降水量变化下荒漠草原土壤呼吸及其影响因素
Soil respiration and its influencing factors in a desert steppe in northwestern China under changing precipitation regimes
通讯作者: * 黄菊莹(juyinghuang@163.com)
编委: 杜盛
责任编辑: 赵航
收稿日期: 2022-05-5 接受日期: 2022-09-7
基金资助: |
|
Corresponding authors: * HUANG Ju-Ying(juyinghuang@163.com)
Received: 2022-05-5 Accepted: 2022-09-7
Fund supported: |
|
土壤呼吸是陆地生态系统碳循环最关键的组分之一。研究降水量变化下荒漠草原土壤呼吸的时间动态及其与环境因子间的联系, 可为深入理解降水格局改变下脆弱生态系统碳循环关键过程的调控机制提供数据支撑。该研究基于2014年在宁夏荒漠草原设立的降水量变化(减少50%、减少30%、自然、增加30%、增加50%)的野外控制实验, 探究了2019年6-10月土壤呼吸速率的时间动态, 分析了土壤呼吸速率与土壤性质和植物特征的关系。整个生长季土壤呼吸速率呈先增加后减弱的时间动态, 最大值(2.79-5.35 μmol·m-2·s-1)出现在7月下旬或8月上旬。与自然降水量相比, 减少30%降水量对土壤呼吸速率无显著影响, 反映了土壤呼吸对适度干旱的适应性。整体来看, 减少50%降水量降低了土壤呼吸速率, 增加降水量(尤其是增加30%)提高了土壤呼吸速率, 且其促进作用在前期(6-7月)尤为明显。土壤呼吸速率与土壤温度呈显著的指数关系, 与土壤含水量呈显著的线性关系。土壤理化性质对土壤呼吸速率有高的独立解释力, 且其影响与土壤生物学性质和植物多样性高度相关。降水量可直接影响土壤呼吸速率, 也可通过影响土壤生物学性质和植物生物量间接影响土壤呼吸速率。该研究结果表明, 适度增加降水量缓解了荒漠草原土壤水分受限性、刺激了土壤酶活性、促进了微生物活性和植物生长, 从而加速了土壤呼吸; 极端增加降水量则可能导致土壤透气性降低、微生物代谢活动受阻, 进而抑制土壤呼吸。
关键词:
Aims Soil respiration is one of the most critical components of carbon cycle in terrestrial ecosystems. The study on temporal dynamics of soil respiration and its linkage with environmental factors in desert steppes under changing precipitation can provide data supports for a deep understanding of the regulatory mechanisms of key carbon cycling processes in fragile ecosystems.
Methods A field experiment involving five precipitation treatments (50% reduction, 30% reduction, natural, 30% increase, 50% increase) was set up in 2014 in a desert steppe in Ningxia. The temporal dynamics of soil respiration rate were explored during the growing season (from June to October) in 2019, and the relationships between soil respiration rate and soil properties and plant characteristics were analyzed.
Important findings Soil respiration rate showed a seasonal variation of an increasing and a decreasing trend across the growing season, with the maximum values (2.79-5.35 μmol·m-2·s-1) occurring in late July or early August. Compared with the natural condition, 30% reduction in precipitation did not result in a significant effect on soil respiration rate, reflecting the adaptability of soil respiration to moderate drought. Overall, 50% reduction in precipitation reduced soil respiration rate, whereas increased precipitation (especially the 30% increase) enhanced soil respiration rate, and this positive effect was especially obvious in the early growing season (June to July). Soil respiration rate had a significantly exponential relationship with soil temperature and a significantly linear relationship with soil water content. Soil physicochemical property had a highly independent explanatory power for soil respiration rate (R2 = 0.36), and its effect was highly correlated with soil biological property and plant diversity (R2 = 0.31). Precipitation could affect soil respiration rate either directly or indirectly through the influences on soil biological property and plant biomass. The results indicated that a moderate increase in precipitation could accelerate soil respiration by alleviating soil water limitation, stimulating soil enzyme activity, promoting microbial activity and plant growth in the desert steppe, and that an extreme increase in precipitation would lead to a decrease in soil permeability and a hindrance to microbial metabolic activity, thus inhibiting soil respiration.
Keywords:
引用本文
李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹.
LI Bing, ZHU Wan-Wan, HAN Cui, YU Hai-Long, HUANG Ju-Ying.
进入20世纪以来, 人类活动引起大气中温室气体(CO2、CH4和N2O等)浓度不断升高, 加上气候内部变率的影响, 促使全球气温上升和大气环流发生改变, 导致全球陆地平均降水量增加, 大多数地区极端降水事件(干旱和洪涝等)频发(IPCC, 2021)。就我国而言, 年降水量呈现出微弱的下降趋势, 但西北地区年降水量和季度降水量均明显增加(Su et al., 2020)。据报道, 1961-2018年西北地区92%站点的年降水量呈增加趋势(王澄海等, 2021)。此外, 我国极端降水事件亦逐年上升(Zhang et al., 2013), 且地区差异明显, 即西北、华东、华南、西南和华中地区呈增加趋势, 华北、东北和西南北部地区则呈下降趋势(Chang et al., 2020)。作为西北干旱半干旱区主要的限制因子, 降水与植物根系和微生物新陈代谢密切相关(Liu et al., 2016), 其格局的改变势必会对区域生态系统碳循环产生影响(Reichmann & Sala, 2014; 杨青霄等, 2017)。开展降水量变化下荒漠草原关键碳循环过程研究, 对于科学评估降水格局改变下干旱半干旱区脆弱生态系统碳汇功能具有重要的现实意义。
作为全球碳循环中最关键的组分之一, 土壤呼吸极易受到极端降水事件的影响(Knapp et al., 2008; Liu et al., 2018)。研究表明, 降水对土壤呼吸的影响主要由降水量和土壤本底水分条件共同决定(Zhao et al., 2021)。在干旱地区, 增加降水量可通过提高土壤水分有效性、调节土壤温度、改善土壤通气状况、刺激土壤酶分泌等, 促进植物地上和地下部分生长, 刺激微生物活动, 从而增强根系和微生物呼吸作用(王忠武等, 2020; 蒿廉伊等, 2021; Zhang et al., 2021; 范凯凯等, 2022)。但在湿润地区, 土壤水分含量受降水量的影响达到一定阈值后, 过度增加降水量可能会造成土壤透气性下降(Knapp et al., 2008)及养分淋溶流失(Schuur, 2003; 杨青霄等, 2017), 影响植物根系生命活动和微生物活性(郭文章等, 2021), 导致土壤呼吸速率下降。目前, 国内外已有大量研究探讨了降水量变化下干旱半干旱区草原土壤呼吸动态及其影响因素。如, Ru等(2018)发现提前和延后降水高峰均会抑制内蒙古温带草原土壤呼吸, Wang等(2021)观察到降水促进了宁夏天然草原土壤呼吸, Arredondo等(2018)发现土壤含水量和温度是控制墨西哥矮草草原土壤呼吸的重要因素。然而, 相关研究多为适度改变降水量, 缺乏极端降水模式下的探讨, 尤其是长期降水量变化下。研究极端降水量变化下荒漠草原土壤呼吸与环境因子的联系, 可为充分认识降水格局改变下干旱半干旱区脆弱生态系统碳循环调控机制提供科学依据。
荒漠草原是草原向荒漠过渡的一类草原生态系统类型, 是我国主要的生态脆弱区和区域重要的生态屏障; 所处区域降水量少、蒸发量大的气候特征导致其土壤水分有效性差和植物多样性低(余轩等, 2021), 因而极易受到降水格局改变的影响(朱湾湾等, 2019)。目前, 已有许多国内学者探讨了降水量对荒漠草原土壤呼吸的影响(Zhang et al., 2019, 2021; 蒿廉伊等, 2021), 但长期极端降水量变化下相关研究的缺乏, 限制了我们对降水格局改变下荒漠草原碳循环调控机制的深入理解。为此, 本研究依托2014年设立于宁夏荒漠草原的降水量变化的长期野外观测样地, 监测了2019年生长季6-10月土壤呼吸速率的时间动态, 分析了6年降水量变化下土壤呼吸速率与土壤因子和植物特征的关系, 以期回答适度和极端降水量如何影响荒漠草原土壤呼吸动态, 长期降水量变化下土壤呼吸速率与土壤性质和植物群落结构存在怎样的联系等科学问题。
1 材料和方法
1.1 研究区概况
研究区位于宁夏回族自治区吴忠市盐池县柳杨堡乡杨寨子村围栏草地内, 地理位置为37.80° N, 107.45° E, 海拔约为1 367 m。该草地自1998年开始围封, 地处毛乌素沙地边缘, 属于黄土高原向鄂尔多斯台地过渡带, 具有典型的温带大陆性气候特征。多年平均降水量为289.4 mm, 降水量季节分配不均, 主要集中于生长季的5-8月, 2019年降水量最大值出现在8月份(图1)。多年平均气温为7.5 ℃, 2019年平均气温呈单峰曲线变化, 平均值为9.5 ℃, 1月和7月平均气温分别为-6.8 ℃和22.8 ℃, 最大值出现在7月。2019年平均风速变化呈双峰曲线趋势, 平均值为2.0 m·s-1, 最大值出现在4月和11月。土壤类型主要为灰钙土, 土壤质地主要为砂壤土, 表现出保水保肥性能差、pH高等特征。草地类型属于荒漠草原, 植物群落简单, 以一年生或多年生草本为主, 优势物种包括猪毛蒿(Artemisia scoparia)、牛枝子(Lespedeza potaninii)和草木樨状黄耆(Astragalus melilotoides)等, 常见物种包括白草(Pennisetum centrasiaticum)、糙隐子草(Cleistogenes squarrosa)等。
图1
图1
2019年宁夏盐池站点月降水量、平均气温和平均风速。
Fig. 1
Monthly precipitation, average air temperature, and average wind speed in the Yanchi station, Ningxia in 2019.
