大小间对叶柄的大小影响较小, 五角枫则因叶柄较大, 导致叶柄对叶片面积影响较小。白桦种内叶片性状和叶柄性状在不同植株大小的斜率均表现为小树>大树>中等树(图3), 表明白桦小树的单位叶柄所支持的叶片最大, 白桦是喜光树种, 因为光照不充足, 小树会投资更大比例的叶片来进行有效的光捕捉。相对于中等树, 大树的胸径和树高的增加使树木所受的水分胁迫变大, 在水分胁迫下叶片的栅栏组织和海绵组织会增厚(刘明秀和梁国鲁, 2016), 因此对于同一树种, 大树的叶片-叶柄性状增长速度大于中等树。
对于大树个体, 白桦和紫椴不同冠层位置叶片性状与叶柄性状间相关关系的斜率均不存在显著差异(存在共同斜率), 五角枫的叶片面积和叶柄性状间也存在一样的规律(图4), 表明冠层对植物叶片-叶柄生物量分配的影响不显著, 单位叶柄支撑的叶片的变化总是恒定的, 这可能是因为在同一植株个体内有着一套相同比例变化的生物量分配模式。李锦隆等(2021)对当年生小枝单叶生物量和出叶强度生长关系的研究结果也表明冠层高度对其相关关系没有影响, 即性状间的生长关系在不同的冠层位置有相同的变化速率, 本研究支持该结论。一方面, 根据光截留的经济学和生物力学要求, 在个体内支持成本与叶大小呈正比例关系(Niinemets et al., 2006), 随着叶片大小的增加, 需要更大的叶柄来平衡叶片负荷。另一方面, 叶片和叶柄间的生长关系与大树个体内不同的冠层设计有关, 在冠层较高的位置有更高的蒸发需求和水分胁迫, 这使得较低的水势和较高的蒸腾速率导致叶片在较大的辐照下光合作用较低(Niinemets & Fleck, 2002); 而在冠层较低的位置, 叶片的光截留和光合作用相对较弱, 叶片会通过平铺来尽可能地拦截光(Niinemets et al., 2004), 这导致在不同的冠层位置, 叶捕获光的效率在植株个体内相似。然而五角枫的叶质量和叶柄性状的相关关系却在冠层中存在差异(上层>中层>下层)的原因还有待探索, 我们预测这可能是由于五角枫具有长叶柄且叶片大而薄导致叶柄大小的变化对叶片质量的影响较大, 此外, 平均风速和冠层高度成正比(Niklas, 1999), 叶柄通过增大生物量投资来抵抗风引起的动载荷, 因此树冠上层单位长度或质量的叶柄支撑叶片干质量变化的速度要大于其他冠层。
4 结论
植物柄叶性状的变异是许多因素综合作用的结果, 本研究中叶片性状与叶柄性状及其相关关系在不同树种间均存在显著差异。叶片性状与叶柄性状在不同大小植株个体间的差异大于个体内冠层位置产生的差异。叶片和叶柄具有异速生长关系, 并且叶片干质量随叶柄大小变化的速率大于叶片面积随叶柄大小变化的速率; 叶片和叶柄之间的异速生长关系在不同大小植株间因树种而异; 不同树种大树叶片性状与叶柄性状间的相关关系在不同冠层位置存在共同斜率, 即在个体内叶片与叶柄的变化速率是恒定的。通过探究柄叶性状在不同大小的植株间以及在大树的不同冠层位置间的变化趋势, 有助于我们更好地理解植物的资源分配及调节机制, 对深入了解植物的适应进化和生活史策略具有重要意义。
致谢
感谢黑龙江凉水国家级自然保护区管理局以及黑龙江凉水森林生态系统国家定位观测研究站在样品采集过程中给予的大力支持。
附录I 阔叶红松林中大树的叶片性状和叶柄性状的变异在不同水平上的解释度
Supplement I Variance components of lamina traits and petiole traits across different levels in large trees of a broadleaveved Korean pine forest
附录II 阔叶红松林中白桦、紫椴、五角枫大树的柄叶性状在南、北2个方向的标准主轴分析结果
Supplement II Results of standardized major axis analysis (SMA) on lamina and petiole traits of large tree (Betula platyphylla, Tilia amurensis and Acer pictum subsp. mono) in two directions (south and north) in a broadleaved Korean pine forest
附录III 阔叶红松林中白桦、紫椴、五角枫大树的柄叶性状在3个冠层位置的标准主轴分析结果
Supplement III Results of standardized major axis analysis (SMA) on lamina and petiole traits of large tree (Betula platyphylla, Tilia amurensis and Acer pictum subsp. mono) in three canopy positions in a broadleaved Korean pine forest
参考文献
Intraspecific functional variability: extent, structure and sources of variation
DOI:10.1111/j.1365-2745.2010.01651.x URL [本文引用: 2]
Developmental and biophysical determinants of grass leaf size worldwide
DOI:10.1038/s41586-021-03370-0 URL [本文引用: 1]
Venation networks and the origin of the leaf economics spectrum
DOI:10.1111/j.1461-0248.2010.01554.x URL [本文引用: 1]
How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest
DOI:10.1093/treephys/tpw043
PMID:27246164
[本文引用: 1]
Leaf functional traits are used in modeling forest canopy photosynthesis (Ac) due to strong correlations between photosynthetic capacity, leaf mass per area (LMA) and leaf nitrogen per area (Narea). Vertical distributions of these traits may change over time in temperate deciduous forests as a result of acclimation to light, which may result in seasonal changes in Ac To assess both spatial and temporal variations in key traits, we measured vertical profiles of Narea and LMA from leaf expansion through leaf senescence in a sugar maple (Acer saccharum Marshall) forest. To investigate mechanisms behind coordinated changes in leaf morphology and function, we also measured vertical variation in leaf carbon isotope composition (δ(13)C), predawn turgor pressure, leaf water potential and osmotic potential. Finally, we assessed potential biases in Ac estimations by