植物生态学报, 2023, 47(7): 895-911 doi: 10.17521/cjpe.2022.0454

综述

附生维管植物生境营建作用的生态学功能

张中扬1, 宋希强1, 任明迅2, 张哲,1,2,*

1热带特色林木花卉遗传与种质创新教育部重点实验室, 海南大学林学院, 海口 570228

2环南海陆域生物多样性研究中心, 海南大学生态与环境学院, 海口 570228

Ecological functions of vascular epiphytes in habitat construction

ZHANG Zhong-Yang1, SONG Xi-Qiang1, REN Ming-Xun2, ZHANG Zhe,1,2,*

1Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, School of Forestry, Hainan University, Haikou 570228, China

2Center for Terrestrial Biodiversity of the South China Sea, School of Ecology and Environment, Hainan University, Haikou 570228, China

通讯作者: *张哲(zhangzhe@hainanu.edu.cn)

编委: 李意德

责任编辑: 乔鲜果

收稿日期: 2022-11-10   接受日期: 2023-02-24  

基金资助: 海南省自然科学基金(322RC569)
海南省自然科学基金(321QN188)
国家自然科学基金(32201347)

Corresponding authors: *ZHANG Zhe(zhangzhe@hainanu.edu.cn)

Received: 2022-11-10   Accepted: 2023-02-24  

Fund supported: The Hainan Natural Science Foundation(322RC569)
The Hainan Natural Science Foundation(321QN188)
The National Natural Science Foundation of China(32201347)

摘要

在森林生态系统中, 林冠层的附生维管植物通过缓冲环境压力, 为其他生物营建出重要的生境条件, 增加了森林生态系统的复杂性, 提升了物种多样性和群落稳定性。不同附生维管植物类群可以营建出不同的生境形式, 进而发挥独特的生态功能, 根据附生维管植物形态、功能特征的不同, 可将其分为收集型植物和蚁巢型植物两大类, 前者包括“篮式植物”和“水箱植物”, 后者包括“蚂蚁花园植物”和“蚁栖植物”。该文论述了附生维管植物所营建的生境对林冠生物多样性起到的积极作用; 同时揭示这些微生境的存在可以增加林冠群落结构及食物网的复杂性, 使群落更加稳定; 并进一步剖析植食性防御与营养获取是如何促使附生维管植物演化出营建生境的特殊结构, 以及这些结构对其他林冠生物演化产生的影响。结合当前林冠学研究热点, 探究具有生境营建能力的附生维管植物在林冠中的生物互作、群落演替、响应全球变化这3个热点问题中发挥的作用。该文论证了附生维管植物通过营建特殊生境和庇护所, 成为全球变化背景下具有极大保护价值的“伞护种”。建议加强不同类型附生维管植物演化历史与生态功能的研究, 并探讨在全球变化背景下的热带、亚热带森林生态系统生物多样性保护策略。

关键词: 森林生态系统; 生物多样性; 生物互作; 群落生态学; 伞护种; 林冠

Abstract

In forest ecosystems, vascular epiphytes in the forest canopy act as buffers against environmental pressures, create important habitats for other organisms, increase the complexity of forest ecosystems, and enhance species diversity and community stability. Vascular epiphytes can create distinct habitat forms and perform unique ecological functions. Based on their morphological functional characteristics, they can be categorized into two groups: collecting plants and ant-nest plants. The former group includes “trash-basket” and “tank-form” plants, while the latter group includes “ant-garden” and “ant-house” plants. The present paper discusses the positive effect of vascular epiphytes on canopy biodiversity through the creation of habitats. It reveals the existence of these microhabitats can increase the complexity of the canopy community structure and food web, thereby promoting community stability. Additionally, we analyze how herbivorous defense and nutrient acquisition promote the evolution of special structures of vascular epiphytes for creating habitats, and the impact of these structures on the evolution of other canopy organisms. Drawing on the current research hotspots in canopy science, this paper explores the role of habitat-constructing vascular epiphytes in the three prominent areas: biological interactions in forest canopies, community succession, and responses to global change. This paper highlights the role of habitat-constructing vascular epiphytes as “umbrella species” with significant conservation value in the face of global change. We suggested to strengthen the research on the evolutionary history and ecological functions of different types of vascular epiphytes, and to explore the biodiversity conservation strategies for tropical and subtropical forests ecosystems in the context of global change.

Keywords: forest ecosystem; biodiversity; biotic interaction; community ecology; umbrella species; canopy

PDF (2814KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

引用本文

张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能. 植物生态学报, 2023, 47(7): 895-911. DOI: 10.17521/cjpe.2022.0454

ZHANG Zhong-Yang, SONG Xi-Qiang, REN Ming-Xun, ZHANG Zhe. Ecological functions of vascular epiphytes in habitat construction. Chinese Journal of Plant Ecology, 2023, 47(7): 895-911. DOI: 10.17521/cjpe.2022.0454

森林生态系统中, 高大乔木作为初级基础物种塑造了最初的物理结构框架, 改善了环境和生物胁迫源(Ellison et al., 2005)。在此基础上, 由地表以上所有植物枝叶集合组成的林冠, 凭借垂直分层的三维结构, 为动植物提供了更多生存空间以及多样化的生态位(刘文耀等, 2006), 支持了大约40%的陆栖生物物种, 其中10%是林冠专有类群(Ozanne et al., 2003)。对植物而言, 林冠环境有相对充足的阳光, 但由于无法获得土壤水, 时常会遭受间断性缺水的影响(Helbsing et al., 2000), 水分成为限制植物向林冠扩张的主要因素(Gentry & Dodson, 1987)。随着收集叶、肉质叶、肉质茎、景天酸代谢(CAM)等一系列适应对策的出现(Zotz et al., 2020), 使诸如兰科、凤梨科、薄囊蕨纲等附生维管植物类群(后文简称附生植物)得以在其他植物体表面附着生长, 并在生命的所有阶段依赖于其他植物体的结构支撑(Zotz, 2016)。附生植物向林冠的扩张极大地开拓了附生植物的生存空间, 与林冠生物群的相互作用促使了更多特化生态位的出现, 致使附生植物快速分化, 拥有极高的物种多样性(Gamisch et al., 2021; Zotz et al., 2021)。

附生植物广泛存在于水热条件极佳的热带及亚热带森林生态系统中(Taylor et al., 2022), 附生植物在适应林冠的同时, 也发挥着次级基础物种的生态功能(Thomsen et al., 2018), 并进一步改善了环境的理化性质, 增加了环境异质性, 为多种生物类群营建出重要的微生境, 进而支持更多生物在林冠中生存, 是维持林冠高物种多样性的重要因素(Thomsen et al., 2018)。同时, 附生植物营建的生境是很多捕食性动物生长、繁殖和避暑的关键场所(Phillips et al., 2020), 影响着捕食性动物在林冠中的分布及种群规模, 间接起到了调控食物网与群落结构的作用(Rogy et al., 2019)。此外, 生物互作是驱动许多生物类群关键性演化模式的重要因素(Schemske et al., 2009), 附生植物与林冠生物群长期协同演化的过程中, 所营建生境与多种生物类群产生互作关系, 对彼此的演化模式产生了深远影响(Ruano-Fajardo et al., 2014; Volp & Lach, 2019)。然而附生植物如何促进林冠极高生物多样性的形成机制与过程还缺乏总结和分析。

本文综述了附生植物营建生境的类型及其生态功能, 综合分析不同类型生境的特征对林冠生物群多样性的影响; 探究附生植物通过营建生境对森林生态系统食物网、群落结构的间接调控; 论述附生植物营建生境对自身及关联生物群演化模式产生的影响, 为深入理解热带及亚热带森林生态系统多样性形成与维持机制提供依据。

1 附生植物营建生境种类

本文以附生植物形态特征和生态功能为依据, 将具有生境营建能力的附生植物分为两大类: 收集型和蚁巢型植物。收集型植物主要是指通过收集枯枝落叶或降雨形成类地表生境的类群; 蚁巢型植物则是指通过特化自身结构为蚂蚁提供住所或帮助蚂蚁稳固巢穴的类群。

1.1 收集型植物

为克服林冠缺乏养分和水分的极端环境, 收集型植物具有伸展的叶片, 形成篮状或兜状结构, 可以收集林冠层掉落下来的枯枝落叶和动物残骸, 也能够收集和保存大量的水分。这些被收集在特化结构中的生物残骸, 可以在热带雨林高温高湿的条件下快速分解, 为附生植物提供营养(Benzing, 2008)。因此, 这类植物也被冠以“营养海盗”、植物界的“滤食者”之名(Zona & Christenhusz, 2015; Zotz, 2016)。收集型植物广泛存在于全球热带地区, 旧热带区以水龙骨科、铁角蕨科和部分兰科植物为主; 新热带区以凤梨科、天南星科和兰科植物为主。

根据主要收集物的不同, 收集型植物可被分为收集枯枝败叶等固体物为主的篮式植物(trash- basket plant)和收集水分为主的水箱植物(tank forms plant) (Benzing, 2008), 两者在生境营建和共存物种方面都存在着极大的不同。

1.1.1 篮式植物

篮式植物通过特化的收集叶捕获凋落物, 像一个附着在树干上开口向上的篮子, 将凋落物收集在基部, 并伴随自身老根、老叶的分解形成高位土(suspended soil), 在林冠中营建了类似地表的土壤环境。

巢蕨(Asplenium nidus)及其近缘物种组成的鸟巢蕨类植物是最具代表性的篮式植物(图1A), 受关注度也最高。鸟巢蕨广泛分布于旧热带地区(Fayle et al., 2009), 每株鸟巢蕨可捕获0.1-20 kg干质量的碎屑(Ortega-Solis et al., 2021), 腐化形成的高位土pH呈酸性, 有机质及氮、磷、钾含量均高于地表土壤(徐诗涛, 2013)。同时, 鸟巢蕨的海绵状根有极强的吸水能力, 加之叶片的遮阴作用, 使其对温度、湿度的变化具有一定的缓冲能力(Turner & Foster, 2006), 能在8-13天持续干燥环境中保持30%以上的水分(Scheffers et al., 2014a)。

图1

图1   附生维管植物所营建生境特征。A, 篮式植物。B, 水箱植物。C, 蚂蚁花园。D, 蚁栖植物。1, 篮式结构截获有机物; 2, 营养物质缓慢下渗; 3, 水箱结构储存水分; 4, 两栖动物依赖的水箱生境; 5, 叶片缓冲雨水冲刷; 6, 根系维系蚁巢防止解体; 7, 蚁巢为植物提供营养; 8, 蚂蚁保护附生植物; 9, Dischidia major的常规叶片; 10, 中空膨大的特化叶片; 11, 根向特化叶内部生长; 12, 根吸收蚂蚁活动产生的有机物。

Fig. 1   Habitat characteristics constructed by vascular epiphytes. A, Trash-basket plant. B, Tank forms plant. C, Ant-gardens. D, Ant- house plant. 1, basket structure intercepts organic matter; 2, nutrients slowly penetrate downward; 3, tank structure to store water; 4, amphibians that depend on tank bromeliads; 5, leaves to buffer rainwater erosion; 6, root entanglement prevents the nest from disintegrating; 7, ant nest provides nutrients for the plants; 8, ants protect the epiphytes; 9, regular leaves of Dischidia major; 10, hollow expanded specialized leaves; 11, roots grow into specialized leaves; 12, roots absorb organic matter produced by ant activity.


篮式植物在全球热带及亚热带暖湿阔叶林中广泛存在, 主要分布于30° N至30° S之间, 在20° N至 20° S之内种类最为丰富, 随纬度升高种类逐渐减少。目前全球已知7科超过200种植物具有篮式结构(表1), 其中天南星科种类最多, 其次是水龙骨科和兰科(Ortega-Solis et al., 2021)。

表1   具有篮式结构的附生植物及其中的动物类型

Table 1  Epiphytes plants with trash-basket structure and animals living inside

科 Family属 Genus分布地 Distribution主要共存动物(纲)
Main coexisting fauna (class)
参考文献
Reference
天南星科
Araceae
花烛属 Anthurium中美洲、南美洲 Central, South AmericaF, MZona & Christenhusz, 2015; Ortega-Solis et al., 2021
喜林芋属 Philodendron中美洲、南美洲 Central, South America
崖角藤属 Rhaphidophora东南亚 Southeast Asia
藤芋属 Scindapsus东南亚 Southeast Asia
铁角蕨科
Aspleniaceae
铁角蕨属 Asplenium热带、亚热带广布 Widespread in
Tropics, Subtropics
A-N
聚星草科
Asteliaceae
Collospermum大洋洲 OceaniaA-G, J, K, L
兰科
Orchidaceae
合萼兰属 Acriopsis东南亚、大洋洲 Southeast Asia, OceaniaN
Ansellia中非、东非、南非 Central Africa,
East Africa, South Africa
石豆兰属 Bulbophyllum东南亚 Southeast Asia
Catasetum中美洲、南美洲 Central, South America
Clowesia中美洲 Central America
Coryanthes中美洲、南美洲 Central, South America
兰属 Cymbidium东南亚 Southeast Asia
Cyrtopodium中美洲、南美洲 Central, South America
Gongora中美洲、南美洲 Central, South America
Grammangis东非 East Africa
Grammatophyllum东南亚 Southeast Asia
Graphorkis中非、东非 Central Africa, East Africa
Stanhopea中美洲、南美洲 Central, South America
Thecostele东南亚 Southeast Asia
露兜树科
Pandanaceae
Benstonea东南亚 Southeast Asia
水龙骨科
Polypodiaceae
Campyloneurum中美洲、南美洲 Central, South AmericaA-C, E-G, J, L
槲蕨属 Drynaria南亚、东亚、东南亚、大洋洲 South Asia, East Asia,
Southeast Asia, Oceania
舌蕨属 Elaphoglossum热带广布 Widespread in Tropics
禾叶蕨属 Grammitis南美洲 South America
剑蕨属 Loxogramme中非、东非 Central Africa, East Africa
星蕨属 Microsorum中非、东非、东南亚、大洋洲 Central Africa,
East Africa, Southeast Asia, Oceania
鹿角蕨属 Platycerium热带广布 Widespread in Tropics
环花草科
Cyclanthaceae
Ludovia中美洲、南美洲 Central, South America

A, 环带纲; B, 唇足纲; C, 弹尾纲; D, 倍足纲; E, 蛛形纲; F, 昆虫纲; G, 软甲纲; H, 蠋䗃纲; I, 综合纲; J, 腹足纲; K, 两栖纲; L, 爬行纲; M, 鸟纲; N, 哺乳纲; —, 无数据。

A: Clitellata; B, Chilopoda; C, Collembola; D, Diplopoda; E, Arachnida; F, Insecta; G, Malacostraca; H, Pauropoda; I, Symphyla; J, Gastropoda; K, Amphibia; L, Reptilia; M, Aves; N, Mammalia; —, no data.