1.2 实验设计
2014年4月, 在围栏草地内选择地势平坦、植被组成均一的区域作为降水量处理的长期实验样地。降水量增减量设置以我国西北地区近几十年来降水量时空分布格局为依据(姚俊强等, 2015; Su et al., 2020)。降水量处理方法参考了国内同类研究方法(Xu et al., 2018), 同时兼顾了野外实验的可操作性。采用完全随机区组实验设计, 设置了5个降水量处理: 减少50% (极端减少, W1)、减少30% (适度减少, W2)、自然(对照, W3)、增加30% (适度增加, W4)、增加50% (极端增加, W5)。每个处理设置3次重复, 共计15个8 m × 8 m的实验小区。每个小区四周垂直插入20 cm宽的彩钢板, 各小区之间设置2 m的缓冲带, 以防止降水时雨滴溅入, 减少地表径流和地下渗漏干扰。
2014-2017年采用自制遮雨棚减少自然降水量。2018年项目组对减雨装置进行了改进, 采用自制拱形减雨架减少自然降水量。减雨架上端最高点距离地面约1.8 m。将20 cm宽的瓦面状透明(透光率>95%)聚氯乙烯(PVC)板按照固定间隔放置于减雨架上方, 以搭建分别相当于50%和30%的遮雨面。其中, W1处理每隔20 cm放置一块PVC板; W2处理每隔46.7 cm放置一块PVC板。采用人工喷灌装置增加降水量。W4和W5处理年增加降水量分别为年降水量(289.4 mm)的30% (86.8 mm)和50% (144.7 mm)。喷水前, 在每个小区的人工喷灌装置上安装一个水表和一个三通阀门, 以便准确控制每次的喷水量。由于研究区降水丰沛期为5-8月, 因此将全年需要补给的降水量分8次于5-8月每月上旬和中旬平均喷于小区内。其中, W4处理每次喷水0.696 m3, W5处理每次喷水1.160 m3。详细的实验处理方法见项目组前期研究报道(朱湾湾等, 2019)。
1.3 土壤呼吸测定
土壤呼吸速率采用便携式LI-8100土壤呼吸测定仪(LI-COR, Lincoln, USA)测定。2019年4月上旬, 在每个小区内靠近中心区域安置一个PVC材质的呼吸环(内径20 cm, 高11 cm), 以实现土壤呼吸速率的长期定点监测。PVC环入土7 cm左右, 即垂直高出地面4 cm左右。安装时尽可能避免破坏周围土壤与植物。每次测定前一天剪除环内地表活体植物,以避免其对土壤呼吸监测数据产生影响。于6-10月选择晴朗无云的天气进行土壤呼吸速率的测定, 每10天监测1次(8:00-10:00和15:00-17:00各一次), 每月测定3次。如遇刮风、下雨等人力不可控情况, 测定时间适当提前或延后。采用地温计同步测定土壤温度(8:00-10:00和15:00-17:00各一次)。采用土钻法与烘干称质量法相结合的方法, 于6-10月每月下旬测定表层(0-20 cm)土壤含水量(8:00-10:00进行)。因6月9日、8月20日、9月23日、9月30日和10月21日土壤呼吸仪出现故障, 获得的数据可信度低, 故剔除了这5次的测定值。
1.4 植物和土壤样品采集与测定
于2019年7月下旬, 在每个小区内随机设置3个1 m × 1 m的小样方进行植被群落调查, 准确记录各样方内出现物种的名称、物种数、物种高度和物种密度等。调查结束后, 将每个样方内全部植物地上部分用剪刀齐平地面剪下, 清除枯枝落叶等杂质后, 按物种分别装入牛皮纸袋带回实验室烘干称质量(65 ℃, 48 h), 以获得各物种生物量。群落生物量为各物种生物量之和。物种多样性以Shannon-Wiener多样性指数(H')、Simpson优势度指数(D)、Pielou均匀度指数(E)、Patrick丰富度指数(R)衡量(张金屯, 2004):
式中, Pi为物种i的重要值, S为样方内物种数。
同期, 在每个小区内使用内径为5 cm的土钻随机钻取3钻0-20 cm土壤, 将其充分混匀制成混合土壤样品后放入保温箱内带回实验室。实验室内, 将混合土样过2 mm标准筛后分成两部分。一部分室温下自然风干后, 测定土壤pH、电导率、有机碳、全氮、全磷、速效磷含量。另一部分放入冰箱内4 ℃下冷藏保存, 尽可能于两周内完成蔗糖酶活性、脲酶活性、磷酸酶活性、硝态氮、铵态氮和微生物生物量碳、氮、磷含量的测定。
其中, 土壤有机碳、全氮和全磷含量分别采用重铬酸钾容量法-外加热法、凯氏定氮法和钼锑抗比色法测定; 土壤pH和电导率分别采用梅特勒S220多参数测试仪(梅特勒-托利多仪器(上海)有限公司, 上海)和S230电导率仪(梅特勒-托利多仪器(上海)有限公司, 上海)测定; 土壤硝态氮和铵态氮含量采用连续流动分析仪(Auto Analyzer 3, SEAL Analytical GmbH, Hanau, Germany)测定; 土壤速效磷含量采用0.5 mol·L-1 NaHCO3法测定(鲍士旦, 2000); 土壤蔗糖酶、脲酶和磷酸酶活性分别采用3, 5-二硝基水杨酸比色法、氨释放量比色法和对硝基苯磷酸盐法测定(关荫松, 1986); 微生物生物量碳、氮和磷含量分别采用氯仿熏蒸-K2SO4浸提-碳分析仪器法、氯仿熏蒸-K2SO4提取-流动注射氮分析仪器法和氯仿熏蒸-K2SO4提取-正磷酸盐态无机磷测定-外加正磷酸盐态无机磷矫正法测定(鲁如坤, 2000)。
1.5 数据分析
采用Excel 2016对数据进行初步整理。运用SPSS 26.0对数据进行统计分析: 采用重复测量方差分析研究降水量、测定时间及其交互作用对土壤呼吸速率、含水量和温度的影响; 采用单因素方差分析研究降水量对土壤呼吸速率、土壤性质和植物特征的影响。分析前, 对各指标进行方差齐性检验。若方差为齐性, 选用最小显著差异(LSD)法, 否则选用Tamhane’s T2法。采用Origin 2021绘图(平均值±标准误, n = 3)。在Origin中, 采用指数回归模型描述土壤呼吸速率与土壤温度的关系, 采用线性回归方程模型拟合土壤呼吸速率与土壤含水量的关系(丁金枝等, 2011):
式中, SR为土壤呼吸速率(μmol·m-2·s-1), T为土壤温度(℃), W为土壤含水量(%), a和b为常数。
采用R 4.1.2软件中“vegan”包进行数据的方差分解。因环境因子(土壤性质和植物特征)间存在共线性, 使用方差膨胀因子(VIF < 10)进行变量剔除。为获得各组环境因子对土壤呼吸速率独立的解释力以及组间共同的解释力, 将土壤性质分为土壤理化性质(含水量、温度、pH、有机碳含量、硝态氮含量和铵态氮含量, 命名为X1)、土壤生物学性质(蔗糖酶活性和微生物生物量碳、氮、磷含量, 命名为X2)以及植物多样性(Shannon-Wiener多样性指数和Pielou均匀度指数, 命名为X3)等3组作为解释变量, 以土壤呼吸速率作为响应变量, 用var.part函数进行方差分解。
为了进一步分析降水量变化下环境因子对土壤呼吸速率的直接和间接影响, 采用R软件中“lavaan”包构建结构方程模型。考虑到土壤因子众多, 将其归为土壤物理性质(含水量和温度)、化学性质(pH、电导率、有机碳、全氮、全磷、硝态氮、铵态氮、速效磷含量)和生物学性质(蔗糖酶活性、脲酶活性、磷酸酶活性、微生物生物量碳、微生物生物量氮、微生物生物量磷含量) 3个潜变量。选取植物生物量和多样性(Shannon-Wiener多样性指数、Patrick丰富度指数、Pielou均匀度指数、Simpson优势度指数)作为植物因子的观测变量。基于理论知识构建初始模型, 使用R软件中“plspm”包进行潜变量筛选及数据标准化, 剔除标准载荷(loading)小于0.5的土壤因子(Lopatin et al., 2022)。依据模型拟合度发现, 土壤化学性质中pH、电导率、有机碳、速效磷含量的拟合结果最优; 土壤生物学性质中, 蔗糖酶活性、脲酶活性、磷酸酶活性、微生物生物量碳含量的拟合结果最优; 植物多样性指标中, Patrick丰富度指数的拟合结果最优。结构方程采用最大似然估计法, 使用卡方检验评估模型的适合度, 即以卡方检验p > 0.05、标准化残差均方根(RMSEA) <0.05、相对配适指数(SRMR) <0.05和拟合优度指数(GFI) >0.95评估模型拟合程度(Zuo et al., 2016)。