parameterizing models with and without vertical and seasonal Narea variations following leaf expansion. Our data are consistent with the hypothesis that hydrostatic constraints on leaf morphology drive the vertical increase in LMA with height early in the growing season; however, LMA in the upper canopy continued to increase over time during light acclimation, indicating that light is primarily driving gradients in LMA later in the growing season. Models with no seasonal variation in Narea overestimated Ac by up to 11% early in the growing season, while models with no vertical variation in Narea overestimated Ac by up to 60% throughout the season. According to the multilayer model, the upper 25% of leaf area contributed to over 50% of Ac, but when gradients of intercellular CO2, as estimated from δ(13)C, were accounted for, the upper 25% of leaf area contributed to 26% of total Ac Our results suggest that ignoring vertical variation of key traits can lead to considerable overestimation of Ac.© The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ontogenetic shifts in plant ecological strategies
DOI:10.1111/1365-2435.13221 URL [本文引用: 2]
The global spectrum of plant form and function
DOI:10.1038/nature16489 URL [本文引用: 2]
Components of leaf-trait variation along environmental gradients
DOI:10.1111/nph.16558 URL [本文引用: 3]
Corner's rules pass the test of time: little effect of phenology on leaf-shoot and other scaling relationships
DOI:10.1093/aob/mcaa124
PMID:32598449
[本文引用: 4]
Twig cross-sectional area and the surface area of leaves borne on it are expected to be isometrically correlated across species (Corner's rules). However, how stable this relationship remains in time is not known. We studied inter- and intraspecific twig leaf area-cross-sectional area (la-cs) and other scaling relationships, including the leaf-shoot mass (lm-sm) scaling relationship, across a complete growing season. We also examined the influence of plant height, deciduousness and the inclusion of reproductive buds on the stability of the scaling relationships, and we discuss results from a functional perspective.We collected weekly current-year twigs of six Patagonian woody species that differed in growth form and foliar habit. We also used prominent inflorescences from Embothrium coccineum (Proteaceae) to assess whether reproductive buds alter the la-cs isometric relationship. Mixed effects models were fitted to obtain parameter estimates and to test whether interaction terms were non-significant (invariant) for the scaling relationships.The slope of the la-cs scaling relationship remained invariant across the growing season. Two species showed contrasting and disproportional (allometric) la-cs scaling relationships (slope ≠ 1). Scaling relationships varied significantly across growth form and foliar habit. The lm-sm scaling relationship differed between reproductive- and vegetative-origin twigs in E. coccineum, which was explained by a significantly lower leaf mass per area in the former.Although phenology during the growing season appeared not to change leaf-shoot scaling relationships across species, we show that scaling relationships departed from the general trend of isometry as a result of within-species variation, growth form, foliar habit and the type of twig. The identification of these functional factors helps to understand variation in the general trend of Corner's rules.© The Author(s) 2020. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Biomass allocation and leaf life span in relation to light interception by tropical forest plants during the first years of secondary succession