新窗口打开| 下载CSV


我国不乏巢蕨、崖姜(Drynaria coronans)、槲蕨(Drynaria roosii)、纹瓣兰(Cymbidium aloifolium)等篮式植物(Zona & Christenhusz, 2015), 广泛分布于海南、广东、广西、台湾、云南、贵州等地。其中大型蕨类及兰科植物主要生长在较为原始的森林林冠中上层, 而槲蕨属的部分篮式植物具有较好的抗旱能力, 通常生长于林缘甚至可附生于城市行道树上。对于我国篮式植物的物种组成、种群规模以及对局域生态系统的作用还有待进一步探究。

1.1.2 水箱植物

凤梨科附生植物演化出一条与篮式植物类似, 但更加强调水分保存的路线, 被称为水箱附生植物或水箱凤梨(tank bromeliads) (Spicer & Woods, 2022)。其依靠莲座式排列的革质叶片组成贮水器, 在林冠的间歇性供水中储存雨水, 形成空中水池(图1B), 该演化特征大大提升了凤梨科植物的适应能力, 加之叶片具有吸收性毛状体、CAM途径以及鸟类传粉等一系列适应特征, 极大地拓宽了凤梨科植物的适应范围和生态位, 使其成为附生植物中多样性仅次于兰科的第二大类群(Benzing, 2008)。

凤梨科中有19属植物具有水箱结构(表2), 在美洲的热带及亚热带地区广泛存在, 集中分布于25° N至25° S之间, 丽穗凤梨属(Vriesea)在内的几个广布属可分布至30° N和30° S附近。

表2   具有水箱结构的凤梨科植物及其中的动物类型

Table 2  Bromeliads plants with tank structure and animals living inside

亚科
Subfamily

Genus
分布
Distribution
主要共存动物(纲)
Main coexisting fauna (class)
参考文献
Reference
沙漠凤梨亚科
Pitcairnioideae
Brocchinia南美洲 South AmericaPGivnish et al.,1984
凤梨亚科
Bromelioideae
Aechmea中美洲、南美洲 Central, South AmericaA-N, P-TFreire et al., 2021
Androlepis中美洲 Central AmericaFFragoso & Rojas-Fernández, 1996
Araeococcus中美洲 Central AmericaPBenzing & Bennett, 2000
水塔花属 Billbergia中美洲、南美洲 Central, South AmericaPCardoso et al., 2015
Canistrum中美洲 Central AmericaPAlbertoni et al., 2016
Hohenbergia中美洲 Central AmericaPAlbertoni et al., 2016
Lymania中美洲 Central AmericaBenzing & Bennett, 2000
Neoregelia中美洲 Central AmericaA, I, M, P, Q, RAlmeida & Souza, 2020
Ronnbergia中美洲、南美洲 Central, South AmericaBenzing & Bennett, 2000
Nidularium中美洲 Central AmericaPAlbertoni et al., 2016
Quesnelia中美洲 Central AmericaPCardoso et al., 2015
空气凤梨亚科
Tillandsioideae
Alcantarea中美洲 Central AmericaP, RHenle & Knogge, 2009
Mezobromelia南美洲 South AmericaPMoyano & Benitez-Ortiz, 2013
Catopsis中美洲 Central AmericaE, I, P, O, L, K, JNielsen, 2011
Glomeropitcairnia中美洲、南美洲 Central, South AmericaI, P, QJowers et al., 2008
Guzmania中美洲、南美洲 Central, South AmericaP, Q, TTorreias et al., 2010
铁兰属 Tillandsia中美洲、南美洲 Central, South AmericaI, K, M, N, P, HFrank et al., 2004
Vriesea中美洲、南美洲 Central, South AmericaA, F, G, I, K, E, N, P, H, QLaviski et al., 2021

A, 线虫纲; B, 轮虫纲; C, 线形纲; D, 腹毛纲; E, 涡虫纲; F, 寡毛纲; G, 蛭纲; H, 腹足纲; I, 蛛形纲; J, 介形纲; K, 甲壳纲; L, 软甲纲; M, 唇足纲; N, 倍足纲; O, 弹尾纲; P, 昆虫纲; Q, 两栖纲; R, 爬行纲; S, 鸟纲; T, 哺乳纲; —, 无数据。

A, Nematoda; B, Rotifera; C, Nematomorpha; D, Gastrotricha; E, Turbellaria; F, Oligochaeta; G, Hirudinea; H, Gastropoda; I, Arachnida; J, Ostracoda; K, Crustacea; L, Isopoda; M, Chilopoda; N, Diplopoda; O, Collembola; P, Insecta; Q, Amphibia; R, Reptilia; S, Aves; T, Mammalia; —, no data.

新窗口打开| 下载CSV


1.2 蚁巢型植物

蚂蚁作为热带地区无脊椎动物中的绝对优势种, 凭借其高度社会化的劳动分工以及全年活动的特征, 对生态系统有着巨大的影响力, 很可能是促使部分植物演化的重要推动力(Rowe, 2012)。在林冠中, 筑巢空间与食物是影响蚂蚁种群的重要因素(Blüthgen & Feldhaar, 2009)。附生植物与蚂蚁之间需求的互补, 使两者之间演化出了多种形式的共生关系(Benzing, 2008), 这些共生关系的主要内核便在于: 附生植物可为蚂蚁提供食物以及适宜的栖息空间, 而作为回报, 蚂蚁为附生植物提供保护, 同时蚂蚁活动产生的有机物碎屑也是部分植物类群重要的养分来源(Blüthgen & Feldhaar, 2009)。从生境营建的层面来说, 附生植物与蚂蚁拥有两种极为特别的共生模式: 蚂蚁花园(ant-gardens)和蚁栖(ant-house)植物(Zotz, 2016)。

1.2.1 蚂蚁花园植物

蚂蚁和开花植物有着悠久的共生历史(Moreau et al., 2006), 其中蚂蚁花园被认为是最复杂、最特殊的植物-动物互作方式(Orivel & Leroy, 2011), 早在20世纪初, Ule (1901)便在亚马孙低地雨林中发现并描述了这对奇妙的共生关系, 时至今日这一现象背后所蕴含的生态学价值依然吸引着众多研究者。

在降雨充沛的热带雨林, 蚂蚁用有机材料建造的树栖巢穴易受大雨冲刷解体, 为此蚂蚁会依靠种子上的化学信号将特定附生植物的种子带入巢中, 使附生植物在巢中扎根生长形成共生关系以此稳固蚁巢(图1C) (Kaufmann & Maschwitz, 2006)。在这种共生关系中, 附生植物在蚂蚁的保护下安全萌发生长(Giladi, 2006), 富含有机质的蚁巢也能为植物提供充分的养分与水分; 而蚂蚁除了食用种子上的油质体等营养物质获得报酬外(黄曼和王东, 2015), 最重要的是依靠附生植物根系稳固蚁巢结构, 同时附生植物的叶也在很大程度上缓冲了暴雨对蚁巢的冲刷, 防止蚁巢解体(Yu, 1994)。

目前, 蚂蚁花园在热带美洲与东南亚地区均有报道, 主要分布于10° N至10° S之间, 随纬度升高逐渐减少(Kaufmann & Maschwitz, 2006), 花园的形成是蚂蚁与附生植物长期协同演化的产物, 具有高度的复杂性与专一性, 以至于许多该类植物仅能生长在蚂蚁花园系统中(Davidson & Epstein, 1989)。蚂蚁花园植物主要有12科20属(表3); 其中新热带区主要有天南星科、凤梨科、仙人掌科、兰科、胡椒科和茄科6个科; 旧热带区主要有夹竹桃科、野牡丹科、姜科和荨麻科4个科; 而苦苣苔科与桑科在新旧热带均有分布(Orivel & Leroy, 2011)。

表3   蚂蚁花园植物代表科、属及其主要分布地

Table 3  Representative families, genera, and the major distribution areas of ant-garden epiphyte species

科 Family属 Genus分布地 Distribution参考文献 Reference
夹竹桃科 Apocynaceae眼树莲属 Dischidia东南亚 Southeast AsiaKaufmann, 2002
Hoya东南亚 Southeast AsiaKaufmann, 2002
苦苣苔科 Gesneriaceae芒毛苣苔属 Aeschynanthus东南亚 Southeast AsiaKaufmann & Maschwitz, 2006
Codonanthe中美洲、南美洲 Central, South AmericaBlüthgen et al., 2001
Columnea中美洲、南美洲 Central, South AmericaOrivel & Leroy, 2011
野牡丹科 Melastomataceae酸脚杆属 Medinilla东南亚 Southeast AsiaKaufmann, 2002
厚距花属 Pachycentria东南亚 Southeast AsiaKaufmann, 2002
桑科 Moraceae榕属 Ficus东南亚、中美洲、南美洲
Southeast Asia, Central, South America
Kaufmann, 2002; Davidson & Epstein, 1989
荨麻科 Urticaceae锥头麻属 Poikilospermum东南亚 Southeast AsiaKaufmann & Maschwitz, 2006; Kaufmann, 2002
姜科 Zingiberaceae姜花属 Hedychium东南亚 Southeast AsiaKaufmann, 2002
天南星科 Araceae花烛属 Anthurium南美洲 South AmericaBlüthgen et al., 2001
喜林芋属 Philodendron南美洲 South AmericaSchmit-Neuerburg & Blüthgen, 2007;
Blüthgen et al., 2001
凤梨科 BromeliaceaeAechmea中美洲、南美洲 Central, South AmericaMorales-Linares et al., 2016
Neoregelia南美洲 South AmericaDavidson & Epstein, 1989
Streptocalyx南美洲 South AmericaDavidson & Epstein, 1989
仙人掌科 Cactaceae昙花属 Epiphyllum中美洲、南美洲 Central, South AmericaSchmit-Neuerburg & Blüthgen, 2007
兰科 OrchidaceaeCoryanthes中美洲 Central AmericaMorales-Linares et al., 2016
Epidendrum中美洲 Central AmericaMorales-Linares et al., 2016
胡椒科 Piperaceae草胡椒属 Peperomia中美洲、南美洲 Central, South AmericaYoungsteadt et al., 2009
茄科 SolanaceaeMarkea中美洲、南美洲 Central, South AmericaDejean et al., 2000

新窗口打开| 下载CSV


1.2.2 蚁栖植物

自然界中, 仅有部分树栖蚁能够自己建造巢穴(如上文蚂蚁花园中的蚂蚁), 大多树栖蚁只能依靠植物上自然形成的洞穴筑巢, 导致筑巢空间成为树栖蚁的紧缺资源(Blüthgen & Feldhaar, 2009)。在附生植物与蚂蚁的协同演化过程中, 出现了一类附生蚁栖植物, 它们通过特化自身某一部位器官, 使其适宜蚂蚁居住。作为回报, 该类植物可依靠蚂蚁防御植食性动物, 同时利用蚂蚁修剪其他植物的枝条, 抑制竞争性植物的侵扰(张霜等, 2010)。部分附生蚁栖植物还可收集蚂蚁活动产生的有机碎屑, 吸收其中的养分(Zotz, 2016; 王亮等, 2020), 因此这类植物也被称作蚁养植物(ant-fed plants) (Rico-Gray & Oliveira, 2008)。

附生蚁栖植物多分布于20° N-20° S之间, 主要有5科12属(表4), 其中旧热带区主要有茜草科夹竹桃科; 新热带区主要有兰科、凤梨科; 水龙骨科在新旧热带区均存在蚁栖植物, 我国是否存在未被记录的蚁栖植物还有待进一步研究。

表4   附生蚁栖植物主要科、属、分布地及特化器官

Table 4  Representative families, genera, distribution and the specialized organs of ant-house epiphytes

科 Family属 Genus特化器官 Specialized organ分布地 Distribution参考文献 Reference
茜草科
Rubiaceae
Myrmecodia通道式块状茎
Channel tuberous stem
东南亚、大洋洲
Southeast Asia, Oceania
Kapitany, 2008
Hydnophytum通道式块状茎
Channel tuberous stem
东南亚、大洋洲
Southeast Asia, Oceania
Kapitany, 2008
Squamellaria通道式块状茎
Channel tuberous stem
大洋洲
Oceania
Chomicki & Renner, 2019
夹竹桃科
Apocynaceae
眼树莲属 Dischidia特化叶
Special leaves
东南亚、大洋洲
Southeast Asia, Oceania
Treseder et al., 1995
水龙骨科
Polypodiaceae
Lecanopteris中空根状茎
Hollow rhizome
东南亚、大洋洲
Southeast Asia, Oceania
Gay, 1991
兰科
Orchidaceae
鹿角蕨属 Platycerium叶包鞘
Leaf sheath
东南亚
Southeast Asia
Franken & Roos, 1982
Microgramma中空的侧根状囊
Hollow lateral root sac
南美洲
South America
Davidson & Epstein, 1989
Caularthron中空假鳞茎
Hollow pseudobulb
中美洲、南美洲
Central, South America
Fisher et al., 1990
凤梨科
Bromeliaceae
Myrmecophila中空假鳞茎
Hollow pseudobulb
中美洲、南美洲
Central, South America
Fisher et al., 1990
Schomburgkia中空假鳞茎
Hollow pseudobulb
中美洲、南美洲
Central, South America
Rico-Gray & Thien, 1989
Dimerandra中空假鳞茎
Hollow pseudobulb
中美洲、南美洲
Central, South America
Stuntz et al., 2002
Tillandsia叶基部扩宽
Leaf base widening
中美洲、南美洲
Central, South America
Benzing, 1970

新窗口打开| 下载CSV


2 附生植物生境营建作用的生态学功能

2.1 提升生态系统物种多样性

附生植物营建的生境对生态系统物种多样性具有积极影响, 收集型植物及其收集物在林冠中营建了难能可贵的类地表环境, 为诸多无法适应林冠暴晒、缺水等逆境的生物提供了必要的生境(Ortega- Solís et al, 2017)。分布广泛的收集型植物及其营建的特殊生境在不同大洲的热带地区发挥着相似的生态功能, 支持了各地区生物类群在林冠中的生存。多项研究均指出, 收集型植物是局域尺度上非常重要的伞护种(umbrella species), 在生物多样性保护、生态过程和生态系统生态学研究中具有重要的意义, 值得加强研究和保护(Karasawa & Hijii, 2006; Phillips et al., 2020)。