2 结果和分析
2.1 降水量对土壤呼吸速率的影响
降水量和测定时间均对土壤呼吸速率有极显著影响, 但二者的交互作用均对土壤呼吸速率无显著影响(表1)。
表1 降水量和测定时间影响荒漠草原土壤呼吸速率的重复测量方差分析
Table 1
差异来源 Difference source | df | 8:00-10:00 | 15:00-17:00 |
---|---|---|---|
降水量处理 Precipitation treatment (α) | 4 | 13.198** | 37.013** |
测定时间 Measuring time (β) | 4 | 24.532** | 37.278** |
降水量处理×测定时间 Interaction of α and β | 16 | 0.520 | 0.678 |
表中数据为F值。**, p < 0.01。
Data in the table are F values. **, p < 0.01.
随着生长季的推移, 各处理下土壤呼吸速率均表现出先增加后降低的时间动态(图2), 最大值出现在7月下旬或8月上旬(分别为2.79、3.16、3.39、5.31、5.35 μmol·m-2·s-1)。与自然降水量相比, 减少30%降水量(W2)对各时期土壤呼吸速率均无显著影响, 减少50% (W1)和增加(W4和W5)降水量不同程度地改变了各时期土壤呼吸速率, 尤其是6-7月: 8:00-10:00, 减少50%降水量显著降低了6月18日、7月26日、8月29日和9月10日的土壤呼吸速率, 增加降水量显著提高了6月18日(W5)、6月28日(W4和W5)、7月10日(W4和W5)和7月26日(W4和W5)的土壤呼吸速率; 15:00-17:00, 减少50%降水量显著降低了6月18日的土壤呼吸速率, 增加降水量显著提高了6月28日(W4和W5)、7月10日(W4)、7月26日(W4和W5)和8月10日(W4)的土壤呼吸速率。
图2
图2
降水量变化对6-10月荒漠草原土壤呼吸速率的影响(平均值±标准误)。W1, 降水量减少50%; W2, 降水量减少30%; W3,
自然降水量; W4, 降水量增加30%; W5, 降水量增加50%。不同小写字母表示同一测定时间下降水量处理间差异显著(p < 0.05)。
Fig. 2
Effects of precipitation change on soil respiration rate from June to October in a desert steppe (mean ± SE). W1, 50% reduction in precipitation; W2, 30% reduction in precipitation; W3, natural precipitation; W4, 30% increase in precipitation; W5, 50% increase in precipitation. Different lowercase letters indicate significant differences among the precipitation treatments under the same measuring time (p < 0.05).
2.2 降水量对环境因子的影响
降水量对8:00-10:00土壤温度有显著影响, 测定时间对8:00-10:00和15:00-17:00土壤温度均有极显著影响; 降水量和测定时间均对土壤含水量有极显著影响; 二者对土壤温度和含水量均无显著的交互作用(表2)。
表2 降水量和测定时间影响荒漠草原土壤温度(ST)和含水量(SWC)的重复测量方差分析
Table 2
差异来源 Differences source | df | ST | SWC | |
---|---|---|---|---|
8:00-10:00 | 15:00-17:00 | 8:00-10:00 | ||
降水量处理 Precipitation treatment (α) | 4 | 3.707* | 2.276 | 27.601** |
测定时间 Measuring time (β) | 4 | 57.317** | 146.775** | 15.003** |
降水量处理×测定时间 Interaction of α and β | 16 | 0.108 | 0.306 | 1.879 |
表中数据为F值。*, p < 0.05; **, p < 0.01。
Data in the table are F values. *, p < 0.05; **, p < 0.01.
降水量对土壤温度的影响随月份不同而异(图3): 8:00-10:00, 与自然降水量相比, 减少和增加30%降水量对各时期土壤温度均无显著影响, 减少50%降水量显著降低了10月7日的土壤温度, 增加50%降水量显著提高了8月10日的土壤温度; 15:00-17:00, 与自然降水量相比, 减少降水量显著降低了6月18日(W1和W2)和8月29日(W1)的土壤温度、显著提高了7月26日(W2)和10月31日(W1和W2)的土壤温度, 增加降水量对各时期土壤温度均无显著影响。
图3
图3
降水量变化对6-10月荒漠草原土壤温度的影响(平均值±标准误)。W1, 降水量减少50%; W2, 降水量减少30%; W3, 自然降水量; W4, 降水量增加30%; W5, 降水量增加50%。不同小写字母表示同一测定时间下降水量处理间差异显著(p < 0.05)。
Fig. 3
Effects of precipitation change on soil temperature from June to October in a desert steppe (mean ± SE). W1, 50% reduction in precipitation; W2, 30% reduction in precipitation; W3, natural precipitation; W4, 30% increase in precipitation; W5, 50% increase in precipitation. Different lowercase letters indicate significant differences among the precipitation treatments under the same measuring time (p < 0.05).
与自然降水量相比, 减少30%和增加30%降水量对各时期土壤含水量均无显著影响, 减少50%降水量显著降低了9月和10月土壤含水量, 增加50%降水量显著提高了7月土壤含水量(图4)。
图4
图4
降水量变化对6-10月荒漠草原土壤含水量的影响(平均值±标准误)。W1, 降水量减少50%; W2, 降水量减少30%; W3, 自然降水量; W4, 降水量增加30%; W5, 降水量增加50%。不同小写字母表示同一测定时间下降水量处理间差异显著(p < 0.05)。
Fig. 4
Effects of precipitation change on soil water content from June to October in a desert steppe (mean ± SE). W1, 50% reduction in precipitation; W2, 30% reduction in precipitation; W3, natural precipitation; W4, 30% increase in precipitation; W5, 50% increase in precipitation. Different lowercase letters indicate significant differences among the precipitation treatments under the same measuring time (p < 0.05).