DOI:10.1111/j.1365-2745.2008.01441.x URL [本文引用: 2]
Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes
Silviculture focuses on establishing forest stand conditions that improve the stand increment. Knowledge about the efficiency of an individual tree is essential to be able to establish stand structures that increase tree resource use efficiency and stand level production. Efficiency is often expressed as stem growth per unit leaf area (leaf area efficiency), or per unit of light absorbed (light use efficiency). We tested the hypotheses that: (1) volume increment relates more closely with crown light absorption than leaf area, since one unit of leaf area can receive different amounts of light due to competition with neighboring trees and self-shading, (2) dominant trees use light more efficiently than suppressed trees and (3) thinning increases the efficiency of light use by residual trees, partially accounting for commonly observed increases in post-thinning growth. We investigated eight even-aged Norway spruce ( (L.) Karst.) stands at Bärnkopf, Austria, spanning three age classes (mature, immature and pole-stage) and two thinning regimes (thinned and unthinned). Individual leaf area was calculated with allometric equations and absorbed photosynthetically active radiation was estimated for each tree using the three-dimensional crown model Maestra. Absorbed photosynthetically active radiation was only a slightly better predictor of volume increment than leaf area. Light use efficiency increased with increasing tree size in all stands, supporting the second hypothesis. At a given tree size, trees from the unthinned plots were more efficient, however, due to generally larger tree sizes in the thinned stands, an average tree from the thinned treatment was superior (not congruent in all plots, thus only partly supporting the third hypothesis).
Influences of topography and competition on DBH growth in different growth stages in a typical mixed broadleaved-Korean pine forest, northeastern China
地形和竞争对典型阔叶红松林不同生长阶段树木胸径生长的影响
Variation in light-intercepting area and photosynthetic rate of sun and shade shoots of two Picea species in relation to the angle of incoming light
DOI:10.1093/treephys/tps090 URL [本文引用: 1]
Vertical variation and model construction of area and dry mass for a single leaf from six broadleaved trees in mixed broadleaved-Korean pine forests
阔叶红松林6种阔叶树单个叶片叶面积和叶干质量的垂直变异及模型构建
DOI:10.13287/j.1001-9332.201905.022
[本文引用: 1]
快捷、准确地测定植物叶片尺度上的叶面积(LA)和叶干质量(LDM)对于探讨植物性状对气候变化的响应机制至关重要,但适于测定区域尺度上不同阔叶植物单个叶片LA和LDM的经验模型尚未提出.本研究以中国东北4个分布区阔叶红松林内的白桦、紫椴、山杨、枫桦、水曲柳和裂叶榆6种阔叶树种为研究对象,分别测定其不同冠层高度(上层、中层和下层)叶片的叶长、叶宽、叶厚、LA及LDM.以叶长与叶宽之比(叶长宽比)的中位数为标准将6种阔叶树分为两组,检验每组树种不同冠层高度对构建预测LA和LDM的经验模型是否存在显著影响;构建适于预测区域尺度上不同冠层单个叶片LA和LDM的经验模型,验证其预测精度;并进一步评估构建的经验模型预测其他区域相同阔叶树种LA和LDM的适用性.结果表明: 整体上6种阔叶树单个叶片的LA随冠层高度的降低呈显著增大趋势,而部分树种的LDM呈下降趋势;冠层高度对构建预测LA和LDM的经验模型具有显著影响;构建的经验模型预测两组阔叶树种不同冠层单个叶片LA和LDM的平均精度分别为95%和83%,且基于这些模型预测其他区域相应树种LA和LDM的平均精度分别为94%和80%,表明本研究构建的经验模型在我国东北区域具有普遍适用性.
Variations of specific leaf area in different growth periods and canopy positions of Betula platyphylla at different ages
不同年龄白桦比叶面积的生长阶段变异及冠层差异
Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees
DOI:10.1007/s00442-014-3126-0
PMID:25362582
[本文引用: 2]
Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.