2.1.1 篮式植物的高位土生境

篮式植物在林冠中重建了一个类似地表的高位土环境(Ortega-Solis et al., 2021), 在满足自身养分与水分需求的同时, 为林冠多种生物营建了理想的生境(Beaulieu et al., 2010)。许多动物的生长、繁殖都会依赖篮式植物营建的生境(Phillips et al., 2020), 已记录有15纲97科的动物居住于各类篮式植物中, 其中有90科都是无脊椎动物。以鸟巢蕨为例, 加里曼丹岛热带森林中, 林冠中几乎一半的无脊椎动物生物量汇聚于鸟巢蕨中(Ellwood & Foster, 2004), 在日本南部亚热带森林的研究表明, 鸟巢蕨提升了当地无脊椎动物丰度, 并可以为特定物种提供生境, 有助于在亚热带森林尺度上保持无脊椎动物的高物种多样性(Karasawa & Hijii, 2006)。除无脊椎动物之外, 鸟巢蕨是蛙类在林冠中重要的生境, 在吕宋岛南部有近1/5的鸟巢蕨被蛙类利用, 尤其是在白天高温之下, 鸟巢蕨的温、湿度的缓冲能力为蛙类创造了理想的避暑空间, 同时潮湿凉爽的内部环境也是蛙类重要的繁殖场所(Scheffers et al., 2014b)。在加里曼丹岛人工安置的32株鸟巢蕨中, 半年后均记录到爬行纲的半叶趾虎(Hemiphyllodactylus typus)及Lipinia vittigera在其中栖息并产卵(Donald et al, 2017b)。对哺乳动物来说, 鸟巢蕨是东南亚地区斑翅果蝠(Balionycteris maculata)搭建繁殖巢的理想场所, 增加了果蝠的繁殖成功率(Hodgkison et al., 2003)。

篮式植物潮湿肥沃的内部结构利于其他植物种子的萌发生长, 有35科至少72种植物被记录生长其中(Ortega-Solis et al., 2021), 内部植物出现的概率与该物种种子的传播能力显著正相关(Taylor & Burns, 2015)。此外, 篮式植物高位土的养分及水分会向下方渗透, 使得位于篮式植物下方的其他附生植物也可获得养分、水分供给(Ortega-Solis et al., 2021), 进而形成一个以篮式植物为中心, 垂直生长的“空中花园”系统。值得注意的是, 生长于篮内的其他植物会与篮式植物形成一定程度的竞争关系, 如遮挡篮式植物的阳光并加快水分的蒸腾。篮式植物如何规避竞争性植物的种子在篮内萌发对自身造成的不利影响, 也是值得探究的科学问题。

2.1.2 水箱凤梨的水生生境

由水箱凤梨特殊贮水器营建的空中水池对许多林冠生物来说是不可或缺的水生生境, 其对新热带森林生态系统的重要性甚至高于大型鸟巢蕨之于旧热带区森林生态系统(Zotz, 2016)。在哥伦比亚的云雾林中, 每hm2地域内的水箱凤梨可蓄水5万L, 且每个大型水箱凤梨都能创造出高质量的生境, 足以支持一个微型水生生态系统(Benzing, 2008)。水箱凤梨庇护了大量节肢动物, 对哥斯达黎加130份水箱凤梨进行样本监测, 发现了470种节肢动物, 其中大部分为双翅目的各种蚊类和蛛形纲的捕食性动物(Ochoa et al., 1993)。水箱凤梨为诸如卵齿蟾科、雨蛙科、箭毒蛙科等蛙类提供了必要的生存环境(Benzing & Bennett, 2000; Mccracken & Forstner, 2014)。这些蛙类可以在一天中最热、最干燥的时候依赖水箱凤梨获得阴湿环境(Benzing, 2008), 繁殖季在凤梨中产卵, 孵化后的蝌蚪在水箱中生长发育。与蛙类相似, 生活在美洲的有尾目蝾螈类动物也十分依赖水箱凤梨的庇护, 在中美洲部分地区几乎一半的水箱凤梨中都有蝾螈居住。此外, 还存在一些蜥蜴与蛇类居住于水箱凤梨中的案例, 但随机性较强(Mccracken & Forstner, 2014)。除动物外, 水生的狸藻科食虫植物, 如Utricularia humboldtii也会在水箱凤梨中生长(Benzing, 2008)。新热带地区广泛分布的水箱凤梨增加了雨林中物种的多样性(Brouard et al., 2012), 因此被称为新热带生态系统中的“生物多样性扩增器” (Thiago et al., 2010)。

2.2 调控群落结构及食物网

2.2.1 收集型植物的生态系统工程师作用

生态系统工程师是一类通过提供环境条件而非营养资源来调节环境和影响其他物种分布的生物(Rogy et al., 2019)。附生植物所营建的生境是很多捕食者在林冠中重要的生存场所, 凭借捕食者的影响力, 间接调控着森林生态系统群落结构及食物网。

旧热带区的鸟巢蕨是顶级无脊椎动物捕食者蜈蚣在林冠中的重要栖息场所, 仅从加里曼丹岛4株鸟巢蕨中就发现有305条蜈蚣居住(Phillips et al., 2020)。而新热带区的凤梨科植物是顶级无脊椎动物捕食者蜘蛛觅食、交配、产卵及幼体成长的场所(Gonçalves et al., 2011)。收集型植物影响了捕食性动物在林冠的分布和适合度, 进而凭借捕食者对其他动物的捕食, 间接调控着森林生态系统的食物网与群落结构, 被证明具有生态系统工程师作用(Rogy et al., 2019)。

收集型植物对于小型无脊椎动物丰度的提升也进一步提升了鸟类获取食物的效率(Cestari, 2009), 水箱凤梨是鸟类访问频率最高的一类附生植物, 除了花蜜和果实这些直接吸引鸟类的资源, 水箱凤梨内部包含大量无脊椎动物、两栖动物, 是鸟类搜寻食物的热点地区, 分布于南美的鹤鹰(Geranospiza caerulescens)通过长腿和异常灵活的跗骨关节, 可以高效地捕获水箱凤梨中的动物(Benzing & Bennett, 2000)。附生植物所营建的生境使食物网结构更加多元化, 增加了群落的稳定性。

国内外关于收集型植物与林冠生物群相互作用的研究主要以动物为主, 与其他植物间的相互作用还缺乏系统性的研究。收集型植物与其他植物可能存在多样化的互作方式, 如种子在其内部萌发, 附生植物在其下方附生, 攀援植物穿过并汲取养分水分等。

2.2.2 蚁巢型植物对蚂蚁分布的影响

蚂蚁是生态系统中具有较强影响力的类群, 可通过对植食性动物的驱逐, 对植物种子的收集等多种行为, 调控林冠生物的群落结构(Rico-Gray & Oliveira, 2008)。而蚂蚁花园中的附生植物可以使蚁巢更加牢固(Ule, 1901), 并在雨季及时吸收巢内水分防止蚁巢解体(Zotz, 2016), 与附生植物的结盟让蚂蚁可以在更暴露、光线更丰富的环境中建造更大的巢穴, 提高了蚂蚁在林冠中的优势度(Yu, 1994)。同时附生蚁栖植物是影响非筑巢型蚂蚁在林冠中分布的重要因素, 提升了蚂蚁在林冠中的分布密度(Volp & Lach, 2019)。蚁巢型植物影响蚂蚁在林冠中的分布及种群规模, 间接实现了对森林生态系统群落结构的调节。不同于收集型植物仅为动物提供生境, 蚁巢型植物为了吸引蚂蚁, 常常提供花外蜜、油质体等营养物质。

树栖蚁的巢穴在降雨充沛的地区解体风险更大, 因而该地区的树栖蚁会更倾向于与附生植物共生以保护巢穴。随着气候的变化, 低纬度地区极端干旱事件频率升高, 是否会导致附生植物与蚂蚁间的共生关系趋于松散, 亦是值得长期关注的科学问题。

2.3 影响物种演化历程

收集型植物在营建生境的过程中, 部分依赖收集型附生维管植物生境支持而进入林冠的生物类群极有可能形成独立的生态位, 逐渐分化为林冠特有物种。水箱凤梨在林冠中营建的水生生境具有极高的独立性, 其广泛的分布保证了相关生物类群可以获得稳定的生境支持, 由此促使了部分高度依赖水箱生境的生物逐渐分化, 形成特有种。

对附生植物而言, 蚂蚁极有可能是产生选择压力的重要驱动因素, 它们促使附生蚁栖植物牺牲一部分储存器官, 将其特化为中空的腔用于与蚂蚁共生, 从而获得额外的养分和保护。

2.3.1 水箱凤梨中的特有物种

分子系统发育研究表明, 一类专性生活在水箱凤梨内的龙虱科昆虫, 其分支起源可追溯至1 200万- 2 300万年前, 这恰好与凤梨科植物在约2 000万年前演化出蓄水叶结构的时间相近(Balke et al., 2008), 以此佐证了水箱凤梨作为一种古老的生境营建者, 在较长的演化时间内都支持着专门的动物群。

不同水箱凤梨的贮水池之间具有不同的理化特性, 甚至含有某些特定物质, 由此产生的生境异质性, 提升了所庇护的原生生物和小型后生动物类群的多样性(Foissner et al., 2003)。原生生物纤毛虫(Ciliophora spp.)是生态系统中参与营养循环和控制细菌种群的重要组成部分, 水箱凤梨为纤毛虫提供了一个林冠之上广泛分布的生存空间(Foissner et al., 2003)。由于干旱时期水箱内空间和资源减少, 水箱构成一个高度竞争的微生态系统, 而竞争和隔离对居住其中的纤毛虫物种的形成和分化起到了重要作用(Durán-Ramírez et al., 2015)。目前在水箱凤梨中已发现170种纤毛虫, 其中16种为水箱特有种(Durán- Ramírez et al., 2020)。水箱凤梨在两栖动物这类易受干旱影响的小型脊椎动物演化过程中扮演了决定性的角色, 为适应水箱内部构造, 一些蝌蚪特化出异常纤细的身体, 以适应紧密重叠的凤梨叶基构成的狭窄空间(Benzing & Bennett, 2000)。部分仅生活在水箱之中的蝾螈为了适应水箱内部环境, 特化出较小的躯干(约50 mm长), 细长的尾及四肢, 分开的趾以及正面定向的眼睛(Ruano-Fajardo et al., 2014)。

在庇护其他生物的过程中, 水箱凤梨也获得一定的回报, 水箱动物活动产生的排泄物以及尸体在丰富的微生物群的作用下快速分解(Leroy et al., 2016), 并最终被凤梨叶片的吸收性毛状体吸收利用(Leroy et al., 2019)。有蛙类居住的水箱凤梨稳定氮同位素组成(δ15N)值显著高于无蛙类居住的个体(Romero et al., 2010), 部分水箱凤梨从蜘蛛获取的干物质氮含量占其总氮含量的2.4% ± 0.4% (Gonçalves et al., 2011)。另一方面, 或许是因为水箱内部动物可提供丰富的有机物质, 加之微生物群的辅助分解为水箱凤梨提供了充足养分, 由此也促使水箱凤梨根部退化, 而叶片吸收性毛状体发达。

2.3.2 蚁栖植物的特化

在与蚂蚁共生的过程中, 蚁栖植物展现了极具创意性的演化方式。旧热带区茜草科的MyrmecodiaHydnophytum植物通常生活在低海拔沿海养分贫瘠的环境(Kapitany, 2008)。随植株的生长, 其下胚层逐渐扩大并发育出一系列复杂的内腔以营建适宜蚂蚁居住的环境(Volp & Lach, 2019), 内腔通道两旁排列着许多突起的内部根, 能够吸收水和溶解其中的营养物质(Rowe, 2012)。蚂蚁入住后在通道内留下多种形式的有机碎屑, 碎屑中的养分最终被内部根吸收供给植物(Abdullah et al., 2017)。夹竹桃科眼树莲属(Dischidia)植物通过特化部分叶片, 使其膨大中空, 形成囊状的蚂蚁叶(ant-leaves), 且腔壁上有气孔, 形成一个稳定可控的内部环境(Kapitany, 2008)。随着蚂蚁的定居, 特化叶不断收集蚂蚁活动产生的有机碎屑, 同时产生不定根从基部开口处向叶内生长蔓延。通过稳定同位素分析表明, 宿主植物叶片中39%的碳来自蚂蚁相关的呼吸作用, 29%的氮来自沉积到蚂蚁叶中的有机碎屑(Treseder et al., 1995)。水龙骨科Lecanopteris属植物拥有二型根状茎, 分为有叶着生的实心部分和无叶的空心部分, 空心部分为蚂蚁提供住所(Gay, 1991)。使用15N同位素标记的饲养实验证明了蚂蚁活动产生的营养物质可以被Lecanopteris属植物吸收利用(Gay, 1991)。鹿角蕨属(Platycerium)的P. ridleyi通过营养叶包裹隆起形成中空区域, 以适宜蚂蚁居住(Franken & Roos, 1982)。

新热带区的兰科的CaularthronMyrmecophilaSchomburgkiaDimerandra等属植物, 其部分假鳞茎会自然发育成内部中空, 仅在基部留有一个开口的形态, 以适宜蚂蚁居住(Fisher et al., 1990) (图1D)。这些植物能够收集蚂蚁活动产生的有机碎屑并从碎屑中获得氮素(Gegenbauer et al., 2012), 有蚂蚁居住的植株可获得更加充足的养分, 产生更多的芽和果(Fisher, 1992)。而为了更大限度地吸引蚂蚁前来居住, 兰科植物还常常提供花外蜜作为蚂蚁的食物(Fisher & Zimmerman, 1988)。南美洲的Microgramma bifrons通过演化出中空的囊状侧根吸引蚂蚁居住(Davidson & Epstein, 1989)。凤梨科Tillandsia属植物在加宽的叶基之间有空腔, 蚂蚁可以通过穿孔方式进入这些空腔定居(Benzing, 1970)。

大部分蚁栖植物都是通过改造储水器官以适宜蚂蚁居住的, 难免导致受持续性干旱影响的风险增加, 其演化历程还值得未来加以探究。

3 展望

附生植物生活的林冠层仍存在着大量科学问题有待深入了解, 随着进入林冠的工具不断升级, 这片被生态学家们冠以“第八大洲”之名的神秘世界不断地向人们展示其重要的生态功能和复杂的生物互作模式(Lowman & Schowalter, 2012)。我国幅员辽阔, 拥有丰富多样的森林类型, 其中广袤的热带及亚热带地区分布有丰富多样的附生植物类群(吴毅等, 2016), 它们独特的生态功能和研究价值在未来的科研中值得更加深入地探究。本节梳理国际上与附生植物营建生境相关的研究热点问题(Nakamura et al., 2017), 并提出未来研究建议与展望。

3.1 附生植物生物互作的研究

3.1.1 与动物间的相互作用

附生植物与动物间有很多直接性的生物互作方式, 如传粉与传播种子等, 已经被证明是对彼此产生选择压力的重要因素(Spicer & Woods, 2022)。随着林冠学的发展, 诸如营建生境这样的间接相互作用在塑造林冠生物多样性、影响物种演化方面的作用也越发受到重视, 当前的研究显示, 植食性防御与营养获取可能是促使附生植物与动物互利共生的重要影响因素。