与自然降水量相比, 减少50%降水量显著提高了土壤全磷、硝态氮含量和Simpson优势度指数, 显著降低了Shannon-Wiener多样性指数和Pielou均匀度指数; 减少30%降水量显著提高了土壤pH、全磷、微生物生物量磷含量, 显著降低了Pielou均匀度指数; 增加30%降水量显著提高了土壤pH、硝态氮含量、脲酶活性, 显著降低了土壤全氮含量和Pielou均匀度指数; 增加50%降水量显著提高了土壤pH、硝态氮、微生物生物量碳含量、脲酶和磷酸酶活性, 显著降低了土壤全氮含量(表3)。
表3 降水量变化对8月荒漠草原土壤性质和植物特征的影响(平均值±标准误)
Table 3
指标 Index | 处理 Treatment | ||||
---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W5 | |
pH | 8.52 ± 0.05bc | 8.58 ± 0.04ab | 8.43 ± 0.04c | 8.67 ± 0.05a | 8.66 ± 0.04a |
EC | 89.97 ± 0.88a | 93.37 ± 2.44a | 128.70 ± 18.49a | 289.67 ± 22.93a | 358.00 ± 38.19a |
SOC | 2.96 ± 0.08b | 3.25 ± 0.50ab | 3.34 ± 0.17ab | 3.38 ± 0.24ab | 3.70 ± 0.12a |
TN | 0.48 ± 0.00a | 0.49 ± 0.01a | 0.48 ± 0.01a | 0.43 ± 0.02b | 0.43 ± 0.01b |
TP | 0.34 ± 0.00a | 0.29 ± 0.00b | 0.27 ± 0.01c | 0.28 ± 0.00bc | 0.27 ± 0.00c |
NO3--N | 5.50 ± 0.41a | 5.08 ± 0.76ab | 3.28 ± 0.05b | 5.19 ± 0.91a | 5.81 ± 0.42a |
NH4+-N | 2.91 ± 0.23a | 3.59 ± 0.68a | 5.44 ± 1.12a | 5.71 ± 1.84a | 5.31 ± 3.34a |
AP | 1.56 ± 0.13a | 1.62 ± 0.51a | 1.72 ± 0.28a | 2.14 ± 0.30a | 2.47 ± 0.68a |
SA | 318.41 ± 33.75c | 359.39 ± 41.44bc | 381.78 ± 33.90abc | 434.93 ± 36.46ab | 474.67 ± 30.07a |
UA | 27.85 ± 3.86b | 30.68 ± 0.67b | 30.95 ± 1.96b | 45.34 ± 4.52a | 45.70 ± 4.82a |
PA | 44.58 ± 0.32bc | 40.89 ± 3.01c | 43.88 ± 2.97bc | 49.02 ± 2.42ab | 55.60 ± 1.35a |
MBC | 99.05 ± 9.57ab | 77.05 ± 20.59ab | 46.68 ± 14.32b | 100.24 ± 27.02ab | 108.73 ± 8.91a |
MBN | 48.97 ± 2.28a | 5.90 ± 0.80a | 7.45 ± 1.74a | 15.10 ± 7.95a | 19.91 ± 8.67a |
MBP | 1.76 ± 0.73b | 3.56 ± 0.40a | 1.76 ± 0.76b | 1.14 ± 0.34b | 2.00 ± 0.34ab |
R | 5.00 ± 0.58b | 6.67 ± 0.88ab | 6.00 ± 1.00ab | 8.67 ± 1.20a | 8.67 ± 0.88a |
H' | 1.13 ± 0.14c | 1.31 ± 0.07bc | 1.49 ± 0.10ab | 1.43 ± 0.02ab | 1.66 ± 0.08a |
E | 0.70 ± 0.03b | 0.70 ± 0.06b | 0.86 ± 0.04a | 0.67 ± 0.04b | 0.77 ± 0.00ab |
D | 0.43 ± 0.06a | 0.37 ± 0.05ab | 0.27 ± 0.02bc | 0.36 ± 0.04abc | 0.24 ± 0.02c |
W1, 降水量减少50%; W2, 降水量减少30%; W3, 自然降水量; W4, 降水量增加30%; W5, 降水量增加50%。AP, 土壤速效磷含量; D, Simpson优势度指数; E, Pielou均匀度指数; EC, 土壤电导率; H', Shannon-Wiener多样性指数; MBC, 微生物生物量碳含量; MBN, 微生物生物量氮含量; MBP, 微生物生物量磷含量; NH4+-N, 土壤铵态氮含量; NO3--N, 土壤硝态氮含量; PA, 土壤磷酸酶活性; pH, 土壤酸碱度; R, Patrick丰富度指数; SA, 土壤蔗糖酶活性; SOC, 土壤有机碳含量; TN, 土壤全氮含量; TP, 土壤全磷含量; UA, 土壤脲酶活性。同一行不同小写字母表示该指标在降水量处理间差异显著(p < 0.05)。
W1, 50% reduction in precipitation; W2, 30% reduction in precipitation; W3, natural precipitation; W4, 30% increase in precipitation; W5, 50% increase in precipitation. AP, soil available phosphorus content; D, Simpson dominance index; E, Pielou evenness index; EC, soil electrical conductivity; H', Shannon-Wiener diversity index; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; MBP, microbial biomass phosphorus content; NH4+-N, soil ammonium nitrogen content; NO3--N, soil nitrate nitrogen content; PA, soil phosphatase activity; R, Patrick richness index; SA, soil sucrose activity; SOC, soil organic carbon content; TN, soil total nitrogen content; TP, soil total phosphorus content; UA, soil urease activity. Different lowercase letters in the same row indicate significant differences of the index among the precipitation treatments (p < 0.05).
2.3 降水量变化下土壤呼吸速率与环境因子的关系
如图5所示, 随土壤温度增加, 土壤呼吸速率呈指数增加; 随土壤含水量增加, 土壤呼吸速率呈线性增加。
图5
图5
整个生长季荒漠草原土壤呼吸速率(SR)与土壤温度(T)和含水量(W)的拟合关系。
Fig. 5
Fitting relationships of soil respiration rate (SR) with soil temperature (T) and water content (W) across the whole growing season in a desert steppe.
方差分解结果(图6)显示: 被土壤性质和植物多样性所解释的土壤呼吸速率方差总R2为0.84; 各组环境因子中, X1独立的解释量较大, X2独立的解释量较小; 三组环境因子两两共同解释量较小, 但三组环境因子共同解释部分R2较大, 表明在对土壤呼吸速率的影响方面, 土壤理化性质与土壤生物学性质及植物多样性高度相关。
图6
图6
环境因子组合对荒漠草原土壤呼吸速率的方差分解。小于0的数值未显示。单个圆圈内数字代表该环境因子组合能解释的方差。圆圈重合部分内数字代表几个环境因子组合共同解释的方差。X1组包括土壤温度、含水量、pH、有机碳、硝态氮和铵态氮含量。X2组包括土壤蔗糖酶活性和微生物生物量碳、氮、磷含量。X3组包括Shannon-Wiener多样性指数和Pielou均匀度指数。
Fig. 6
Variation partitioning of soil respiration rate by environmental factor groups in a desert steppe. Values < 0 are not shown. Data in one circle represent the variation individually explained by the environmental factor groups. Data in the overlapped part of circles represent the variation jointly explained by environmental factor groups. X1 group includes soil temperature, water content, pH, organic carbon, nitrate nitrogen, and ammonium nitrogen content. X2 group includes soil sucrase activity and microbial biomass carbon, nitrogen, phosphorus content. X3 group includes Shannon-Wiener diversity index and Pielou evenness index.