Shaping up: the genetic control of leaf shape
Leaf initiation at the shoot apical meristem involves a balance between cell proliferation and commitment to make primordia. Several genes, such as CLAVATA1, CLAVATA3, WUSCHEL, KNOTTED1, and PHANTASTICA, play key roles in these processes. When expressed in the leaf primordium, however, these 'meristem' genes can profoundly affect leaf shape and size, possibly by regulating hormone gradients and transport. The KNOTTED1-like genes are involved in regulating changes in hormonal levels. Recent studies have elaborated on the role that hormones, such as auxin, play in releasing biophysical constraints on leaf initiation and growth. Final leaf form is elaborated by a coordination of these hormonally regulated processes, cell division and cellular differentiation.
Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile
Photosynthetic acclimation of deciduous broad-leaved tree species was studied along a vertical gradient within the canopy of a multi-species deciduous forest in northern Japan. We investigated variations in (1) local light regime and CO2 concentration ([CO2]), and (2) morphological (area, thickness and area per mass), biochemical (nitrogen and chlorophyll concentrations) and physiological (light-saturated photosynthetic rate) attributes of leaves of seven major species on three occasions (June, August and October). We studied early successional species, alder (Alnus hirsuta (Spach) Rupr.) and birch (Betula platyphylla var. japonica (Miq.) Hara); gap phase species, walnut (Juglans ailanthifolia Carrière) and ash (Fraxinus mandshurica var. japonica Rupr.); mid-successional species, basswood (Tilia japonica (Miq.) Simonk.) and elm (Ulmus davidiana var. japonica (Rehd.) Nakai); and the late-successional species, maple (Acer mono Bunge). All but maple initiated leaf unfolding from the lower part of the crown. The [CO2] within the vertical profile ranged from 320-350 ppm in the upper canopy to 405-560 ppm near the ground. The lowest and highest ambient [CO2] occurred during the day and during the night, respectively. This trend was observed consistently during the summer, but not when trees were leafless. Chlorophyll concentration was positively related to maximum photosynthetic rate within, but not among, species. Leaf senescence started from the inner part of the crown in alder and birch, but started either in the outer or top portion of the canopy of ash, basswood and maple. Chlorophyll (Chl) to nitrogen ratio in leaves increased with decreasing photon flux density. However, Chl b concentration in all species remained stable until the beginning of leaf senescence. Maximum photosynthetic rates observed in sun leaves of early successional species, gap phase or mid-successional species, and late successional species were 12.5-14.8 micromol m(-2) s(-1), 4.1-7.8 micromol m(-2) s(-1) and 3.1 micromol m(-2) s(-1), respectively.
Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude
DOI:10.1111/j.1365-2435.2008.01407.x URL [本文引用: 3]
Effects of canopy height on the relationship between individual leaf mass and leafing intensity of 69 broad leaved trees in Jiangxi Province
冠层高度对江西69种阔叶树小枝单叶生物量与出叶强度关系的影响
Research progress on leaf mass per area
DOI:10.17521/cjpe.2015.0428 URL [本文引用: 1]
植物比叶质量研究进展
DOI:10.17521/cjpe.2015.0428
[本文引用: 1]
比叶质量(LMA)是叶片经济型谱中最基础的叶功能性状, 也是重要的复合型结构参数。LMA不仅与植物的许多生理反应密切相关, 而且能定量测定光合产物在单位叶面积的投入, 因而被认为是反映植物生态策略的重要指标。目前, 有关LMA的深入研究已在植物生态学、农学、林学、植物生理学领域全面展开。该文系统阐述了LMA在叶片整体、组织、细胞三个水平的结构解析和计算方法; 重点分析了LMA对光合作用的影响; 讨论了LMA的内在遗传差异以及外部的环境胁迫因子(温度、水分、光照)对LMA的影响, 以期梳理比叶质量研究的思路、策略和方法, 为今后的研究提供借鉴和参考。
Variations in leaf economics spectrum traits for an evergreen coniferous species: tree size dominates over environment factors
DOI:10.1111/1365-2435.13498 URL [本文引用: 1]
Why are evergreen leaves so contrary about shade?