大部分附生植物生长速率缓慢, 植食性动物造成的叶片损伤会对植物产生极为不利的影响, 为此与蚂蚁或其他捕食动物的共生成为一种十分有利的防御手段。蚂蚁庞大的种群规模加上全年活动等特征是附生植物最理想的合作伙伴, 为蚂蚁提供栖息地是附生植物能长时间与蚂蚁建立联系并获取保护的重要方式。很多收集型植物能为多种捕食性动物营建适宜生境以获得保护, 如水箱凤梨内部蛙类以周边植食性节肢动物为食, 凤梨顶生高耸的花序也确保了这些蛙类不会吃掉潜在的传粉者(Sabagh et al., 2022), 此外各类蜘蛛与蚂蚁也为水箱凤梨提供了保护(Gonçalves et al., 2011)。相比于凤梨科植物, 鸟巢蕨的叶片质薄, 长度可超过1 m, 理论上鸟巢蕨叶片更易受植食动物侵扰, 目前已知可为鸟巢蕨提供防御的生物类群有蚂蚁与蜈蚣(Woods, 2017; Phillips et al., 2020), 但它们大部分活动范围限于基部区域, 鸟巢蕨是否具有相关化学防御手段, 或与某些生物类群存在特定互作关系依然是一个值得探究的问题。

在资源相对匮乏的林冠环境, 动物活动产生的有机物对附生植物来说是十分重要的养分来源, 通过为动物提供适宜生境使其长期在附生植物营养吸收范围内活动, 对双方适合度的提升都有帮助。关于蚂蚁与附生植物共生关系的研究由来已久, 最新的一项研究揭示了蚂蚁与附生植物之间存在栽培者与作物的关系, 在斐济茜草科Squamellaria属蚁栖植物的研究中观察到蚂蚁中存在特定分工类群, 专门负责为Squamellaria属植物内部的吸收性疣状体供给营养, 蚂蚁通过喂养它们以增加蚁巢的规模(Chomicki & Renner, 2019)。这为后续的研究提供了一个非常有趣的思路, 部分蚁巢型附生植物可能是被蚂蚁驯化的一类特殊“作物”。而对于收集型植物来说, 共生动物在营养方面的贡献除了提供有机产物外, 分解枯枝落叶也十分重要, 为此收集型植物中常常有蚯蚓、马陆之类的分解者。然而这些行动能力较弱的分解者如何在林冠中分散生长的收集型植物之间扩散还是一个值得探究的问题。

此外附生植物作为生态系统工程师所发挥的生态功能中还有很多值得探究的问题, 如这些微生境的存在对动物种内及种间关系产生了什么样的影响。附生植物营建的生境可能为部分种内竞争激烈的地表生物提供了栖息场所, 使这些生物通过向林冠迁徙以缓解竞争压力, 而长时间对林冠的适应可能导致生态位的分化, 由此形成新的物种。诸如巢蕨、凤梨之类的大型收集型植物微生境内部足以形成一个小的生物集群, 其中各物种种间会发生何种形式的相互作用关系? 以及这些作用是否会使不同地区的微生境中存在相对固定的物种组成并排斥外来者的入侵? 这些还值得深入探究。

3.1.2 与植物间的相互作用

相较于动物间的互作, 附生植物与其他植物间的互作关系更难以被观察, 其机理大多涉及生理层面的反应, 且作用周期较长。关于林冠植物间的相互作用研究还不透彻, 很多观点还存在争议, 其中之一就是附生植物与宿主植物间的关系问题。部分研究认为附生植物的存在会影响降雨的再分配, 提升宿主的水分利用效率(Mendieta-Leiva et al., 2015),一些宿主树种可以在它们所支撑的附生植物有机质层下形成不定根网络来获取其中的养分(Nadkarni, 1981)。而相反的研究则认为附生植物的大量生长会对宿主韧皮部和木质部产生机械性损伤, 收集型附生植物私有化的枯枝落叶是对宿主养分的掠夺, 因此宿主通常会采取化感作用抑制附生植物萌发或是频繁脱落树皮以摆脱附生植物(Spicer & Woods, 2022), 而一些凤梨科植物的凋落物中甚至含有抑制宿主幼苗萌发的化学物质(Flores-Palacios et al., 2014), 使得附生植物与宿主间的关系更加复杂化。总体而言, 一些观察性结论可能带有偏差进而影响实验结果, 如基于枯老的树干上存在更多附生植物推断附生植物对宿主造成损伤。附生植物与宿主间的相互作用受两者物种种类, 附生植物的丰度、功能组成、空间分布, 降水频率和强度, 气候带和生态系统类型等因素综合影响, 相互作用的类型和程度有所不同, 因此不能一概而论。现阶段附生植物与宿主相互作用的研究主要集中在热带区域, 完善亚热带地区的相关研究有利于深入了解两者间的作用方式与强度随纬度变化的格局。

胁迫梯度假说预测了不同植物之间在低资源、高胁迫环境中更倾向于采取正相互作用以助于彼此的生存和繁殖(Bertness & Callaway, 1994)。在林冠环境中, 附生植物之间的密切物理联系有利于改善干旱的胁迫, 因此在低密度状态下附生植物通常都表现出不同程度的互惠作用(Spicer & Woods, 2022), 如凤梨科交织的根系可以帮助捕捉其他附生植物随风传播的种子并有助于其萌发(Chaves & Rossatto, 2020); 大鳞巢蕨(A. antiquum)为附生在下方的Haplopteris zosterifolia提供了较为稳定的水分供给(Jian et al., 2013)。随着附生植物密度的不断上升, 当达到某一临界值后种间关系可能由互惠转向竞争, 由于大多数附生植物在林冠中的分布都相对松散, 因此竞争是否会对附生植物多样性、丰度或群落聚集模式产生显著影响还存在争议(Spicer & Woods, 2022), 未来的研究应从更宏观且动态的角度进行探究, 依靠林冠塔吊等现代化科研设施, 对整个片区的附生植物进行长期监测, 分析附生植物的空间分布以及群落结构的动态变化, 以此探究附生植物种间种内各种形式的相互作用及其产生的影响。

3.1.3 与微生物的相互作用

微生物在附生植物的演化历程中发挥了重要的作用。附生植物天敌逃避假说(epiphyte enemy escape hypothesis)认为附生植物躲避陆地土壤中的病原体是驱动附生习性演化的影响因素之一(Spicer et al., 2020)。相反地, 附生植物也往往通过与微生物共生的方式增加自身的胁迫耐受性、植食性防御和营养获取等(Spicer & Woods, 2022)。随着宏基因组学的不断发展, 未来针对林冠微生物的研究将更加精确, 有助于探究不同微生物类群与附生植物之间的专性共生、养分利用、功能性状及其他潜在的相互作用关系等。

对收集型植物来说, 微生物在辅助分解有机物方面起到了重要的作用, 而林冠环境温、湿度的极端变化也将筛选适应于环境压力的微生物类群(Donald et al., 2017a)。基于DNA测序法的研究表明, 水箱凤梨、林冠腐殖质以及地表土壤三者之间的微生物类群都有显著的差异(Pittl et al., 2010); 基于磷脂脂肪酸法的研究表明, 同一地区的巢蕨高位土与林冠腐殖质中的微生物群落较相似, 不同地区巢蕨中的微生物类群有所不同(Donald et al., 2020)。当前的研究认为, 收集型植物高位土中的微生物大多是从当地环境中获取的, 关于其中是否拥有特定微生物类群还需要更多数据支持, 不过这也给未来的研究提供了一个思路, 森林中特定林冠微生物的存在可能是影响收集型植物顺利积累腐殖质的关键因素, 微生物类群的地理分布可能在一定程度上影响收集型植物的扩散。因此, 未来对于热带、亚热带地区孤立次生林的生态修复过程中需要综合考虑林冠微生物起到的重要作用。

3.2 林冠群落的演替学

林冠群落的演替是林冠学中的一个新兴研究方向, 当前研究较为透彻的是附生地衣的演替(Ellis & Ellis, 2013), 然而关于附生植物(特别是维管植物)是否存在演替现象还具有较大争议, 争议的核心在于附生植物是否可以被看做独立的群落。Mendieta- Leiva等(2015)认为附生植物在林冠中的分布普遍处于低密度状态, 彼此间的相互作用较少, 不符合组成群落的要求, 所以视为一种植物集群。而Woods等(2017)认为附生植物的演替在内冠之中(距树干2 m范围内)遵循替代模型, 而在整个林冠的角度上遵循积累模型。即宿主植物的幼年时期郁闭度较低, 该阶段通常是较为耐旱型的附生植物生长于内冠中, 如水龙骨科等; 随宿主的生长, 冠层内郁闭度逐渐上升, 中期阶段内冠出现了以兰科为代表的类群; 当宿主发育成熟, 冠层内环境趋于稳定时, 内冠通常被大型蕨类占据, 而前期和中期的附生物种并没有因此消失, 而是向冠层外围转移了, 因此小树上的附生植物种类通常是大树的子集(Woods et al., 2015)。

附生植物集群是否存在演替还有待进一步研究, 当前还无法确定究竟是林冠生物间的相互作用导致了附生植物类群的变化, 还是由于林冠内环境异质性的增加吸引了不同附生植物生长于各自的适生区, 不过站在林冠群落的角度来考虑的话, 演替现象确实存在。Nadkarni (2000)在哥斯达黎加将宿主乔木的部分分枝树皮剥落, 并观察裸露的枝干在随后10年中的变化, 结果显示附生植物在完全独立的分枝上定植极为缓慢, 经过6年时间才有苔藓等非维管植物在分枝下方的阴影处生长, 8年后苔藓覆盖层自下而上包裹分枝, 直至10年时附生维管植物才能在苔藓基质中生长。王艺宸等(2022)在海南的研究中也观察到附生维管植物大多生长于苔藓基质之上。由此我们推测林冠群落的演替应该是在森林群落发育到相对稳定后, 林冠环境基本成型才开始的, 林冠中的先锋物种通常是地衣、苔藓等生物, 地衣、苔藓对树皮的初步改造为附生维管植物的生长创造了条件, 当具有较强生境营建能力的附生维管植物大量生长后, 又为更多林冠动物群创造了生存条件, 由此增加了林冠群落结构的复杂程度。

探究林冠群落的演替有助于从更宏观的角度动态思考林冠的时空变化, 也能综合了解宿主植物、林冠植物与动物之间的相互作用方式。不过该理论还有待补充完善, 未来值得从附生植物集群的更替方式、林冠群落的演替历程、具有生境营建能力的附生植物在群落演替中起到的作用等方面进行探究。

3.3 全球变化下的附生植物

3.3.1 人类活动的影响

在社会经济发展的趋势之下, 人类不可避免地需要将更多土地资源用于农业等方面的开发, 导致原始森林被逐渐吞噬。而附生植物高度依赖连续完整且冠层发育良好的原始森林提供生存场所, 土地利用方式的改变成为附生植物最严重的威胁(Flores- Palacios & García-Franco, 2008)。目前, 以兰科为代表的很多附生植物都面临着生境丧失或是生境破碎化的风险(李大程等, 2022), 与连续生境相比, 破碎化生境中繁殖的植物后代表现出整体性的遗传冲刷, 削弱了它们应对环境变化的能力, 从而增加了灭绝的风险(Aguilar et al., 2019), 同时传粉者丧失进一步加剧了近亲繁殖和遗传漂变的危害。

当前研究表明, 在人工环境中保留老树、种植当地树种作为景观树种等措施都有利于附生植物种群的存活(Adhikari et al., 2012)。对景观生态学家来说, 如何通过科学合理的规划让原始森林斑块之间保留生态廊道或生态踏脚石, 使附生植物可以在破碎生境中进行基因交流将会是一个很有意义的科学问题。

3.3.2 气候变化的影响

自然群落对全球气候变化的响应是当代生态学的一大重点研究问题, 而附生植物特殊的生活方式也决定了它们是最易受气候变化影响的生物类群之一(Larrea & Werner, 2010)。全球CO2浓度和温度的上升, 理论上会使附生维管植物生长速率提升且适生范围扩张, 然而温度升高对苔藓产生的致命影响极有可能间接导致附生维管植物类群的衰退(Zotz & Bader, 2009)。同时, 温度的升高加速了林冠水分的丧失, 对蛙类等无法耐受高温干旱的林冠动物产生极为不利的影响, 使得林冠中具有温度缓冲能力的附生植物显得尤为重要。Scheffers等(2014a)的统计表明, 全球范围内由附生植物营建的微生境可以平均降低3.9 ℃的环境温度, 以此提升了林冠动物应对高温的能力。

附生植物的生存依赖稳定的降水, 极端天气事件的频发是对附生植物最严重的气候威胁, 进而导致部分附生植物因此灭绝(Taylor et al., 2022)。在这种情况下, 具有降雨再分配能力的收集型植物所发挥的生态功能将更加显著, 成为林冠生物干旱条件下的避难所。此外, 降雨是影响林冠动物与附生植物相互作用的重要因素, 很多生物互作都是在雨季更加旺盛, 干旱的持续可能会使两者间的互作关系趋于松散, 减少了群落中特化生态位的存在。

基于附生植物的气候敏感性, 制定合理有效的附生植物监测方案是了解一个地区的森林群落应对气候变化的重要手段, 在生物多样性保护管理工作中建议对巢蕨、崖姜、纹瓣兰等具有生境营建能力的附生植物制定更加严格的保护措施, 使它们在极端气候下充分发挥伞护种功能, 实现一条可持续发展的保育策略。

致谢

感谢海南大学谭珂、冯雪萍、何荣晓、徐诗涛老师在论文撰写过程中给予的建议, 感谢李大程、陈枳衡和金珉廷同学为本文绘图。

参考文献

Abdullah NS, Ahmad WYW, Sabri NA (2017).

New compounds from Hydnophytum formicarum young tubers

Malaysian Journal of Analytical Sciences, 21, 778-783.

[本文引用: 1]

Adhikari YP, Fischer A, Fischer HS (2012).

Micro-site conditions of epiphytic orchids in a human impact gradient in Kathmandu valley, Nepal

Journal of Mountain Science, 9, 331-342.

DOI:10.1007/s11629-009-2262-1      URL     [本文引用: 1]

Aguilar R, Cristóbal Pérez EJ, Balvino-Olvera FJ, de Jesús Aguilar-Aguilar M, Aguirre-Acosta N, Ashworth L, Lobo JA, Martén-Rodríguez S, Fuchs EJ, Sanchez-Montoya G, Bernardello G, Quesada M (2019).

Habitat fragmentation reduces plant progeny quality: a global synthesis

Ecology Letters, 22, 1163-1173.

DOI:10.1111/ele.13272      PMID:31087604      [本文引用: 1]

Most of the world's land surface is currently under human use and natural habitats remain as fragmented samples of the original landscapes. Measuring the quality of plant progeny sired in these pervasive environments represents a fundamental endeavour for predicting the evolutionary potential of plant populations remaining in fragmented habitats and thus their ability to adapt to changing environments. By means of hierarchical and phylogenetically independent meta-analyses we reviewed habitat fragmentation effects on the genetic and biological characteristics of progenies across 179 plant species. Progeny sired in fragmented habitats showed overall genetic erosion in contrast with progeny sired in continuous habitats, with the exception of plants pollinated by vertebrates. Similarly, plant progeny in fragmented habitats showed reduced germination, survival and growth. Habitat fragmentation had stronger negative effects on the progeny vigour of outcrossing- than mixed-mating plant species, except for vertebrate-pollinated species. Finally, we observed that increased inbreeding coefficients due to fragmentation correlated negatively with progeny vigour. Our findings reveal a gloomy future for angiosperms remaining in fragmented habitats as fewer sired progeny of lower quality may decrease recruitment of plant populations, thereby increasing their probability of extinction.© 2019 John Wiley & Sons Ltd/CNRS.