结构方程模型结果(图7)显示, 降水量既可以直接正向影响土壤呼吸速率, 又可以通过土壤生物学性质间接影响土壤呼吸速率, 即降水量通过对土壤生物学性质的正向影响间接负向影响土壤呼吸速率, 或通过土壤生物学性质对植物生物量的正向影响间接正向影响土壤呼吸速率。
图7
图7
降水量变化下荒漠草原土壤呼吸速率与环境因子的结构方程模型。CP, 降水量; PB, 植物生物量; R, Patrick丰富度指数; SBP, 土壤生物学性质(蔗糖酶活性、脲酶活性、磷酸酶活性、微生物生物量碳含量); SCP, 土壤化学性质(pH、电导率、有机碳、速效磷含量); SPP, 土壤物理性质(含水量和温度); SR, 土壤呼吸速率。黑色实线和虚线分别表示显著(p < 0.05)和不显著(p > 0.05)路径。箭头上数字为标准化的路径系数(*, p < 0.05; **, p < 0.01; ***, p < 0.001)。模型拟合总结: χ2 = 5.709, p = 0.457, df = 6; 拟合优度指数(GFI) = 0.998; 标准化残差均方根(RMSEA) = 0.000; 相对配适指数(SRMR) = 0.035。
Fig. 7
Structural equation model of soil respiration rate and environmental factors under changing precipitation regimes in a desert steppe. CP, precipitation; PB, plant biomass; R, Patrick richness index; SBP, soil biological properties (sucrase activity, urease activity, phosphatase activity, microbial biomass carbon content); SCP, soil chemical property (pH, electrical conductivity, organic carbon, available phosphorus content); SPP, soil physical property (water content and temperature); SR, soil respiration rate. Black solid and dashed arrows indicate significant (p < 0.05) and insignificant (p > 0.05) path, respectively. Numbers on the arrows are normalized path coefficients (*, p < 0.05; **, p < 0.01; ***, p < 0.001). Model fit summary: χ2 = 5.709, p = 0.457, df = 6; comparative fit index (GFI) = 0.998; root mean square error of approximation (RMSEA) = 0.000; standardized root mean square residual (SRMR) = 0.035.
3 讨论
3.1 降水量对土壤呼吸的影响
降水作为土壤水分的主要来源, 调控着地下生物化学过程(范凯凯等, 2022)。本研究中, 整个生长季土壤呼吸速率呈先增加后降低的时间动态, 最大值出现在7月下旬或8月上旬(图2), 与以往研究结果(崔海和张亚红, 2016; 王忠武等, 2020)相似。这可能是由于随着生长季的推移气温逐渐升高、自然降水量逐渐增多(图1), 而水分的增多增强了土壤可溶性有机物的有效性和流动性, 促进了植物地下部分根系生长和微生物的代谢活动(蒿廉伊等, 2021), 从而使得土壤呼吸作用加快并在夏季达到高值; 之后随着气温降低、自然降水量减少, 植物地下部分生长和微生物活性减弱, 其呼吸强度随之下降(郭文章等, 2021)。与自然降水量相比, 减少30%降水量对土壤呼吸速率影响较小, 反映了土壤呼吸对适度干旱的适应性(杨青霄等, 2017)。减少50%降水量不同程度地降低了各月份土壤呼吸速率, 增加降水量(尤其增加30%)则表现出相反的效应, 且其促进作用在前期尤为明显(图2)。在极端干旱条件下, 土壤长时间处于缺水状态, 土壤水分以及有机质的扩散、有机质分解受到限制, 不仅阻碍了土壤CO2的传输, 而且影响了植物地下部分根系生长和微生物的生命活动, 从而抑制了土壤呼吸作用(刘涛等, 2012; 王忠武等, 2020)。随着降水量增加, 土壤水分和养分(氮和磷)等资源限制逐渐得以缓解, 从而提高了植物有氧代谢(Ma et al., 2017)、刺激了土壤酶活性(李新鸽等, 2019), 进而促进了植物生长和微生物活动(杨青霄等, 2017; 蒿廉伊等, 2021), 加速了植物地下部分根系呼吸和微生物呼吸(宋晓辉等, 2019)。由于生长季前期较后期自然降水量少(图1), 因此土壤呼吸对增加降水量的反应在前期更加明显(王忠武等, 2020)。然而, 持续增加降水量(增加50%)可能引起土壤通透性下降, 从而限制了CO2的传输、抑制了土壤呼吸(刘涛等, 2012; 郭文章等, 2021)。
3.2 降水量变化下环境因子对土壤呼吸的影响
降水格局改变下, 土壤呼吸作用受生物和非生物因素的共同调节(杨青霄等, 2017)。在受水分限制的荒漠草原, 降水量变化主要通过改变土壤水分含量来改变生态系统碳循环(侯建峰等, 2014; Knapp et al., 2017)。本研究中, 土壤呼吸速率随土壤含水量增加而增加(图5), 证实土壤含水量是影响土壤呼吸速率的重要因素(Zhang et al., 2019; 韩丹等, 2021)。研究区土壤长期处于干旱状态, 过低的土壤含水量引起可溶性底物扩散受阻, 植物生长和微生物活性受到抑制, 导致CO2排放减少(范凯凯等, 2022); 适量增加降水量增强了土壤水分有效性(郭文章等, 2021), 从而调节了土壤通气性(范凯凯等, 2022), 提高了植物生物量和多样性(蒿廉伊等, 2021), 刺激了微生物活动和酶活性(杨青霄等, 2017), 提高了土壤有机质水平(呼吸底物) (Arredondo et al., 2018; 李新鸽等, 2019), 进而刺激了土壤呼吸作用和CO2排放。
此外, 土壤呼吸速率随土壤温度升高呈指数增加(图5), 证实土壤温度亦是影响土壤呼吸速率的重要因素。研究区所处纬度较高, 冬季漫长, 土壤温度长期处于较低水平。随着生长季的到来, 土壤温度逐渐升高, 这不仅刺激了植物地下部分生长和微生物活动, 而且加速了酶的分泌和有机物的分解, 提高了微生物呼吸底物水平, 进而促使土壤呼吸速率升高(窦韦强等, 2022; 郭艳萍和李洪建, 2022)。本研究发现增加降水量对土壤温度影响较小, 减少降水量对土壤温度影响较大, 但未呈现出一致的规律, 与张亚峰等(2013)得出的土壤温度随降水量增加而下降的结论不同, 表明降水量变化下土壤温度不但受土壤湿度的影响, 同时是土壤热容量和上覆植被等因素综合作用的结果(张慧智等, 2009; 王忠武等, 2020; 郭艳萍和李洪建, 2022)。进一步的方差分解结果(图6)显示, 土壤含水量和温度等理化性质对土壤呼吸速率的影响与土壤生物学性质和植物多样性高度相关, 证实降水量变化下土壤呼吸是非生物因素和生物因素共同作用的结果(杨青霄等, 2017)。
结构方程模型结果(图7)显示, 降水量既可直接正向影响土壤呼吸速率, 也可通过影响土壤生物学性质间接影响土壤呼吸速率。一方面, 土壤生物学性质通过直接正向影响植物生物量进而间接正向影响土壤呼吸速率, 与其他研究结果(蒿廉伊等, 2021; Zhang et al., 2021)一致。在荒漠草原, 土壤水分增多刺激了土壤酶分泌和酶活性, 加速了土壤碳矿化过程(郭文章等, 2021), 促进了微生物元素固持(徐敏等, 2020)和植物地下部分生命活动(宋晓辉等, 2019), 从而提高了植物地上生物量积累(Ru et al., 2018)。高的植物地上生物量为植物地下部分输送了多的光合产物, 从而提高了后者呼吸强度(崔海和张亚红, 2016; 范凯凯等, 2022), 反映了植物-酶-微生物之间的正反馈调节关系(王长庭等, 2010; 高明华等, 2016)。另一方面, 土壤生物学性质直接负向影响土壤呼吸速率, 与崔羽等(2019)研究结果相反。这在一定程度上也反映了适量增加降水量有助于促进微生物代谢和土壤呼吸, 但过量增加降水量降低了土壤透气性, 影响了土壤中可溶性底物扩散, 从而限制了植物-微生物代谢活动, 导致土壤呼吸速率下降(李新鸽等, 2019; 郭文章等, 2021)。此外, 研究发现植物多样性通过植物根系和微生物生物量的变化调节土壤呼吸, 即植物多样性影响着根系呼吸和微生物呼吸底物来源, 从而直接调节着土壤呼吸速率(Chen & Chen, 2019)。本研究中, 降水量通过影响土壤物理性质改变了植物多样性, 但群落中不同物种表现出各异的生理生态适应过程(Wang et al., 2022), 使得植物多样性未显著影响土壤呼吸速率, 有待进一步深入研究。
4 结论
综合而言, 整个生长季土壤呼吸速率呈先增加后降低的时间动态; 极端减少降水量抑制了土壤呼吸速率, 但适量减少降水量对土壤呼吸速率影响较小, 反映了荒漠草原土壤呼吸作用对适度干旱的适应性; 适量增加降水量提高了土壤含水量, 刺激了土壤酶活性, 促进了植物-微生物代谢活动, 从而提高了荒漠草原土壤呼吸速率。但极端增加降水量导致土壤水分过饱和, 土壤透气性降低、微生物活动受限, 从而降低荒漠草原土壤呼吸速率。本研究未分析土壤呼吸组分(自养呼吸和异养呼吸)对降水量变化的响应规律, 因此有待通过长期的定位观测对此进行深入分析。
参考文献
Does precipitation affects soil respiration of tropical semiarid grasslands with different plant cover types?