DOI:10.1016/j.tree.2008.02.006 URL [本文引用: 3]
Petiole length and biomass investment in support modify light interception efficiency in dense poplar plantations
Leaf architecture, stand leaf area index and canopy light interception were studied in 13 poplar clones growing in a second rotation of a coppice plantation, to determine the role of leaf architectural attributes on canopy light-harvesting efficiency and to assess biomass investment in leaf support tissue. Stand leaf area index (L) varied from 2.89 to 6.99, but L was only weakly associated with canopy transmittance (TC). The weak relationship between TC and L was a result of a higher degree of foliage aggregation at larger values of L, leading to lower light-interception efficiency in stands with greater total leaf area. We observed a strong increase in leaf aggregation and a decrease in light-harvesting efficiency with decreasing mean leaf petiole length (PL) but not with leaf size, possibly because, in cordate or deltoid poplar leaves, most of the leaf area is located close to the petiole attachment to the lamina. Although PL was the key leaf characteristic of light-harvesting efficiency, clones with longer petioles had larger biomass investments in petioles, and there was a negative relationship between PL and L, demonstrating that enhanced light harvesting may lead to an overall decline in photosynthesizing leaf surface. Upper-canopy leaves were generally larger and had greater dry mass (MA) and nitrogen per unit area (NA) than lower-canopy leaves. Canopy plasticity in MA and NA was higher in clones with higher foliar biomass investment in midrib, and lower in clones with relatively longer petioles. These relationships suggest that there is a trade-off between photosynthetic plasticity and biomass investment in support, and also that high light-harvesting efficiency may be associated with lower photosynthetic plasticity. Our results demonstrate important clonal differences in leaf aggregation that are linked to leaf structure and biomass allocation patterns within the leaf.
Petiole mechanics, leaf inclination, morphology, and investment in support in relation to light availability in the canopy of Liriodendron tulipifera
DOI:10.1007/s00442-002-0902-z
PMID:28547289
[本文引用: 1]
To determine the role of leaf mechanical properties in altering foliar inclination angles, and the nutrient and carbon costs of specific foliar angle variation patterns along the canopy, leaf structural and biomechanical characteristics, biomass partitioning into support, and foliar nitrogen and carbon concentrations were studied in the temperate deciduous species Liriodendron tulipifera L., which possesses large leaves on long petioles. We used beam theory to model leaf lamina as a uniform load, and estimated both the lamina and petiole flexural stiffness, which characterizes the resistance to bending of foliar elements at a common load and length. Petiole and lamina vertical inclination angles with respect to horizontal increased with increasing average daily integrated photon flux density (Q ). Yet, the light effects on lamina inclination angle were primary determined by the petiole inclination angle. Although the petioles and laminas became longer, and the lamina loads increased with increasing Q, the flexural stiffness of both lamina and petiole increased to compensate for this, such that the lamina vertical displacement was only weakly related to Q. In addition, increases and decreases in the petiole inclination angle with respect to the horizontal effectively reduced the distance of lamina load from the axis of rotation, thereby reducing the bending moments and lamina inclination due to gravity. We demonstrate that large investments, up to 30% of total leaf biomass, in petiole and large veins are necessary to maintain the lamina at a specific position, but also that light has no direct effect on the fractional biomass investment in support. However, we provide evidence that apart from light availability, structural and chemical characteristics of the foliage may also be affected by water stress, magnitude of which scales positively with Q.
A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types
DOI:10.1111/nph.13096
PMID:25318596
[本文引用: 3]
Extensive within-canopy light gradients importantly affect the photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitative separation of the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they differ fundamentally in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover, exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. By contrast, species with slow leaf turnover exhibit a passive AA acclimation response, primarily determined by the acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types, and solves an old enigma of the role of mass- vs area-based traits in vegetation acclimation.© 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Biomass investment in leaf lamina versus lamina support in relation to growth irradiance and leaf size in temperate deciduous trees
Foliar biomass investment in support and assimilative compartments was studied in four temperate deciduous tree species along a natural light gradient across the canopy. The species ranked according to shade tolerance as Betula pendula Roth. < Populus tremula L. < Fraxinus excelsior L. < Tilia cordata Mill. Long-term light conditions at sampling locations were characterized as seasonal mean integrated quantum flux density (Q(int), mol m(-2) day(-1)) estimated by a method combining hemispherical photography and light measurements with quantum sensors. Leaf morphology was altered by Q(int) in all species. Both lamina and petiole dry mass per lamina area (LMA and PMA, respectively) increased with increasing Q(int). Shade-tolerant species had lower LMA at low Q(int) than shade-intolerant species; however, PMA was not related to shade tolerance. Across species, the ratio of petiole dry mass to lamina dry mass (PMR) varied from 0.07 to 0.21. It was independent of Q(int) in the simple-leaved species, but decreased with increasing Q(int) in the compound-leaved F. excelsior, which also had the largest foliar biomass investment in petioles. Differences in leaf mass and area, ranging over four orders of magnitude, provided an explanation for the interspecific variability in PMR. Species with large leaves also had greater biomass investments in foliar support than species with smaller leaves. This relationship was similar for both simple- and compound-leaved species. There was a negative relationship between PMR and petiole N concentration, suggesting that petioles had greater carbon assimilation rates and paid back a larger fraction of their construction cost in species with low PMR than in species with high PMR. This was probably the result of a negative relationship between PMR and petiole surface to volume ratio. Nevertheless, petioles had lower concentrations of mineral nutrients than laminas. Across species, the ratio of petiole N to lamina N varied from only 3 to 6%, demonstrating that petiole costs are less in terms of nutrients than in terms of total biomass, and that the petiole contribution to carbon assimilation is disproportionately lower than that of the lamina contribution.
Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants
The implications of extensive variation in leaf size for biomass distribution between physiological and support tissues and for overall leaf physiological activity are poorly understood. Here, we tested the hypotheses that increases in leaf size result in enhanced whole-plant support investments, especially in compound-leaved species, and that accumulation of support tissues reduces average leaf nitrogen (N) content per unit dry mass (N(M)), a proxy for photosynthetic capacity. Leaf biomass partitioning among the lamina, mid-rib and petiole, and whole-plant investments in leaf support (within-leaf and stem) were studied in 33 simple-leaved and 11 compound-leaved species. Support investments in mid-ribs and petioles increased with leaf size similarly in simple leaves and leaflets of compound leaves, but the overall support mass fraction within leaves was larger in compound-leaved species as a result of prominent rachises. Within-leaf and within-plant support mass investments were negatively correlated. Therefore, the total plant support fraction was independent of leaf size and lamina dissection. Because of the lower N(M) of support biomass, the difference in N(M) between the entire leaf and the photosynthetic lamina increased with leaf size. We conclude that whole-plant support costs are weakly size-dependent, but accumulation of support structures within the leaf decreases whole-leaf average N(M), potentially reducing the integrated photosynthetic activity of larger leaves.
Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs
DOI:10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2 URL [本文引用: 1]
A mechanical perspective on foliage leaf form and function
DOI:10.1046/j.1469-8137.1999.00441.x URL [本文引用: 3]
“Diminishing returns” in the scaling of functional leaf traits across and within species groups
More than 5,000 measurements from 1,943 plant species were used to explore the scaling relationships among the foliar surface area and the dry, water, and nitrogen/phosphorus mass of mature individual leaves. Although they differed statistically, the exponents for the relationships among these variables were numerically similar among six species groups (ferns, graminoids, forbs, shrubs, trees, and vines) and within 19 individual species. In general, at least one among the many scaling exponents was <1.0, such that increases in one or more features influencing foliar function (e.g., surface area or living leaf mass) failed to keep pace with increases in mature leaf size. Thus, a general set of scaling relationships exists that negatively affects increases in leaf size. We argue that this set reflects a fundamental property of all plants and helps to explain why annual growth fails to keep pace with increases in total body mass across species.