Albertoni FF, Steiner J, Zillikens A (2016).

The associated beetle fauna of Hohenbergia augusta and Vriesea friburgensis (Bromeliaceae) in southern Brazil

Journal of Natural History, 50, 2917-2939.

DOI:10.1080/00222933.2016.1218079      URL     [本文引用: 3]

Almeida AM, Souza RM (2020).

Nematode trophic structure in the phytotelma of Neoregelia cruenta (Bromeliaceae) in relation to microenvironmental and climate variables

Journal of Nematology, 52, e2020-100. DOI: 10.21307/jofnem-2020-100.

DOI:10.21307/jofnem-2020-100      [本文引用: 1]

Balke M, Gómez-Zurita J, Ribera I, Viloria A, Zillikens A, Steiner J, García M, Hendrich L, Vogler AP (2008).

Ancient associations of aquatic beetles and tank bromeliads in the Neotropical forest canopy

Proceedings of the National Academy of Sciences of the United States of America, 105, 6356-6361.

[本文引用: 1]

Beaulieu F, Walter DE, Proctor HC, Kitching RL (2010).

The canopy starts at 0.5 m: predatory mites (Acari: Mesostigmata) differ between rain forest floor soil and suspended soil at any height

Biotropica, 42, 704-709.

DOI:10.1111/j.1744-7429.2010.00638.x      URL     [本文引用: 1]

Benzing DH (1970).

An investigation of two bromeliad myrmecophytes: Tillandsia butzii Mez, T. caput-medusae E. Morren, and their ants

Bulletin of the Torrey Botanical Club, 97, 109-115.

DOI:10.2307/2483400      URL     [本文引用: 2]

Benzing DH (2008). Vascular Epiphytes: General Biology and Related Biota. Cambridge University Press, New York.

[本文引用: 7]

Benzing DH, Bennett B (2000). Bromeliaceae: Profile of an Adaptive Radiation. Cambridge University Press, New York.

[本文引用: 6]

Bertness MD, Callaway R (1994).

Positive interactions in communities

Trends in Ecology & Evolution, 9, 191-193.

DOI:10.1016/0169-5347(94)90088-4      URL     [本文引用: 1]

Blüthgen N, Feldhaar H (2009). Food and shelter: how resources influence ant ecology//Lach L, Parr C, Abbott K. Ant Ecology. Oxford University Press, Oxford.

[本文引用: 3]

Blüthgen N, Schmit-Neuerburg V, Engwald S, Barthlott W (2001).

Ants as epiphyte gardeners: comparing the nutrient quality of ant and termite canopy substrates in a Venezuelan lowland rain forest

Journal of Tropical Ecology, 17, 887-894.

DOI:10.1017/S0266467401001651      URL     [本文引用: 3]

The poor availability of suitable substrate and nutrients strongly limits the distribution and growth of vascular epiphytes in lowland rain forests (Benzing 1990, Nieder et al. 2000). In some epiphyte species nutrition may be assisted by adventitious roots that grow into animal debris in plant cavities such as domatia and bromeliad tanks (Huxley 1980). For epiphyte species lacking these modifications, animals may nevertheless play a substantial role by providing a large proportion of the limited substrate in lowland forests (Catling 1995, Longino 1986). Such associations between epiphytes and nutrient/substrate-providing animals may often be non-specific and commensalistic (Davidson & Epstein 1989, Longino 1986), while highly evolved mutualistic associations occur in the case of ant gardens which are very abundant in neotropical forests (Huxley 1980, Kleinfeldt 1986, Ule 1901). Ant gardens typically are densely inhabited by different epiphytes from various plant families whose seeds or fruits are attractive to the ants and carried into the nest (Davidson 1988). In addition, ants have been suggested to play a role in protection and nutrition of ant-garden epiphytes (Kleinfeldt 1978, 1986). Ants may benefit from epiphytes through increased nest stability (Yu 1994) or nutrition via extrafloral nectaries, fruit pulps or seed arils (Davidson 1988, Kleinfeldt 1986). In this study,we compare the nutrient quality of such ant gardens with other similar substrates rarely inhabited by epiphytes, namely nests and galleries of ants and termites.

Brouard O, Céréghino R, Corbara B, Leroy C, Pelozuelo L, Dejean A, Carrias JF (2012).

Understorey environments influence functional diversity in tank-bromeliad ecosystems

Freshwater Biology, 57, 815-823.

DOI:10.1111/fwb.2012.57.issue-4      URL     [本文引用: 1]

Cardoso CAA, Lourenço-de-Oliveira R, Codeço CT, Motta MA (2015).

Mosquitoes in bromeliads at ground level of the Brazilian Atlantic forest: the relationship between mosquito fauna, water volume, and plant type

Annals of the Entomological Society of America, 108, 449-458.

PMID:27418695      [本文引用: 2]

Water accumulating in the axils of bromeliads provides habitat for numerous invertebrates, frequently among them, immature mosquitoes. To evaluate mosquito richness in bromeliads and the relationship between mosquito presence and biotic and abiotic variables, we performed a study in the Parque Nacional do Itatiaia, Rio de Janeiro, Brazil. Mosquitoes of genus were the most abundant and varied in species richness, among which nine belonged to subgenus, () Lutz and Theobald being the most frequent species. Sabethines of genera and were found in low numbers. () Lane and Cerqueira and () Lane and Cerqueira tend to proliferate in bromeliads of the genus which hold less than 50 ml of water and grow either alone or with (Theobald). The larger the volume of water, the greater the chance of finding, as well as () species, which seems to be the more generalist as it is present in different bromeliad types with a large range of plant water holding capacities.

Cestari C (2009).

Epiphyte plants use by birds in Brazil

Oecologia Australis, 13, 689-712.

DOI:10.4257/oeco      URL     [本文引用: 1]

Chaves CJN, Rossatto DR (2020).

Unravelling intricate interactions among atmospheric bromeliads with highly overlapping niches in seasonal systems

Plant Biology, 22, 243-251.

DOI:10.1111/plb.13073      PMID:31736163      [本文引用: 1]

Biotic and abiotic interactions are important factors that explain community assembly. For example, epiphytic communities are shaped by tree traits that can act as environmental filters, but also by positive and/or negative interactions among coexisting epiphytes on a tree. Here, we studied interactions among three widespread atmospheric bromeliads with overlapping niches (Tillandsia recurvata, T. tricholepis and T. pohliana), using experimental data about facilitation through seed capture, interspecific interaction during seed germination and competition among adult individuals. We aim to understand how species interactions are reflected in the natural coexisting patterns of epiphytes in communities at high and low tree densities. Tillandsia pohliana showed higher facilitation by capturing almost all wind-dispersing seeds, and had the largest reduction in seed germination in the presence of any adult individual, also presenting a relatively high rate of adult mortality in the presence of other individuals. Our results indicate higher colonisation ability for T. pohliana and distinct strategies of rapid exploitation of T. recurvata and T. tricholepis individuals. In natural communities, the coexistence among atmospheric bromeliads may be hampered by dispersal limitations in wind-dispersed epiphytes at high tree density conditions, but a negative effect of T. recurvata on T. pohliana is still reflected in their reduced coexistence. However, competitive patterns observed in the experimental data may be overshadowed by a possible mass effect driving large communities under such conditions. Our results show the joint effect of positive interactions and high dispersal levels on the community patterns of atmospheric bromeliads.© 2019 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

Chomicki G, Renner SS (2019).

Farming by ants remodels nutrient uptake in epiphytes

New Phytologist, 223, 2011-2023.

DOI:10.1111/nph.15855      PMID:31236967      [本文引用: 2]

True agriculture - defined by habitual planting, cultivation, harvesting and dependence of a farmer on a crop - is known from fungi farmed by ants, termites or beetles, and plants farmed by humans or ants. Because farmers supply their crops with nutrients, they have the potential to modify crop nutrition over evolutionary time. Here we test this hypothesis in ant/plant farming symbioses. We used field experiments, phylogenetic-comparative analyses and computed-tomography scanning to investigate how the evolution of farming by ants has impacted the nutrition of locally coexisting species in the epiphytic genus Squamellaria (Rubiaceae). Using isotope-labelled mineral and organic nitrogen, we show that specialised ants actively and exclusively fertilise hyperabsorptive warts on the inner walls of plant-formed structures (domatia) where they nest, sharply contrasting with nitrogen provisioning by ants in nonfarming generalist symbioses. Similar hyperabsorptive warts have evolved repeatedly in lineages colonised by farming ants. Our study supports the idea that millions of years of ant agriculture have remodelled plant physiology, shifting from ant-derived nutrients as by-products to active and targeted fertilisation on hyperabsorptive sites. The increased efficiency of ant-derived nutrient provisioning appears to stem from a combination of farming ant behaviour and plant 'crop' traits.© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.

Davidson DW, Epstein WW (1989). Epileptic associations with ants//Lüttge U. Vascular Plants as Epiphytes: Evolution and Ecophysiology. Springer, Berlin.

[本文引用: 6]

Dejean A, Corbara B, Orivel J, Snelling RR, Delabie J, Belin-Depoux M (2000).

The importance of ant gardens in the pioneer vegetal formations of French Guiana (Hymenoptera: Formicidae)

Sociobiology, 35, 425-440.

[本文引用: 1]

Donald J, Bonnett S, Cutler M, Majalap N, Maxfield P, Ellwood MDF (2017a).

Physical conditions regulate the fungal to bacterial ratios of a tropical suspended soil

Forests, 8, 474. DOI: 10.3390/f8120474.

DOI:10.3390/f8120474      URL     [本文引用: 1]

Donald J, Clegg J, Ellwood MD (2017b).

Colonisation of epiphytic ferns by skinks and geckos in the high canopy of a Bornean rainforest

Herpetological Bulletin, 141, 32-34.

[本文引用: 1]

Donald J, Maxfield P, Leroy C, Ellwood MDF (2020).

Epiphytic suspended soils from Borneo and Amazonia differ in their microbial community composition

Acta Oecologica, 106, 103586. DOI: 10.1016/j.actao.2020.103586.

DOI:10.1016/j.actao.2020.103586      URL     [本文引用: 1]

Durán-Ramírez CA, Dias RJP, Mayén-Estrada R (2020).

Checklist of ciliates (Alveolata: Ciliophora) that inhabit in bromeliads from the Neotropical Region

Zootaxa, 4895, zootaxa.4895.1.1. DOI: 10.11646/zootaxa.4895.1.1.

DOI:10.11646/zootaxa.4895.1.1      [本文引用: 1]

Durán-Ramírez CA, García-Franco JG, Foissner W, Mayén- Estrada R (2015).

Free-living ciliates from epiphytic tank bromeliads in Mexico

European Journal of Protistology, 51, 15-33.

DOI:10.1016/j.ejop.2014.09.002      PMID:25497463      [本文引用: 1]

The ciliate diversity of Mexican bromeliads is poorly known. We studied the ciliate community of two species of epiphytic tank bromeliads from 48 individuals of Tillandsia heterophylla and four of T. prodigiosa. The bromeliads occurred on over 22 tree host species. Samples were collected during 2009 and 2010 in a mountain cloud forest and in two coffee plantations and in a pine-oak forest. The ciliates were identified in live and protargol preparations. We recorded 61 ciliate species distributed in 39 genera grouped in eight classes. Ten species were frequent in the 52 samples (20 ± 3.2) and Leptopharynx bromeliophilus was the most frequent recorded in 25 samples. Thirty-three species are new for the fauna of Mexico, 24 species have been recorded for the first time in tank bromeliads. The classes Spirotrichea, Oligohymenophorea and Colpodea presented the highest number of species, 16, 14, and 12, respectively. Colpoda was the most species-rich genus being present with six species. A low similarity between areas and seasons was obtained with Jaccard's index. We conclude that the two bromeliads species host a rich ciliate diversity whose knowledge contributes to the question of ciliate distribution and specifically, in tank bromeliads.Copyright © 2014 Elsevier GmbH. All rights reserved.

Ellis CJ, Ellis SC (2013).

Signatures of autogenic epiphyte succession for an aspen chronosequence

Journal of Vegetation Science, 24, 688-701.

DOI:10.1111/jvs.2013.24.issue-4      URL     [本文引用: 1]

Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL, Sobczak WV, Stinson KA, et al. (2005).

Loss of foundation species: consequences for the structure and dynamics of forested ecosystems

Frontiers in Ecology and the Environment, 3, 479-486.

DOI:10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2      URL     [本文引用: 1]

Ellwood MDF, Foster WA (2004).

Doubling the estimate of invertebrate biomass in a rainforest canopy

Nature, 429, 549-551.

DOI:10.1038/nature02560      [本文引用: 1]

Fayle TM, Chung AYC, Dumbrell AJ, Eggleton P, Foster WA (2009).

The effect of rain forest canopy architecture on the distribution of epiphytic ferns (Asplenium spp.) in Sabah, Malaysia

Biotropica, 41, 676-681.

DOI:10.1111/btp.2009.41.issue-6      URL     [本文引用: 1]

Fisher BL (1992).

Facultative ant association benefits a Neotropical orchid

Journal of Tropical Ecology, 8, 109-114.

DOI:10.1017/S0266467400006179      URL     [本文引用: 1]

Fisher BL, da Silveira Lobo Sternberg L, Price D (1990).

Variation in the use of orchid extrafloral nectar by ants

Oecologia, 83, 263-266.

DOI:10.1007/BF00317763      PMID:22160122      [本文引用: 3]

The relation between ant-plant specificity and the use of host plants as a resource was investigated in the facultative, myrmecophytic orchid, Caularthron bilamellatum (Rchg.f.) Schult. Using stable isotopes, we determined the portion of the ants' diets derived from host plants. We documented that six ant species inhabiting the orchid: (1) derived nutritional benefit from host orchids, and (2) had species-specific levels of extrafloral nectar use. Proportionate contribution of extrafloral nectar to ant diets ranged from 11 to 48%. These results demonstrate extreme interspecific differences in the nutritional benefits received by ants from host orchids. Interspecific differences in nutritional benefits from orchid nectar may be affected by colony size, nutritional needs, behavioral ecology of the ants, and the abundance of alternate food sources.

Fisher BL, Zimmerman JK (1988).

Ant/orchid associations in the Barro Colorado national monument, Panama

Lindleyana, 3, 12-16.

[本文引用: 1]

Flores-Palacios A, Barbosa-Duchateau CL, Valencia-Díaz S, Capistrán-Barradas A, García-Franco JG (2014).

Direct and indirect effects of Tillandsia recurvata on Prosopis laevigata in the Chihuahua Desert scrubland of San Luis Potosi, Mexico

Journal of Arid Environments, 104, 88-95.

DOI:10.1016/j.jaridenv.2014.02.010      URL     [本文引用: 1]

Flores-Palacios A, García-Franco JG (2008).