DOI:10.1016/j.agee.2017.09.034 URL [本文引用: 2]
Changes in extreme precipitation accumulations during the warm season over continental China
DOI:10.1175/JCLI-D-20-0616.1
URL
[本文引用: 1]
Precipitation accumulations, integrated over rainfall events, are investigated using hourly data across continental China during the warm season (May–October) from 1980 to 2015. Physically, the probability of precipitation accumulations drops slowly with event size up to an approximately exponential cutoff scale sL where probability drops much faster. Hence sL can be used as an indicator of high accumulation percentiles (i.e., extreme precipitation accumulations). Overall, the climatology of sL over continental China is about 54 mm. In terms of cutoff changes, the current warming stage (1980–2015) is divided into two periods, 1980–97 and 1998–2015. We find that the cutoff in 1998–2015 increases about 5.6% compared with that of 1980–97, with an average station increase of 4.7%. Regionally, sL increases are observed over East China (10.9% ± 1.5%), Northwest China (9.7% ± 2.5%), South China (9.4% ± 1.4%), southern Southwest China (5.6% ± 1.2%), and Central China (5.3% ± 1.0%), with decreases over North China (−10.3% ± 1.3%), Northeast China (−4.9% ± 1.5%), and northern Southwest China (−3.9% ± 1.8%). The conditional risk ratios for five subregions with increased cutoff sL are all greater than 1.0, indicating an increased risk of large precipitation accumulations in the most recent period. For high precipitation accumulations larger than the 99th percentile of accumulation s99, the risk of extreme precipitation over these regions can increase above 20% except for South China. These increases of extreme accumulations can be largely explained by the extended duration of extreme accumulation events, especially for “extremely extreme” precipitation greater than s99.
Plant diversity loss reduces soil respiration across terrestrial ecosystems
DOI:10.1111/gcb.2019.25.issue-4 URL [本文引用: 1]
Diurnal and seasonal dynamic variation of soil respiration and its influencing factors of different fenced enclosure years in desert steppe
不同封育年限荒漠草原土壤呼吸日、季动态变化及其影响因子
Effects of plant and microbial biomass and enzyme activities on soil respiration in the preliminary stage after the Wenchuan earthquake
汶川地震受损区恢复初期植物与微生物生物量、土壤酶活性对土壤呼吸的影响
Effects of desertification on soil respiration and ecosystem carbon fixation in Mu Us sandy land
荒漠化对毛乌素沙地土壤呼吸及生态系统碳固持的影响
Responses of respiration rate of moss biocrusts to the manipulation of rainfall amount on the Chinese Loess Plateau
黄土高原藓结皮土壤呼吸速率对降雨量变化的响应
Spatial heterogeneity analysis of soil respiration in Hulunbuir grassland
呼伦贝尔草原土壤呼吸作用空间异质性分析
DOI:10.11733/j.issn.1007-0435.2022.01.025
[本文引用: 5]
土壤呼吸作用是土壤碳库向大气释放CO<sub>2</sub>的主要途径,其在空间尺度上具有明显差异性,土壤呼吸的空间变化增加了土壤碳排放评估的不确定性,研究土壤呼吸作用空间异质性对于准确评估生态系统碳排放具有重要意义。2020年9月1日—9月6日,本研究沿呼伦贝尔草原东西样带随机选取了30个观测样地,利用土壤呼吸自动观测系统(Li-8100)测定土壤CO<sub>2</sub>排放通量,并对其影响因子进行分析。结果表明:沿呼伦贝尔东西样带,随着降水量的减少,土壤呼吸速率显著减小;刈割利用下的土壤呼吸速率(3.36 μmol·m<sup>-2</sup>·s<sup>-1</sup>)显著大于放牧利用(1.87 μmol·m<sup>-2</sup>·s<sup>-1</sup>);土壤有机碳含量和地上生物量是决定土壤呼吸空间异质性的主要因子,二者共同解释土壤呼吸变异的52%;土壤有机碳含量和植被生物量直接影响了土壤呼吸作用,土壤容重和土壤水分间接影响了土壤呼吸作用。降水空间格局变化和人类活动扰动是呼伦贝尔草原土壤呼吸作用空间异质性的主要驱动因素。
Influences of grazing on plant community characteristics, soil microorganism and soil enzyme activity
放牧对植物群落特征和土壤微生物及酶活性的影响
Responses of soil respiration and ecosystem respiration to precipitation in desert steppe on the northern slope of Tianshan Mountains
天山北坡荒漠草原土壤呼吸和生态系统呼吸对降水的响应
DOI:10.11733/j.issn.1007-0435.2021.09.021
[本文引用: 6]
为揭示降水对天山北坡荒漠草原土壤呼吸和生态系统呼吸的影响,本实验以天山北坡荒漠草原为研究对象,通过测定3种模拟降水处理(CK,5 mm,18 mm,28 mm)下荒漠草原土壤呼吸速率和生态系统呼吸速率的变化特征。结果表明:不同降水处理下土壤呼吸速率和生态系统呼吸速率有明显的日变化趋势;3种降水处理下(28 mm,18 mm,5 mm)土壤呼吸速率较CK显著增加了22.93%,23.20%,12.07%,生态系统呼吸速率较CK显著增加了216.81%,153.27%,39.35%;不同降水处理下土壤呼吸速率和生态系统呼吸速率与土壤温度均表现为显著正相关关系;荒漠草原土壤呼吸速率与土壤含水量呈二次函数关系,生态系统呼吸速率与土壤含水量呈线性关系。因此,降水是影响天山北坡荒漠草原土壤呼吸速率和生态系统呼吸速率的主要因素。
Response of soil respiration to soil moisture, temperature and vegetation factors in two shrub communities of Tianlong Mountain area
天龙山灌丛生态系统土壤呼吸对水热和植被因子的响应
Effects of simulated temperature increase and change of rainfall frequency on soil respiration in arid and semi-arid areas
DOI:10.7522/j.issn.1000-694X.2021.00027
[本文引用: 1]
Based on the method of space-for-time substitution, we investigated the coverage and frequentness of six typical biocrust-forming organisms, Cyanobacteria, Collema coccophorum, Endocarpon pusillum, Bryum argenteum, Didymodon vinealis and Syntrichia caninervis, in four artificial sand-binding vegetation zones established separately in 1956, 1964, 1981 and 1987 (representing four succession stages of 64, 56, 39 and 33 years after sand-binding vegetation establishment, respectively), and calculated their niche widths and overlap values using different squares as resource states. Then we analyzed the patterns of interspecific relationships among biocrust-forming organisms during the succession of artificially sand-binding vegetation in Shapotou area by employing variance ratio method, chi-square test and interspecific correlation coefficient. The results showed that: (1) Along with the succession of sand-binding vegetation, the niche widths and overlap indices of the biocrust-forming organisms varied greatly, the niche widths of cyanobacteria rapidly narrowed (from 3.865 after 33 years to 0 after 64 years), and the niche overlap values between cyanobacteria and other biocrust-forming organisms gradually decreased; the niche widths of B. argenteum and C. coccophorum remained almost constant and both were higher than that of other types, as well as their niche overlap values were also higher; the niche widths of D. vinealis, S. caninervis and E. pusillum was relatively small during early succession of the vegetation, but increased significantly with succession processing (from 1.607, 0 and 0.693 in 33 years to 3.699, 3.227 and 3.373 in 64 years, respectively), and the niche overlap values among them increased simutenousely. (2) The overall interspecific correlations of biocrust-forming organisms changed from negative to positive accompanied with the succession of the sand-binding vegetation, and reached a maximum value (VR =1.15) at the oldest 64 years of the succession. With the succession of sand-binding vegetation, the association between different biocrust-forming organisms was gradually strengthened, and the community structure and species composition of surface cryptogms tended to be stable. This study not only provides a basis for revealing the symbiotic coexistence, interaction and evolution mechanism of biocrust-forming organisms in arid sandy areas, but also serves as an important reference for the theoretic research and application techniques using biocrust-forming organisms as the new sand-fixation materials.