Changes in shoot allometry with increasing tree height in a tropical canopy species
Divergent drivers of leaf trait variation within species, among species, and among functional groups
Biomass allocation strategies within a leaf: implication for leaf size optimization
DOI:10.17521/cjpe.2015.0094 URL [本文引用: 3]
从叶内生物量分配策略的角度理解叶大小的优化
DOI:10.17521/cjpe.2015.0094
[本文引用: 3]
叶大小的变化是许多因素综合作用的结果, 对叶大小优化机制的研究有助于我们更好地理解植物的适应进化和生活史策略。该研究通过对浙江省清凉峰常绿阔叶混交林中的19个常绿阔叶物种和30个落叶阔叶物种叶水平上的相关性状进行分析, 探讨叶内生物量分配策略对叶大小优化的限制性影响。研究结果显示: 无论叶大小用面积还是质量表示, 常绿物种和落叶物种均呈现出叶内生物量分配到支撑结构的比例随着叶大小的增加而增加的规律, 这主要是由叶柄大小与叶片大小之间显著的异速生长关系导致的。这种异速生长关系在常绿物种和落叶物种中普遍存在。然而, 由于常绿物种对叶柄具有较高的机械以及抵抗冰冻栓塞等不利环境的需求, 在某一给定的叶面积下, 常绿物种比落叶物种具有更高的叶柄生物量投资。这些结果表明: 作为整个植株支撑投资的一个重要组成部分, 叶内支撑投资所占的生物量比例对叶大小的优化具有一定的限制性影响。
Dry mass costs of deploying leaf area in relation to leaf size
DOI:10.1111/j.0269-8463.2005.00927.x URL [本文引用: 2]
Radial changes in wood specific gravity of tropical trees: inter- and intraspecific variation during secondary succession
DOI:10.1111/1365-2435.12305 URL [本文引用: 1]
Tree diversity affects chlorophyll a fluorescence and other leaf traits of tree species in a boreal forest
DOI:10.1093/treephys/tpw132
PMID:28100710
[本文引用: 1]
An assemblage of tree species with different crown properties creates heterogeneous environments at the canopy level. Changes of functional leaf traits are expected, especially those related to light interception and photosynthesis. Chlorophyll a fluorescence (ChlF) properties in dark-adapted leaves, specific leaf area, leaf nitrogen content (N) and carbon isotope composition (δ13C) were measured on Picea abies (L.) H.Karst., Pinus sylvestris L. and Betula pendula Roth. in monospecific and mixed boreal forests in Europe, in order to test whether they were affected by stand species richness and composition. Photosynthetic efficiency, assessed by induced emission of leaf ChlF, was positively influenced in B. pendula by species richness, whereas P. abies showed higher photosynthetic efficiency in monospecific stands. Pinus sylvestris had different responses when it coexisted with P. abies or B. pendula. The presence of B. pendula, but not of P. abies, in the forest had a positive effect on the efficiency of photosynthetic electron transport and N in P. sylvestris needles, and the photosynthetic responses were positively correlated with an increase of leaf δ13C. These effects on P. sylvestris may be related to high light availability at the canopy level due to the less dense canopy of B. pendula. The different light requirements of coexisting species was the most important factor affecting the distribution of foliage in the canopy, driving the physiological responses of the mixed species. Future research directions claim to enhance the informative potential of the methods to analyse the responses of pure and mixed forests to environmental factors, including a broader set of plant species' functional traits and physiological responses.© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups
DOI:10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2 URL [本文引用: 3]
Leaf size and leaf display of thirty-eight tropical tree species
DOI:10.1007/s00442-008-1131-x URL [本文引用: 1]
Allometric covariation: a hallmark behavior of plants and leaves
DOI:10.1111/j.1469-8137.2011.04022.x URL [本文引用: 3]
The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship
DOI:10.1093/aob/mcj004 URL [本文引用: 1]
Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot
DOI:10.1007/BF02347485 URL [本文引用: 1]
Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests
DOI:10.17520/biods.2015200 URL [本文引用: 1]
亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异
DOI:10.17520/biods.2015200
[本文引用: 1]
不同物种间的功能性状差异是自然生态系统中物种共存的基础, 而物种内个体间的性状变异对物种的共存和分布同样具有重要作用。本文以湖北星斗山自然保护区亚热带常绿落叶阔叶混交林内28种主要树种(通过物种多度排序获得, 其中常绿和落叶树种各14种)为研究对象, 探讨不同叶习性树种的4种功能性状(比叶面积、叶干物质含量、叶面积和比茎密度)在种间和种内的差异程度。结果表明: (1)常绿和落叶树种在4种功能性状上均存在显著差异, 常绿树种的比叶面积和叶面积显著低于落叶树种, 但叶干物质含量和比茎密度则显著高于落叶树种; (2)比叶面积的变化主要来源于叶习性(57.49%), 叶面积变化主要来源于种间(66.80%)和种内变异(27.52%), 叶干物质含量的变化主要来源于种间(38.12%)和种内(33.88%)变异, 但比茎密度的变化主要来源于种内变异(51.50%), 其次为种间变异(32.52%); (3)常绿和落叶树种种间水平的性状相关性可能掩盖各功能性状之间的相关性。种内变异能够显著影响群落间的植物功能性状差异, 但不同功能性状的种内变异程度存在差异。