Habitat isolation changes the beta diversity of the vascular epiphyte community in lower montane forest, Veracruz, Mexico

Biodiversity and Conservation, 17, 191-207.

DOI:10.1007/s10531-007-9239-6      URL     [本文引用: 1]

Foissner W, Strüder-Kypke M, van der Staay GWM, Moon-van der Staay SY, Hackstein JHP (2003).

Endemic ciliates (Protozoa, Ciliophora) from tank bromeliads (Bromeliaceae): a combined morphological, molecular, and ecological study

European Journal of Protistology, 39, 365-372.

DOI:10.1078/0932-4739-00005      URL     [本文引用: 2]

Fragoso C, Rojas-Fernández P (1996).

Earthworms inhabiting bromeliads in Mexican tropical rainforests: ecological and historical determinants

Journal of Tropical Ecology, 12, 729-734.

DOI:10.1017/S0266467400009925      URL     [本文引用: 1]

Frank JH, Sreenivasan S, Benshoff PJ, Deyrup MA, Edwards GB, Halbert SE, Hamon AB, Lowman MD, Mockford EL, Scheffrahn RH, Steck GJ, Thomas MC, Walker TJ, Welbourn WC (2004).

Invertebrate animals extracted from native tillandsia (Bromeliales: Bromeliaceae) in Sarasota County, Florida

Florida Entomologist, 87, 176-185.

[本文引用: 1]

Franken NAP, Roos MC (1982).

The first record of Platycerium ridleyi in Sumatera

American Fern Journal, 72, 12-14.

DOI:10.2307/1547080      URL     [本文引用: 2]

Freire RM, Montero GA, Vesprini JL, Barberis IM (2021).

Review of the interactions of an ecological keystone species, Aechmea distichantha Lem. (Bromeliaceae), with the associated fauna

Journal of Natural History, 55, 283-303.

DOI:10.1080/00222933.2021.1902010      URL     [本文引用: 1]

Gamisch A, Winter K, Fischer GA, Comes HP (2021).

Evolution of crassulacean acid metabolism (CAM) as an escape from ecological niche conservatism in Malagasy Bulbophyllum (Orchidaceae)

New Phytologist, 231, 1236-1248.

DOI:10.1111/nph.v231.3      URL     [本文引用: 1]

Gay H (1991).

Ant-houses in the fern genus Lecanopteris Reinw. (Polypodiaceae): the rhizome morphology and architecture of L. sarcopus Teijsm. & Binnend. and L. darnaedii Hennipman

Botanical Journal of the Linnean Society, 106, 199-208.

DOI:10.1111/boj.1991.106.issue-3      URL     [本文引用: 3]

Gegenbauer C, Mayer VE, Zotz G, Richter A (2012).

Uptake of ant-derived nitrogen in the myrmecophytic orchid Caularthron bilamellatum

Annals of Botany, 110, 757-766.

DOI:10.1093/aob/mcs140      PMID:22778148      [本文引用: 1]

Mutualistic ant-plant associations are common in a variety of plant families. Some myrmecophytic plants, such as the epiphytic orchid Caularthron bilamellatum, actively form hollow structures that provide nesting space for ants (myrmecodomatia), despite a substantial loss of water-storage tissue. This study aimed at assessing the ability of the orchid to take up nitrogen from ant-inhabited domatia as possible trade-off for the sacrifice of potential water storage capacity.Nitrogen uptake capabilities and uptake kinetics of (15)N-labelled compounds (NH(4)(+), urea and l -glutamine) were studied in field-grown Caularthron bilamellatum plants in a tropical moist forest in Panama. Plants were either labelled directly, by injecting substrates into the hollow pseudobulbs or indirectly, by labelling of the associated ants in situ.Caularthron bilamellatum plants were able to take up all tested inorganic and organic nitrogen forms through the inner surface of the pseudobulbs. Uptake of NH(4)(+) and glutamine followed Michaelis-Menten kinetics, but urea uptake was not saturable up to 2 mm. (15)N-labelled compounds were rapidly translocated and incorporated into vegetative and reproductive structures. By labelling ants with (15)N in situ, we were able to prove that ants transfer N to the plants under field conditions.Based on (15)N labelling experiments we were able to demonstrate, for the first time, that a myrmecophytic orchid is capable of actively acquiring different forms of nitrogen from its domatia and that nutrient flux from ants to plants does indeed occur under natural conditions. This suggests that beyond anti-herbivore protection host plants benefit from ants by taking up nitrogen derived from ant debris.

Gentry AH, Dodson CH (1987).

Diversity and biogeography of neotropical vascular epiphytes

Annals of the Missouri Botanical Garden, 74, 205-233.

DOI:10.2307/2399395      URL     [本文引用: 1]

Giladi I (2006).

Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory

Oikos, 112, 481-492.

DOI:10.1111/oik.2006.112.issue-3      URL     [本文引用: 1]

Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984).

Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats

The American Naturalist, 124, 479-497.

DOI:10.1086/284289      URL     [本文引用: 1]

Gonçalves AZ, Mercier H, Mazzafera P, Romero GQ (2011).

Spider-fed bromeliads: seasonal and interspecific variation in plant performance

Annals of Botany, 107, 1047-1055.

DOI:10.1093/aob/mcr047      PMID:21385776      [本文引用: 3]

Several animals that live on bromeliads can contribute to plant nutrition through nitrogen provisioning (digestive mutualism). The bromeliad-living spider Psecas chapoda (Salticidae) inhabits and breeds on Bromelia balansae in regions of South America, but in specific regions can also appear on Ananas comosus (pineapple) plantations and Aechmea distichantha.Using isotopic and physiological methods in greenhouse experiments, the role of labelled ((15)N) spider faeces and Drosophila melanogaster flies in the nutrition and growth of each host plant was evaluated, as well as seasonal variation in the importance of this digestive mutualism.Spiders contributed 0·6 ± 0·2 % (mean ± s.e.; dry season) to 2·7 ± 1 % (wet season) to the total nitrogen in B. balansae, 2·4 ± 0·4 % (dry) to 4·1 ± 0·3 % (wet) in An. comosus and 3·8 ± 0·4 % (dry) to 5 ± 1 % (wet) in Ae. distichantha. In contrast, flies did not contribute to the nutrition of these bromeliads. Chlorophylls and carotenoid concentrations did not differ among treatments. Plants that received faeces had higher soluble protein concentrations and leaf growth (RGR) only during the wet season.These results indicate that the mutualism between spiders and bromeliads is seasonally restricted, generating a conditional outcome. There was interspecific variation in nutrient uptake, probably related to each species' performance and photosynthetic pathways. Whereas B. balansae seems to use nitrogen for growth, Ae. distichantha apparently stores nitrogen for stressful nutritional conditions. Bromeliads absorbed more nitrogen coming from spider faeces than from flies, reinforcing the beneficial role played by predators in these digestive mutualisms.

Helbsing S, Riederer M, Zotz G (2000).

Cuticles of vascular epiphytes: efficient barriers for water loss after stomatal closure?

Annals of Botany, 86, 765-769.

DOI:10.1006/anbo.2000.1239      URL     [本文引用: 1]

Henle K, Knogge C (2009).

Water-filled bromeliad as roost site of a tropical lizard, Urostrophus vautieri (Sauria: Leiosauridae)

Studies on Neotropical Fauna and Environment, 44, 161-162.

DOI:10.1080/01650520903189817      URL     [本文引用: 1]

Hodgkison R, Balding ST, Akbar Z, Kunz TH (2003).

Roosting ecology and social organization of the spotted-winged fruit bat, Balionycteris maculata (Chiroptera: Pteropodidae), in a Malaysian lowland dipterocarp forest

Journal of Tropical Ecology, 19, 667-676.

DOI:10.1017/S0266467403006060      URL     [本文引用: 1]

The aims of this study were to investigate the roosting ecology and social organization of the spotted-winged fruit bat, Balionycteris maculata (Megachiroptera), within an old-growth Malaysian dipterocarp forest, and test the hypothesis that males spend a significantly greater proportion of the night in the immediate vicinity of their day roosts than females. Balionycteris maculata roosted in cavities and formed small harem groups that consisted of one adult male accompanied by up to nine adult females and their dependent young. Both male and female bats foraged locally, within approximately 1 km of their roost sites. However, in contrast to females, which remained away from the roost site throughout the night, both harem and solitary adult males divided their nightly activity between foraging and returning to their roost sites. Individual females were also found roosting sequentially with up to three different males. Hence, these results suggest that B. maculata has a resource-defence polygynous mating system, in which the roost cavity may represent a critical and defendable resource by which males recruit and gain improved reproductive access to females. Roost cavities occupied by B. maculata were found within a number of different forest structures, including ant nests, termite nests and the root masses of epiphytes. The consistent shape and position of the cavities, along with a single observation of cavity enlargement, provide the first evidence of roost-cavity excavation, by a megachiropteran bat, within the nests of social insects. Although the cues by which females select their roost sites are unclear, some aspect of roost cavity size, or condition, may provide a possible means by which females can assess the reproducÍtive fitness of potential mates.

Huang M, Wang D (2015).

The role of elaiosome in seed dispersed herbaceous plants

Acta Ecologica Sinica, 35, 5721-5727.

[本文引用: 1]

[黄曼, 王东 (2015).

油质体在5种蚁播植物种子散布中的作用

生态学报, 35, 5721-5727.]

[本文引用: 1]

Jian PY, Hu FS, Wang CP, Chiang JM, Lin TC (2013).

Ecological facilitation between two epiphytes through drought mitigation in a subtropical rainforest

PLoS ONE, 8, e64599. DOI: 10.1371/journal.pone.0064599.

DOI:10.1371/journal.pone.0064599      URL     [本文引用: 1]

Jowers MJ, Downie JR, Cohen BL (2008).

The golden tree frog of Trinidad, Phyllodytes auratus (Anura: Hylidae): systematic and conservation status

Studies on Neotropical Fauna and Environment, 43, 181-188.

DOI:10.1080/01650520801965490      URL     [本文引用: 1]

Kapitany A (2008).

Weird and wonderful ant-house plants

Cactus and Succulent Journal, 80, 276-287.

DOI:10.2985/0007-9367-80.6.276      URL     [本文引用: 4]

Karasawa S, Hijii N (2006).

Does the existence of bird’s nest ferns enhance the diversity of oribatid (Acari: Oribatida) communities in a subtropical forest?

Biodiversity and Conservation, 15, 4533-4553.

DOI:10.1007/s10531-005-5443-4      URL     [本文引用: 2]

Kaufmann E (2002). Southeast Asian Ant Gardens: Diversity, Ecology, Ecosystematic Significance, and Evolution of Mutualistic Ant-Epiphyte Associations. PhD dissertation, CiteseerJohann Wolfgang Goethe University, Frankfurt am Main, Germany. 237.

[本文引用: 7]

Kaufmann E, Maschwitz U (2006).

Ant-gardens of tropical Asian rainforests

Naturwissenschaften, 93, 216-227.

DOI:10.1007/s00114-005-0081-y      URL     [本文引用: 4]

Larrea ML, Werner FA (2010).

Response of vascular epiphyte diversity to different land-use intensities in a neotropical montane wet forest

Forest Ecology and Management, 260, 1950-1955.

DOI:10.1016/j.foreco.2010.08.029      URL     [本文引用: 1]

Laviski BFDS, Monteiro ÍDM, Pinho LC, Baptista RLC, Mayhé-Nunes AJ, Racca-Filho F, Nunes-Freitas AF (2021).

Bromeliad habitat regulates the richness of associated terrestrial and aquatic fauna

Austral Ecology, 46, 860-870.

DOI:10.1111/aec.v46.5      URL     [本文引用: 1]

Leroy C, Carrias JF, Céréghino R, Corbara B (2016).

The contribution of microorganisms and metazoans to mineral nutrition in bromeliads

Journal of Plant Ecology, 9, 241-255.

DOI:10.1093/jpe/rtv052      URL     [本文引用: 1]

Leroy C, Gril E, Ouali LS, Coste S, Gérard B, Maillard P, Mercier H, Stahl C (2019).

Water and nutrient uptake capacity of leaf-absorbing trichomes vs. roots in epiphytic tank bromeliads

Environmental and Experimental Botany, 163, 112-123.

DOI:10.1016/j.envexpbot.2019.04.012      URL     [本文引用: 1]

Li DC, Song XQ, Zhang Z, Chen ZH, Zhang ZY, Zhou K (2022).

Strategies for conservation and priority monitoring of key orchid plants in Hainan Tropical Rainforest National Park

Journal of Tropical Biology, 13, 136-148.

[本文引用: 1]

[李大程, 宋希强, 张哲, 陈枳衡, 张中扬, 周康 (2022).

海南热带雨林国家公园兰科植物重点保护与优先监测策略

热带生物学报, 13, 136-148.]

[本文引用: 1]

Liu WY, Ma WZ, Yang LP (2006).

Advances in ecological studies on epiphytes in forest canopies

Journal of Plant Ecology (Chinese Version), 30, 522-533.

[本文引用: 1]

[刘文耀, 马文章, 杨礼攀 (2006).

林冠附生植物生态学研究进展

植物生态学报, 30, 522-533.]

DOI:10.17521/cjpe.2006.0069      [本文引用: 1]

林冠附生植物及其枯死存留物是构成山地湿性森林生态系统中生物区系、结构和功能的重要组分。由于在林冠攀爬技术上的限制,过去对林冠附生植物在生态系统结构和功能过程中的作用未能引起足够的重视。近20年来,随着对林冠生物多样性及其在生态系统功能过程影响的认识和研究技术上的提高,对林冠附生生物的研究已逐步从个体水平转移到系统水平上。有关林冠附生植物多样性、生物量及其生态学效应已成为近年来国际上新兴研究领域——“林冠学”的研究热点之一。许多研究表明,林冠附生植物在生态系统水平上的交互作用比它们的解剖、形态和生理特征更为重要。国外大量的研究结果表明,林冠是一个适合于许多生物种类生存的场所,其数量比想象的更为丰富。在全球范围内估计有29 500 余种附生植物,其中维管束附生植物的种类高达24 000种,约占总维管束植物种类的10%。 林冠附生物的生物量在世界各地森林中存在较大的差异,其范围在105~44 000 kg?m-2之间 ,其中在一些热带和温带天然老龄林中林冠附生物的生物量超过了宿主林木的叶生物量。林冠附生植物还具有较大的叶面积指数(LAI)。林冠附生物丰富的物种组成、较高的生物量、独特的生理形态特征以及它们分布于森林与大气相互作用的关键界面,使得它们在生态系统物种多样性形成及其维持机制、养分和水分循环、指示环境质量等方面具有重要的作用。林冠附生植物及其枯死残留物具有较强的能力吸收雨水和空气中的营养物质,在林冠层中形成一个潮湿的环境促进氮固定,林冠附生植物群落还能为生存于林冠的其它生物(如鸟类 、哺乳动物、两栖动物、爬行动物和昆虫等)提供食物和栖息场所。林冠附生植物的生长发育与分布格局除与宿主有关外,还受到环境因素(气候、地形、微生境条件等)和人为干扰的影响。由于世界各地森林类型多样和环境条件各异,目前国际上有关附生物的研究仍十分活跃,建立了林冠研究网络,研究不同类型森林中附生植物及其枯死残留物的动态及其与群落特征、环境因子的数量关系,探讨、交流和发展有效的标准测量方法和技术是该领域研究的主要内容。国内对林冠附生植物生态学的研究刚刚起步,有待于今后加强该领域的研究。

Lowman MD, Schowalter TD (2012).