Global plant trait relationships extend to the climatic extremes of the tundra biome
DOI:10.1038/s41467-020-15014-4
PMID:32165619
[本文引用: 1]
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland
DOI:10.1093/treephys/tpu016
PMID:24722001
[本文引用: 3]
We explored the impact of canopy position on leaf respiration (R) and associated traits in tree and shrub species growing in a lowland tropical rainforest in Far North Queensland, Australia. The range of traits quantified included: leaf R in darkness (RD) and in the light (RL; estimated using the Kok method); the temperature (T)-sensitivity of RD; light-saturated photosynthesis (Asat); leaf dry mass per unit area (LMA); and concentrations of leaf nitrogen (N), phosphorus (P), soluble sugars and starch. We found that LMA, and area-based N, P, sugars and starch concentrations were all higher in sun-exposed/upper canopy leaves, compared with their shaded/lower canopy and deep-shade/understory counterparts; similarly, area-based rates of RD, RL and Asat (at 28 °C) were all higher in the upper canopy leaves, indicating higher metabolic capacity in the upper canopy. The extent to which light inhibited R did not differ significantly between upper and lower canopy leaves, with the overall average inhibition being 32% across both canopy levels. Log-log RD-Asat relationships differed between upper and lower canopy leaves, with upper canopy leaves exhibiting higher rates of RD for a given Asat (both on an area and mass basis), as well as higher mass-based rates of RD for a given [N] and [P]. Over the 25-45 °C range, the T-sensitivity of RD was similar in upper and lower canopy leaves, with both canopy positions exhibiting Q10 values near 2.0 (i.e., doubling for every 10 °C rise in T) and Tmax values near 60 °C (i.e., T where RD reached maximal values). Thus, while rates of RD at 28 °C decreased with increasing depth in the canopy, the T-dependence of RD remained constant; these findings have important implications for vegetation-climate models that seek to predict carbon fluxes between tropical lowland rainforests and the atmosphere. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient: allometric scaling analysis
DOI:10.1007/s00468-008-0308-6 URL [本文引用: 3]
Scaling relationships among twig size, leaf size and leafing intensity in a successional series of subtropical forests
DOI:10.1093/treephys/tpt042 URL [本文引用: 1]
Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau
DOI:10.17521/cjpe.2019.0174 URL [本文引用: 1]
青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应
DOI:10.17521/cjpe.2019.0174
[本文引用: 1]
叶片性状-环境关系对于预测气候变化对植物的影响至关重要。该研究以青藏高原东缘常见阔叶木本植物为研究对象, 从47个样点采集了332个物种共666个种群的叶片, 测量了15个叶片性状, 调查了该区域木本植物叶片性状的变异程度, 并从种内和种间水平探讨了叶片性状对环境的响应及适应策略。结果表明, 反眏叶片大小的性状均具有较高的变异, 其中, 叶片面积是变异程度最大的性状。除气孔密度外, 大多数叶片性状与海拔显著相关。气候是叶片性状变异的重要驱动因素, 3.3%-29.5%的叶片性状变异由气候因子组合解释。其中, 气温对叶片性状变异解释度最高, 日照时间能解释大部分叶片性状的变异, 而降水量对叶片性状变异的解释度相对较小。与环境(海拔和气候因子)显著相关的叶片性状在种内明显少于种间水平, 可能是植物性状之间的协同变化与权衡使种内性状变异比较小, 从而减弱了种内叶片性状与环境因子的相关性。研究结果总体表明,叶片性状与木本植物对环境的适应策略密切相关, 植物通过选择小而厚的叶片和较短的叶柄以适应高海拔的 环境。
Changes of allometric relationships among leaf traits in different ontogenetic stages of Acer mono from different types of forests in Donglingshan of Beijing
DOI:10.5846/stxb201210011367 URL [本文引用: 4]
东灵山不同林型五角枫叶性状异速生长关系随发育阶段的变化
Irradiance heterogeneity within crown affects photosynthetic capacity and nitrogen distribution of leaves in Cedrela sinensis
Plant size, branch age and environment factors co-drive variations of branch traits of Pinus koraiensis
DOI:10.17521/cjpe.2020.0173 URL [本文引用: 1]
植株大小、枝龄和环境共同驱动红松枝性状的变异
Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types
DOI:10.3724/SP.J.1258.2011.00687 URL [本文引用: 2]
不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异
/
〈 |
|
〉 |