Plant science in forest canopies—The first 30 years of advances and challenges (1980-2010)

New Phytologist, 194, 12-27.

DOI:10.1111/nph.2012.194.issue-1      URL     [本文引用: 1]

Mccracken SF, Forstner MRJ (2014).

Herpetofaunal community of a high canopy tank bromeliad (Aechmea zebrina) in the Yasuní Biosphere Reserve of Amazonian Ecuador, with comments on the use of “arboreal” in the herpetological literature

Aechmea Zebrina, 8, 65-75.

[本文引用: 2]

Mendieta-Leiva G, Porada P, Bader MY (2020). Interactions of epiphytes with precipitation partitioning//Van Stan II JT, Gutmann E, Friesen J. Precipitation Partitioning by Vegetation. Springer, Cham, Switzerland.

[本文引用: 2]

Morales-Linares J, García-Franco JG, Flores-Palacios A, Valenzuela-González JE, Mata-Rosas M, Díaz-Castelazo C (2016).

Vascular epiphytes and host trees of ant-gardens in an anthropic landscape in southeastern Mexico

The Science of Nature, 103, 96. DOI: 10.1007/s00114-016-1421-9.

DOI:10.1007/s00114-016-1421-9      URL     [本文引用: 3]

Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006).

Phylogeny of the ants: diversification in the age of angiosperms

Science, 312, 101-104.

PMID:16601190      [本文引用: 1]

We present a large-scale molecular phylogeny of the ants (Hymenoptera: Formicidae), based on 4.5 kilobases of sequence data from six gene regions extracted from 139 of the 288 described extant genera, representing 19 of the 20 subfamilies. All but two subfamilies are recovered as monophyletic. Divergence time estimates calibrated by minimum age constraints from 43 fossils indicate that most of the subfamilies representing extant ants arose much earlier than previously proposed but only began to diversify during the Late Cretaceous to Early Eocene. This period also witnessed the rise of angiosperms and most herbivorous insects.

Moyano FV, Benitez-Ortiz W (2013).

A new phytotelm plant, Crinum moorei (Asparagales: Amaryllidaceae), for the Americas and its mosquito inhabitant

Florida Entomologist, 96, 1224-1227.

DOI:10.1653/024.096.0374      URL     [本文引用: 1]

Nadkarni NM (1981).

Canopy roots: convergent evolution in rainforest nutrient cycles

Science, 214, 1023-1024.

PMID:17808667      [本文引用: 1]

Accumulations of living and dead epiphytes in the canopy of rainforest trees provide an aboveground nutrient resource. A wide range of host tree species in both temperate and tropical rainforests gain access to these nutrients by putting forth extensive networks of adventitious roots beneath the epiphyte mats they support.

Nadkarni NM (2000).

Colonization of stripped branch surfaces by epiphytes in a lower montane cloud forest, Monteverde, Costa Rica

Biotropica, 32, 358-363.

DOI:10.1111/btp.2000.32.issue-2      URL     [本文引用: 1]

Nakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, Hewitt CN, Itioka T, Koh LP, Ma KP, Malhi Y, Mitchell A, Novotny V, Ozanne CMP, Song L, et al. (2017).

Forests and their canopies: achievements and horizons in canopy science

Trends in Ecology & Evolution, 32, 438-451.

[本文引用: 1]

Nielsen WP (2011).

Composición de Macroinvertebrados acuáticos en Bromelias (Catopsis spp.) de la Reserva Biológica Uyuca, Honduras

Master degree dissertation, Zamorano University, Tegucigalpa, Honduras. 26-28.

[本文引用: 1]

Ochoa MG, Lavin MC, Ayala FC, Perez AJ (1993).

Arthropods associated with Bromelia hemisphaerica (Bromeliales: Bromeliaceae) in Morelos, Mexico

Florida Entomologist, 76, 616-621.

DOI:10.2307/3495795      URL     [本文引用: 1]

Orivel J, Leroy C (2011).

The diversity and ecology of ant gardens (Hymenoptera: Formicidae; Spermatophyta: Angiospermae)

Myrmecological News, 14, 73-85.

[本文引用: 3]

Ortega-Solís G, Díaz I, Mellado-Mansilla D, Tello F, Moreno R, Tejo C (2017).

Ecosystem engineering by Fascicularia bicolor in the canopy of the South-American temperate rainforest

Forest Ecology and Management, 400, 417-428.

DOI:10.1016/j.foreco.2017.06.020      URL     [本文引用: 1]

Ortega-Solis G, Díaz IA, Mellado-Mansilla D, Tejo C, Tello F, Craven D, Kreft H, Armesto JJ (2021).

Trash-basket epiphytes as secondary foundation species: a review of their distribution and effects on biodiversity and ecosystem functions

bioRxiv, 2021-2026.

[本文引用: 6]

Ozanne CMP, Anhuf D, Boulter SL, Keller M, Kitching RL, Körner C, Meinzer FC, Mitchell AW, Nakashizuka T, Dias PLS, Stork NE, Wright SJ, Yoshimura M (2003)

Biodiversity meets the atmosphere: a global view of forest canopies

Science, 301, 183-186.

DOI:10.1126/science.1084507      PMID:12855799      [本文引用: 1]

The forest canopy is the functional interface between 90% of Earth's terrestrial biomass and the atmosphere. Multidisciplinary research in the canopy has expanded concepts of global species richness, physiological processes, and the provision of ecosystem services. Trees respond in a species-specific manner to elevated carbon dioxide levels, while climate change threatens plant-animal interactions in the canopy and will likely alter the production of biogenic aerosols that affect cloud formation and atmospheric chemistry.

Phillips JW, Chung AYC, Edgecombe GD, Ellwood MDF (2020).

Bird’s nest ferns promote resource sharing by centipedes

Biotropica, 52, 335-344.

DOI:10.1111/btp.v52.2      URL     [本文引用: 5]

Pittl E, Innerebner G, Wanek W, Insam H (2010).

Microbial communities of arboreal and ground soils in the Esquinas rainforest, Costa Rica

Plant and Soil, 329, 65-74.

DOI:10.1007/s11104-009-0134-7      URL     [本文引用: 1]

Rico-Gray V, Oliveira PS (2008). The Ecology and Evolution of Ant-plant Interactions. University of Chicago Press, Chicago.

[本文引用: 2]

Rico-Gray V, Thien LB (1989).

Effect of different ant species on reproductive fitness of Schomburgkia tibicinis (Orchidaceae)

Oecologia, 81, 487-489.

DOI:10.1007/BF00378956      PMID:28312641      [本文引用: 1]

We studied the effect of four ant species on the reproductive fitness (number of fruits produced) of Schomburgkia tibicinis (Orchidaceae), in the coast of Yucatan, Mexico. Ants forage day and night for the nectar produced by the reproductive structures of the orchid. Ant size is: Camponotus planatus (3-4 mm), C. abdominalis (4-6 mm), C. rectangularis (7-9 mm), and Ectatomma tuberculatum (9-12 mm). The results indicate that ant efficiency in disrupting the activities of the main herbivore, (Stethobaris sp./Coleoptera) varies, and that it is apparently related to ant size, three tendencies are clear: (a) lowest fruit production and highest inflorescence damage are significantly associated with the smaller ants and the control; (b) maximum fruit production and minimum inflorescence damage are significantly associated with the larger ant species; and (c) the increase in ant size tends to have a positive effect on the plant's reproductive output (less dead spikes and more matured fruits). We discuss ant effect on the pollination of the orchid, and emphasize that ant presence should not be associated, in general, with benefit to plants.

Rogy P, Hammill E, Srivastava DS (2019).

Complex indirect effects of epiphytic bromeliads on the invertebrate food webs of their support tree

Biotropica, 51, 549-561.

DOI:10.1111/btp.2019.51.issue-4      URL     [本文引用: 3]

Romero GQ, Nomura F, Gonçalves AZ, Dias NYN, Mercier H, Conforto EDC, Rossa-Feres DDC (2010).

Nitrogen fluxes from treefrogs to tank epiphytic bromeliads: an isotopic and physiological approach

Oecologia, 162, 941-949.

DOI:10.1007/s00442-009-1533-4      PMID:20024585      [本文引用: 1]

Diverse invertebrate and vertebrate species live in association with plants of the large Neotropical family Bromeliaceae. Although previous studies have assumed that debris of associated organisms improves plant nutrition, so far little evidence supports this assumption. In this study we used isotopic ((15)N) and physiological methods to investigate if the treefrog Scinax hayii, which uses the tank epiphytic bromeliad Vriesea bituminosa as a diurnal shelter, contributes to host plant nutrition. In the field, bromeliads with frogs had higher stable N isotopic composition (delta(15)N) values than those without frogs. Similar results were obtained from a controlled greenhouse experiment. Linear mixing models showed that frog feces and dead termites used to simulate insects that eventually fall inside the bromeliad tank contributed, respectively, 27.7% (+ or - 0.07 SE) and 49.6% (+ or - 0.50 SE) of the total N of V. bituminosa. Net photosynthetic rate was higher in plants that received feces and termites than in controls; however, this effect was only detected in the rainy, but not in the dry season. These results demonstrate for the first time that vertebrates contribute to bromeliad nutrition, and that this benefit is seasonally restricted. Since amphibian-bromeliad associations occur in diverse habitats in South and Central America, this mechanism for deriving nutrients may be important in bromeliad systems throughout the Neotropics.

Rowe DJ (2012).

Some arboreal ant-house plants of Australasia and the southwest Pacific

Cactus and Succulent Journal, 84, 60-68.

DOI:10.2985/0007-9367-84.2.60      URL     [本文引用: 2]

Ruano-Fajardo G, Rovito SM, Ladle RJ (2014)

Bromeliad selection by two salamander species in a harsh environment

PLoS ONE, 9, e98474. DOI: 10.1371/journal.pone.0098474.

DOI:10.1371/journal.pone.0098474      URL     [本文引用: 2]

Sabagh LT, Neutzling AS, Rocha CFD (2022).

Phytophagous consumption by frogs inhabiting bromeliads from Atlantic Forest

Ethology Ecology & Evolution, 34, 165-179.

[本文引用: 1]

Scheffers BR, Evans TA, Williams SE, Edwards DP (2014a)

Microhabitats in the tropics buffer temperature in a globally coherent manner

Biology Letters, 10, 20140819. DOI: 10.1098/rsbl.2014.0819.

DOI:10.1098/rsbl.2014.0819      URL     [本文引用: 2]

Vegetated habitats contain a variety of fine-scale features that can ameliorate temperate extremes. These buffered microhabitats may be used by species to evade extreme weather and novel climates in the future. Yet, the magnitude and extent of this buffering on a global scale remains unknown. Across all tropical continents and using 36 published studies, we assessed temperature buffering from within microhabitats across various habitat strata and structures (e.g. soil, logs, epiphytes and tree holes) and compared them to non-buffered macro-scale ambient temperatures (the thermal control). Microhabitats buffered temperature by 3.9°C and reduced maximum temperatures by 3.5°C. Buffering was most pronounced in tropical lowlands where temperatures were most variable. With the expected increase in extreme weather events, microhabitats should provide species with a local layer of protection that is not captured by traditional climate assessments, which are typically derived from macro-scale temperatures (e.g. satellites). Our data illustrate the need for a next generation of predictive models that account for species' ability to move within microhabitats to exploit favourable buffered microclimates.

Scheffers BR, Phillips BL, Shoo LP (2014b).

Asplenium bird’s nest ferns in rainforest canopies are climate-contingent refuges for frogs

Global Ecology and Conservation, 2, 37-46.

DOI:10.1016/j.gecco.2014.06.004      URL     [本文引用: 1]

Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K (2009).

Is there a latitudinal gradient in the importance of biotic interactions?

Annual Review of Ecology, Evolution, and Systematics, 40, 245-269.

DOI:10.1146/ecolsys.2009.40.issue-1      URL     [本文引用: 1]

Schmit-Neuerburg V, Blüthgen N (2007).

Ant-garden epiphytes are protected against drought in a Venezuelan lowland rain forest

Ecotropica, 13, 93-100.

[本文引用: 2]

Spicer ME, Mellor H, Carson WP (2020).

Seeing beyond the trees: a comparison of tropical and temperate plant growth forms and their vertical distribution

Ecology, 101, e02974. DOI: 10.1002/ecy.2974.

DOI:10.1002/ecy.2974      URL     [本文引用: 1]

Forests are the most diverse and productive terrestrial ecosystems on Earth, so sustainably managing them for the future is a major global challenge. Yet, our understanding of forest diversity relies almost exclusively on the study of trees. Here, we demonstrate unequivocally that other growth forms (shrubs, lianas, herbs, epiphytes) make up the majority of vascular plant species in both tropical and temperate forests. By comparing the relative distribution of species richness among plant growth forms for over 3,400 species in 18 forests in the Americas, we construct the first high‐resolution quantification of plant growth form diversity across two ecologically important regions at a near‐continental scale. We also quantify the physical distribution of plant species among forest layers, that is, where among the vertical strata plants ultimately live their adult lives, and show that plants are strongly downshifted in temperate forests vs. tropical forests. Our data illustrate a previously unquantified fundamental difference between tropical and temperate forests: what plant growth forms are most speciose, and where they ultimately live in the forest. Recognizing these differences requires that we re‐focus ecological research and forest management plans to encompass a broader suite of plant growth forms. This more holistic perspective is essential to conserve global biodiversity.

Spicer ME, Woods CL (2022).

A case for studying biotic interactions in epiphyte ecology and evolution

Perspectives in Plant Ecology, Evolution and Systematics, 54, 125658. DOI: 10.1016/j.ppees.2021.125658.

DOI:10.1016/j.ppees.2021.125658      URL     [本文引用: 6]

Stuntz S, Ziegler C, Simon U, Zotz G (2002).

Diversity and structure of the arthropod fauna within three canopy epiphyte species in central Panama

Journal of Tropical Ecology, 18, 161-176.

DOI:10.1017/S0266467402002110      URL     [本文引用: 1]

The arthropod fauna inhabiting 90 individuals of three different species of epiphyte was investigated in the moist lowland forest of the Barro Colorado National Monument in Panama. In total, 3694 arthropods belonging to 89 morphospecies and 19 orders were collected. While arthropod abundance was primarily a function of host plant biomass irrespective of epiphyte species, there were pronounced differences in species richness, species composition and guild structure of the arthropod faunas of the three epiphyte species. Although all study plants were growing in close proximity on the same host tree species, there was remarkably little overlap in the species assemblages across epiphyte taxa. The inhabitant species also differed dramatically in their ecological functions, as feeding guild and hunting guild analyses indicated. The influence of plant size, structure and impounded leaf litter on arthropod diversity is discussed. We conclude that epiphytes are microhabitats for a diverse and numerous fauna, and that different species of epiphytes foster both taxonomically and ecologically very distinct arthropod assemblages.

Taylor A, Burns K (2015).

Plant composition patterns inside an endemic birds’ nest fern (Asplenium goudeyi) on Lord Howe Island: effects of fern size, fern isolation and plant dispersal abilities

Journal of Tropical Ecology, 31, 413-421.

DOI:10.1017/S0266467415000334      URL     [本文引用: 1]

The importance of deterministic and stochastic processes in structuring ecological communities is an enduring debate. Although this debate is nearly a century old, the extent to which communities are structured by species interactions or chance events is a central issue in ecology. We examined the assemblages of plants living inside 119 birds’ nest ferns (Asplenium goudeyi), which are endemic to Lord Howe Island. Specifically, we investigated whether patterns of species richness and community composition were influenced by fern size, fern isolation and plant dispersal abilities. Fern size and fern isolation significantly predicted plant community richness. At the community level, plant composition patterns did not deviate from randomized expectations. Individual species occurrences increased with increasing community richness, and no species exclusions were observed. Wind-dispersed taxa, which accounted for 29% of all species, were well represented in isolated ferns. Comparatively, poorer dispersers were confined to ferns nearest the forest at the base of the cliffs. We suggest that dispersal plays a key role in structuring plant communities living within birds’ nest ferns, and that species interactions are less important. Our study emphasizes the importance of epiphytes with a nest-like growth form as habitat for plants in a harsh environment.

Taylor A, Zotz G, Weigelt P, Cai LR, Karger DN, König C, Kreft H (2022).

Vascular epiphytes contribute disproportionately to global centres of plant diversity

Global Ecology and Biogeography, 31, 62-74.

DOI:10.1111/geb.v31.1      URL     [本文引用: 2]

Thiago G, Antonio DB, Denise DCR, Gustavo QR (2010).

Bromeliads as biodiversity amplifiers and habitat segregation of spider communities in a Neotropical rainforest

The Journal of Arachnology, 38, 270-279.

DOI:10.1636/P09-58.1      URL     [本文引用: 1]

Thomsen MS, Altieri AH, Angelini C, Bishop MJ, Gribben PE, Lear G, He Q, Schiel DR, Silliman BR, South PM, Watson DM, Wernberg T, Zotz G (2018).

Secondary foundation species enhance biodiversity

Nature Ecology & Evolution, 2, 634-639.

[本文引用: 2]

Torreias SRD, Ferreira-Keppler RL, Godoy BS, Hamada N (2010).

Mosquitoes (Diptera, Culicidae) inhabiting foliar tanks of Guzmania brasiliensis Ule (Bromeliaceae) in central Amazonia, Brazil

Revista Brasileira de Entomologia, 54, 618-623.

DOI:10.1590/S0085-56262010000400013      URL     [本文引用: 1]

Treseder KK, Davidson DW, Ehleringer JR (1995).

Absorption of ant-provided carbon dioxide and nitrogen by a tropical epiphyte

Nature, 375, 137-139.

DOI:10.1038/375137a0      [本文引用: 2]

Turner E, Foster WA (2006).

Assessing the influence of bird’s nest ferns (Asplenium spp.) on the local microclimate across a range of habitat disturbances in Sabah, Malaysia

Selbyana, 27, 195-200.

[本文引用: 1]

Ule E (1901).

Ameisengärten im Amazonasgebiet

Pflanzengeschichte und Pflanzengeographien, 68, 45-52.

[本文引用: 2]

Volp TM, Lach L (2019).

An epiphytic ant-plant mutualism structures arboreal ant communities

Environmental Entomology, 48, 1056-1062.

DOI:10.1093/ee/nvz083      PMID:31305895      [本文引用: 3]

Arboreal ant communities are primarily structured by interactions among ant species, food availability, and physical structures within the environment. Epiphytes are a common feature of tropical forests that can provide ants with both food and nesting space. To date, little work has examined what role epiphytic ant-plants play in structuring arboreal ant communities. We surveyed ant species inhabiting the Australian epiphytic ant-plant Myrmecodia beccarii Hook.f. (Gentianales: Rubiaceae) and how arboreal ant communities are structured in relation to M. beccarii presence on trees. Myrmecodia beccarii was inhabited by the ant Philidris cordata Smith, F. (Hymenoptera: Formicidae) on the majority of Melaleuca viridiflora Sol. Ex Gaertn. (Myrtales: Myrtaceae) trees with ant-occupied ant-plants at our two sites. Dominant arboreal ant species at both study sites exhibited discrete, nonoverlapping distributions, and C-score analysis detected an ant mosaic at one site. The distribution of P. cordata was limited by the distribution of ant-plants for both sites. Philidris cordata dominance on trees was also determined by the presence of M. beccarii occupied by P. cordata at both sites. We suggest that by providing P. cordata with nesting space M. beccarii plays a role in structuring these arboreal ant communities.© The Author(s) 2019. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Wang L, Zhang JT, Li ZB, Zhang Y (2020).

Research advances in mutualistic relationship between ants and plants

Journal of Southwest Forestry University (Natural Sciences), 40(1), 181-188.

[本文引用: 1]

[王亮, 张锦堂, 李宗波, 张媛 (2020).

蚂蚁与植物的互惠共生关系研究进展

西南林业大学学报(自然科学), 40(1), 181-188.]

[本文引用: 1]

Wang YC, Deng ZY, Zhang SX, Xiao CC, Feng G, Long WX, Liu JS (2022).

Host tree selection by vascular epiphytes in tropical cloud forest of Hainan Island, China

Chinese Journal of Plant Ecology, 46, 405-415.

DOI:10.17521/cjpe.2021.0374      URL     [本文引用: 1]

[王艺宸, 邓芝燕, 张守信, 肖楚楚, 冯广, 龙文兴, 刘积史 (2022).

海南热带云雾林附生维管植物对宿主的选择性

植物生态学报, 46, 405-415.]

DOI:10.17521/cjpe.2021.0374      [本文引用: 1]

附生维管植物是热带森林中重要的特征性组分, 研究附生维管植物对宿主树的选择性对热带森林生物多样性及生态系统保护有重要意义。该研究以海南热带雨林国家公园霸王岭片区热带云雾林中的附生维管植物为研究对象, 通过设置21个20 m &#x000D7; 20 m的固定样地, 调查样地内所有胸径&gt;1 cm的乔、灌木的数量、种类、胸径、植株高、基质类型及其上生长的附生维管植物的数量、种类, 用混合线性模型、单因素方差、附生选择性指数分析附生维管植物分布与宿主树种、胸径、高度、基质类型(裸树皮、苔藓、凋落物及土壤)的关系。结果表明: 在热带云雾林8 400 m<sup>2</sup>样地内, 附生维管植物共计51种2 650株, 附生兰科植物和附生蕨类植物为优势类群, 附着在10.6%的个体木上; 附生维管植物多度和丰富度与宿主树胸径显著正相关; 多度较大的琼崖石韦(Pyrrosia eberhardtii)、流苏贝母兰(Coelogyne fimbriata)、阴石蕨(Davallia repens)、蔓九节(Psychotria serpens)对宿主树种表现出一定的选择性, 显著偏好1-4个树种; 附生维管植物对轻基质类型(苔藓植物)也存在显著偏好, 70%以上的附生维管植物生存在苔藓基质上。

Woods CL (2017).

Primary ecological succession in vascular epiphytes: the species accumulation model

Biotropica, 49, 452-460.

DOI:10.1111/btp.2017.49.issue-4      URL     [本文引用: 2]

Woods CL, Cardelús CL, DeWalt SJ (2015).

Microhabitat associations of vascular epiphytes in a wet tropical forest canopy

Journal of Ecology, 103, 421-430.

DOI:10.1111/jec.2015.103.issue-2      URL     [本文引用: 1]

Wu Y, Liu WY, Song L, Chen X, Lu HZ, Li S, Shi XM (2016).

Advances in ecological studies of epiphytes using canopy cranes

Chinese Journal of Plant Ecology, 40, 508-522.

DOI:10.17521/cjpe.2015.0424      [本文引用: 1]

Forest canopies are one of the most species-rich habitats, but among the least explored in the biosphere. They play a crucial role in the process of material and energy exchange between the forest and atmosphere. Individual ecosystem members (e.g., epiphytes) and the ecological function of canopies have been given insufficient attention because of inaccessibility. Canopy cranes have been successfully used to guarantee non-destructive and reiterated sampling of epiphytes, thus offering a top-down perspective of the entire canopy. These cranes have become the symbol of canopy research and enable epiphyte research. Globally, western developed countries have conducted many studies of diversity and spatial distributions of epiphytes using canopy cranes, thus accumulating an abundance of valuable results. This review summarizes the structure, development history, and distribution of canopy cranes as well as general information about international canopy research organizations. Ecological studies of epiphytes performed around the world using these canopy cranes are also reviewed. Additionally, the development of canopy ecology and the construction of canopy cranes in China are introduced briefly. In analyzing current research trends in ecological studies of epiphytes in China and globally, the following aspects were considered: biodiversity, spatial patterns and maintenance mechanisms, ecological adaptations of epiphytes, their relationship with canopy animals, and their responses to climate change.

[吴毅, 刘文耀, 宋亮, 陈曦, 卢华正, 李苏, 石贤萌 (2016).

基于林冠塔吊的附生植物生态学研究进展

植物生态学报, 40, 508-522.]

DOI:10.17521/cjpe.2015.0424      [本文引用: 1]

林冠是生物圈中物种最丰富却最鲜为人知的生境之一。它在森林与大气的物质、能量交换过程中发挥着至关重要的作用。但因林冠调查技术的限制, 林冠及生存在其中的附生植物在生态系统中的功能尚未得到足够的重视。塔吊在三维空间中作业具有“全方位、高精度、非破坏、可重复”的特征。林冠塔吊已成为当前林冠学研究的标志, 并为林冠附生植物研究提供了契机。国际上, 欧美国家利用塔吊技术对林冠层附生植物多样性与空间分布等进行了大量的研究, 取得了丰硕的成果。该文介绍了塔吊的构造、林冠塔吊建设历史和站点分布及国际林冠研究组织等概况, 并对依托塔吊开展的附生植物研究进展进行了评述。此外, 还简要介绍了我国塔吊建设与林冠生态学发展情况。在系统分析国内外附生植物研究现状基础上, 从附生植物多样性、附生植物空间格局与维持机制、生态适应性、与林冠动物的关系以及附生植物对气候变化的响应等5个方面对今后基于林冠塔吊开展附生植物研究进行了展望。

Xu ST (2013).

Epiphytic Characteristics of Asplenium nidus L. (Aspleniaceae) Complex in Tropical Montane Rain Forest, Hainan Island

PhD dissertation, Hainan University, Haikou.

[本文引用: 1]

[徐诗涛 (2013).

海南热带山地沟谷雨林鸟巢蕨附生特性研究

博士学位论文, 海南大学, 海口.]

[本文引用: 1]

Youngsteadt E, Baca JA, Osborne J, Schal C (2009).

Species- specific seed dispersal in an obligate ant-plant mutualism

PLoS ONE, 4, e4335. DOI: 10.1371/journal.pone.0004335.

DOI:10.1371/journal.pone.0004335      URL     [本文引用: 1]

Yu DW (1994).

The structural role of epiphytes in ant gardens

Biotropica, 26, 222-226.

DOI:10.2307/2388813      URL     [本文引用: 2]

Zhang S, Zhang YX, Ma KM (2010).

A review of protective ant-plant interaction and its mediation mechanism

Chinese Journal of Plant Ecology, 34, 1344-1353.

[本文引用: 1]

[张霜, 张育新, 马克明 (2010).

保护性的蚂蚁-植物相互作用及其调节机制研究综述

植物生态学报, 34, 1344-1353.]

DOI:10.3773/j.issn.1005-264x.2010.11.012      [本文引用: 1]

蚂蚁-植物互利关系是生态和进化研究中的模式系统之一。该文分析总结了近年来有关蚂蚁对植物的保护作用及其调节机制的研究进展。植物通过给蚂蚁提供食物体、蚁菌穴和蜜露吸引蚂蚁, 通过自身的物理、化学方式调节与蚂蚁的互利关系, 使蚂蚁能有效地保护自已, 防止欺骗和寄生的发生。反过来, 蚂蚁可以减少植食性动物对植物的伤害和取食, 减少叶片损伤, 提高种子产量和质量, 提高植物的竞争优势等。虽然蚂蚁对植物的保护作用的强度受到多种生物与非生物因素的影响,变异性较大, 但在大多数情况下, 蚂蚁-植物之间仍呈显著的正相互作用。同时, 蚂蚁-植物的相互作用还具有广泛的生态影响, 尤其会大大降低林冠上节肢动物群落的物种多样性和多度。未来的研究需要加强蚂蚁-植物互利关系的起源与维持机制、对蚂蚁自身的影响、与生物入侵的关系, 以及进化生态学等方面的研究。

Zona S, Christenhusz MJM (2015).

Litter-trapping plants: filter-feeders of the plant kingdom

Botanical Journal of the Linnean Society, 179, 554-586.

DOI:10.1111/boj.2015.179.issue-4      URL     [本文引用: 3]

Zotz G (2016). Epiphytes and humans//Zotz G. Plants on Plants-The Biology of Vascular Epiphytes. Springer, Cham, Switzerland.

[本文引用: 6]

Zotz G, Bader MY (2009). Epiphytic plants in a changing world-global: change effects on vascular and non-vascular epiphytes//Lüttge U, Beyschlag W, Büdel B, Francis D. Progress in Botany. Springer, Berlin.

[本文引用: 1]

Zotz G, Leja M, Aguilar-Cruz Y, Einzmann HJR (2020).

How much water is in the tank? An allometric analysis with 205 bromeliad species

Flora, 264, 151557. DOI: 10.1016/j.flora.2020.151557.

DOI:10.1016/j.flora.2020.151557      URL     [本文引用: 1]

Zotz G, Weigelt P, Kessler M, Kreft H, Taylor A (2021).

EpiList 1.0: a global checklist of vascular epiphytes

Ecology, 102, e03326. DOI: 10.1002/ecy.3326.

DOI:10.1002/ecy.3326      URL     [本文引用: 1]

Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vascular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes &gt;31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes even wrong. Since the epiphytic growth blends into soil‐rooted growth and vice versa, the inclusion or exclusion of particular species in the current list will sometimes be contentious. Thus, initiating a well‐founded discussion was one of the motivations for compiling this database; our list represents 31,311 hypotheses on the life form of plant species, and we welcome feedback on possible omission or erroneous inclusions. We release these data into the public domain under a Creative Commons Zero license waiver. When you use the data in your publication, we request that you cite this data paper. If EpiList 1.0 is a major part of the data analyzed in your study, you may consider inviting the EpiList 1.0 core team as collaborators.

/