模拟增温和改变降雨频率对干旱半干旱区土壤呼吸的影响
DOI:10.7522/j.issn.1000-694X.2020.00111
[本文引用: 1]
温度和降水是干旱半干旱区土壤呼吸的重要扰动因子,全球气候变化导致的未来干旱半干旱区增温和降水变率增大对土壤呼吸有着重要影响。研究通过人工设置P<sub>16×2.5mm</sub>、P<sub>8×5mm</sub>、P<sub>4×10mm</sub>、P<sub>2×20mm</sub>、P<sub>1×40mm</sub>的降雨频率梯度和增温2 ℃左右的控制试验,探讨不同降雨频率和增温处理对干旱半干旱区土壤呼吸的影响,以及土壤呼吸与土壤温湿度的关系及其对降雨频率改变的响应。结果表明:降雨频率和增温单独对土壤呼吸具有极显著影响(P<0.001),但是两者之间并无交互作用(P>0.5);在降雨量一定的情况下,土壤呼吸速率随着降雨频率的减小而减小,即多频率小降雨事件激发的土壤呼吸速率大于小频率大降雨事件;增温促进土壤呼吸,提高了约11%的土壤呼吸。本结果有助于对未来干旱半干旱地区全球变暖背景下降雨格局的改变对土壤呼吸产生的影响进行预测,同时也为进一步估算该区域生态系统的碳收支提供参考数据。
Influence of precipitation change on soil respiration in desert grassland
DOI:10.1021/es7024164 URL [本文引用: 6]
降水变化对荒漠草原土壤呼吸的影响
Variation of soil respiration and its underlying mechanism in grasslands of northern China
中国北方草地土壤呼吸的空间变异及成因
土壤呼吸是陆地生态系统碳循环的关键指标,决定了土壤源二氧化碳(CO<sub>2</sub>)进入大气的通量,对预测全球气候变化背景下区域乃至全球碳循环变化具有重要意义.本文通过室内短期培养试验测定了中国北方草地样带土壤样品的呼吸速率,研究了北方草地土壤呼吸的区域尺度格局及其与主要调控因子的关系.结果表明:土壤呼吸速率自西向东随年均降水量(MAP)增加呈逐渐增加的趋势,变化范围为0.35~2.09 μg CO<sub>2</sub>C·g<sup>-1</sup>·h<sup>-1</sup>.其中,MAP<100 mm时,土壤呼吸速率为0.35~0.73 μg CO<sub>2</sub>C·g<sup>-1</sup>·h<sup>-1</sup>;100 mm <MAP<200 mm时,土壤呼吸速率为0.57~0.98 μg CO<sub>2</sub>C·g<sup>-1</sup>·h<sup>-1</sup>;MAP>300 mm时,土壤呼吸速率为0.83~2.10 μg CO<sub>2</sub>C·g<sup>-1</sup>·h<sup>-1</sup>.土壤呼吸速率与年均降水量、地上生物量、土壤有机碳氮含量呈显著正相关,而与年均温和pH值呈显著负相关.增强回归树分析显示,年均降水量、地上生物量、土壤有机碳含量和土壤有机氮含量分别解释了土壤呼吸总变异的25.5%、23.6%、18.3%和12.5%,而土壤pH和年均温仅解释了10.8%和9.2%.
Consequences of more extreme precipitation regimes for terrestrial ecosystems
DOI:10.1641/B580908 URL [本文引用: 2]
Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change
DOI:10.1111/nph.14381
PMID:28001290
[本文引用: 1]
Contents 41 I. 41 II. 42 III. 43 IV. 44 V. 45 Acknowledgements 46 References 46 SUMMARY: Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT-ANPP relationships are important both ecologically and to land-atmosphere models that couple terrestrial vegetation to the global carbon cycle. Empirical PPT-ANPP relationships derived from long-term site-based data are almost always portrayed as linear, but recent evidence has accumulated that is inconsistent with an underlying linear relationship. We review, and then reconcile, these inconsistencies with a nonlinear model that incorporates observed asymmetries in PPT-ANPP relationships. Although data are currently lacking for parameterization, this new model highlights research needs that, when met, will improve our understanding of carbon cycle dynamics, as well as forecasts of ecosystem responses to climate change.© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Effects of drying- wetting cycle caused by rainfall on soil respiration: progress and prospect
降雨引起的干湿交替对土壤呼吸的影响: 进展与展望
土壤呼吸是全球陆地生态系统碳循环重要组成部分,降雨作为扰动因子对土壤呼吸动态的改变将直接影响全球碳平衡。探讨降雨对土壤呼吸的作用机制是陆地生态系统碳循环和碳收支研究的重要内容。本文综述了近年来国内外学者关于降雨引起的干湿交替对土壤呼吸影响机制的研究进展,阐述了土壤水分对土壤呼吸的影响及其机理。土壤水分在适宜范围内促进土壤呼吸,过高或过低均抑制土壤呼吸;降雨引起的干湿交替通过改变土壤水分影响土壤呼吸。一方面,干旱条件下,降雨引起的干湿交替主要通过短时间置换土壤中CO<sub>2</sub>、增加土壤微生物呼吸底物、提高微生物活性、增强凋落物分解速率等途径提高土壤呼吸速率。另一方面,湿度较高的土壤经过短时间降雨迅速达到水分饱和或积水状态,降雨引发的干湿交替通过限制O<sub>2</sub>进入土壤,形成厌氧环境,抑制微生物和根系呼吸。此外,降雨引发的干湿交替还通过地表积水淹没部分植株,降低植物叶面积,减少光合产物,显著抑制根系呼吸。为更准确估算降雨变化影响土壤呼吸对陆地生态系统碳平衡的干扰,提出了未来降雨对土壤呼吸影响研究需重点关注的3个方面:(1)降雨对土壤呼吸影响的微生物响应机制;(2)区分土壤自养呼吸和异养呼吸对降雨的响应机制;(3)降雨对土壤呼吸影响模型研究。
A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes
DOI:10.1111/gcb.13156
PMID:26554753
[本文引用: 1]
Soil respiration (Rs) is the second-largest terrestrial carbon (C) flux. Although Rs has been extensively studied across a broad range of biomes, there is surprisingly little consensus on how the spatiotemporal patterns of Rs will be altered in a warming climate with changing precipitation regimes. Here, we present a global synthesis Rs data from studies that have manipulated precipitation in the field by collating studies from 113 increased precipitation treatments, 91 decreased precipitation treatments, and 14 prolonged drought treatments. Our meta-analysis indicated that when the increased precipitation treatments were normalized to 28% above the ambient level, the soil moisture, Rs, and the temperature sensitivity (Q10) values increased by an average of 17%, 16%, and 6%, respectively, and the soil temperature decreased by -1.3%. The greatest increases in Rs and Q10 were observed in arid areas, and the stimulation rates decreased with increases in climate humidity. When the decreased precipitation treatments were normalized to 28% below the ambient level, the soil moisture and Rs values decreased by an average of -14% and -17%, respectively, and the soil temperature and Q10 values were not altered. The reductions in soil moisture tended to be greater in more humid areas. Prolonged drought without alterations in the amount of precipitation reduced the soil moisture and Rs by -12% and -6%, respectively, but did not alter Q10. Overall, our synthesis suggests that soil moisture and Rs tend to be more sensitive to increased precipitation in more arid areas and more responsive to decreased precipitation in more humid areas. The responses of Rs and Q10 were predominantly driven by precipitation-induced changes in the soil moisture, whereas changes in the soil temperature had limited impacts. Finally, our synthesis of prolonged drought experiments also emphasizes the importance of the timing and frequency of precipitation events on ecosystem C cycles. Given these findings, we urge future studies to focus on manipulating the frequency, intensity, and seasonality of precipitation with an aim to improving our ability to predict and model feedback between Rs and climate change.© 2015 John Wiley & Sons Ltd.
Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands
DOI:10.5194/bg-15-1627-2018
URL
[本文引用: 1]
. Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited, especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE) frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and the Qinghai–Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced a transient increase in CO2 release through soil respiration, equivalent to 32 and 72 % of the net ecosystem productivity (NEP) in the temperate grasslands (Xilinhot and Keqi) and 7 % of NEP in the alpine grasslands (Gangcha). By comparison, leaching loss of soil carbon accounted for 290, 120, and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC, biogenic DIC + lithogenic DIC) as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with recurring EPEs in the soil with the highest pH due to an elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C). These results highlight the fact that leaching loss of soil carbon (particularly in the form of DIC) is important in the regional carbon budget of arid and semiarid grasslands and also imply that SOC mineralization in alkaline soils might be underestimated if only measured as CO2 emission from soils into the atmosphere. With a projected increase in EPEs under climate change, soil carbon leaching processes and the influencing factors warrant a better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.\n
Effects of short-term warming and increasing precipitation on soil respiration of desert steppe of Inner Mongolia
DOI:10.3724/SP.J.1258.2012.01043
[本文引用: 2]
<p><em>Aims </em>Our objective was to examine the effects of global warming inducing environmental and biological changes on soil respiration of desert steppe.</br><em>Methods</em> We used infrared heaters to carry out the interactive simulation of warming and increasing precipitation in a desert steppe of Inner Mongolia from June to September 2011. Our experimental design was set up with two temperature levels (control and warming) and three precipitation treatments (control, 15% and 30% increase of the average precipitation during 1987–2007), using a complete randomized block arrangement. Soil respiration rate was measured by a LI-8100 carbon flux system in these six different treatments. We analyzed the relationships between soil respiration and environmental factors, aboveground biomass, and belowground biomass at different soil layers (0–10, 10–20 and 0–20 cm).</br><em>Important findings</em> Soil respiration in the desert steppe reached its peak value in the middle of the growing season. The average soil respiration rate of the desert steppe from July to August was 1.35 μmol CO<sub>2</sub>·m<sup>–2</sup>·s<sup>–1</sup>. The soil respiration rate was 2.08 and 0.63 μmol CO<sub>2</sub>·m<sup>–2</sup>·s<sup>–1</sup> in July and August, respectively. Increasing soil moisture and temperature significantly influenced daily soil respiration, but their interaction had no significant effect on soil respiration. Soil moisture had greater impact on monthly soil respiration than soil temperature. Soil respiration rate showed a power function relationship with belowground biomass at different soil depths. The belowground biomass at 0–10 cm soil was the major part of the belowground biomass and could explain more variation of soil respiration rate (79.2%) than that at 10–20 cm (31.6%). Under the future climatic changes scenarios, soil moisture was a principal environmental factor affecting plant biomass, while belowground biomass was a major biological factor controlling soil respiration in the desert steppe. Soil moisture might control the heterogeneity of soil respiration by influencing the distribution of belowground biomass at different soil depths.</p>
短期增温和增加降水对内蒙古荒漠草原土壤呼吸的影响
DOI:10.3724/SP.J.1258.2012.01043
[本文引用: 2]
利用红外辐射增温装置模拟短期持续增温和降水增加交互作用对内蒙古荒漠草原土壤呼吸作用的影响, 结果表明: 土壤含水量对月土壤呼吸的影响显著大于土壤温度增加的影响, 生长旺季的月土壤呼吸显著大于生长末季; 土壤温度和水分增加都显著影响日土壤呼吸, 但二者的交互作用对土壤呼吸无显著影响。荒漠草原7?8月平均土壤呼吸速率为1.35 μmol CO<sub>2</sub>·m<sup>–2</sup>·s<sup>–1</sup>, 7月份为2.08 μmol CO<sub>2</sub>·m<sup>–2</sup>·s<sup>–1</sup>, 8月份为0.63 μmol CO<sub>2</sub>·m<sup>–2</sup>·s<sup>–1</sup>。土壤呼吸与地下各层根系生物量呈幂函数关系, 0?10 cm土层的根系生物量对土壤呼吸的解释率(79.2%)明显高于10?20 cm土层的解释率(31.6%)。0–10 cm土层的根系生物量是根系生物量的主体, 根系生物量对土壤呼吸的影响具有层次性。在未来全球变暖和降水格局变化的情景下, 荒漠草原土壤水分含量是影响生物量的主导环境因子, 而根系生物量的差异是造成土壤呼吸异质性的主要生物因素, 土壤含水量可通过影响根系生物量控制土壤呼吸的异质性。
Disturbance alters relationships between soil carbon pools and aboveground vegetation attributes in an anthropogenic peatland in Patagonia
Anthropogenic-based disturbances may alter peatland soil-plant causal associations and their ability to sequester carbon. Likewise, it is unclear how the vegetation attributes are linked with different soil C decomposition-based pools (i.e., live moss, debris, and poorly- to highly-decomposed peat) under grassing and harvesting conditions. Therefore, we aimed to assess the relationships between aboveground vegetation attributes and belowground C pools in a Northern Patagonian peatland of with disturbed and undisturbed areas. We used ordination to depict the main C pool and floristic gradients and structural equation modeling (SEM) to explore the direct and indirect relationships among these variables. In addition, we evaluated whether attributes derived from plant functional types (PFTs) are better suited to predict soil C pools than attributes derived from species gradients. We found that the floristic composition of the peatland can be classified into three categories that follow the C pool gradient. These categories correspond to (1) woody species, such as, (2) water-logged species like, and (3) grasslands. We depicted that these classes are reliable indicators of soil C decomposition stages. However, the relationships change between management. We found a clear statistical trend showing a decrease of live moss, debris, and poorly-decomposed C pools in the disturbed area. We also depicted that plant diversity, plant height, and PFT composition were reliable indicators of C decomposition only under undisturbed conditions, while the species-based attributes consistently yielded better overall results predicting soil C pools than PFT-based attributes. Our results imply that managed peatlands of Northern Patagonia with active grassing and harvesting activities, even if small-scaled, will significantly alter their future C sequestration capacities by decreasing their live and poorly-decomposed components. Finally, aboveground vegetation attributes cannot be used as proxies of soil C decomposition in disturbed peatlands as they no longer relate to decomposition stages.© 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
Climate warming reduces the temporal stability of plant community biomass production
Anthropogenic climate change has emerged as a critical environmental problem, prompting frequent investigations into its consequences for various ecological systems. Few studies, however, have explored the effect of climate change on ecological stability and the underlying mechanisms. We conduct a field experiment to assess the influence of warming and altered precipitation on the temporal stability of plant community biomass in an alpine grassland located on the Tibetan Plateau. We find that whereas precipitation alteration does not influence biomass temporal stability, warming lowers stability through reducing the degree of species asynchrony. Importantly, biomass temporal stability is not influenced by plant species diversity, but is largely determined by the temporal stability of dominant species and asynchronous population dynamics among the coexisting species. Our findings suggest that ongoing and future climate change may alter stability properties of ecological communities, potentially hindering their ability to provide ecosystem services for humanity.
Differential sensitivities of grassland structural components to changes in precipitation mediate productivity response in a desert ecosystem
DOI:10.1111/fec.2014.28.issue-5 URL [本文引用: 1]
Shifts of growing-season precipitation peaks decrease soil respiration in a semiarid grassland
DOI:10.1111/gcb.13941
PMID:29034565
[本文引用: 2]
Changing precipitation regimes could have profound influences on carbon (C) cycle in the biosphere. However, how soil C release from terrestrial ecosystems responds to changing seasonal distribution of precipitation remains unclear. A field experiment was conducted for 4 years (2013-2016) to examine the effects of altered precipitation distributions in the growing season on soil respiration in a temperate steppe in the Mongolian Plateau. Over the 4 years, both advanced and delayed precipitation peaks suppressed soil respiration, and the reductions mainly occurred in August. The decreased soil respiration could be primarily attributable to water stress and subsequently limited plant growth (community cover and belowground net primary productivity) and soil microbial activities in the middle growing season, suggesting that precipitation amount in the middle growing season is more important than that in the early, late, or whole growing seasons in regulating soil C release in grasslands. The observations of the additive effects of advanced and delayed precipitation peaks indicate semiarid grasslands will release less C through soil respiratory processes under the projected seasonal redistribution of precipitation in the future. Our findings highlight the potential role of intra-annual redistribution of precipitation in regulating ecosystem C cycling in arid and semiarid regions.© 2017 John Wiley & Sons Ltd.
Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation
DOI:10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2 URL [本文引用: 1]
Relationship between soil respiration and community underground biomass of desert steppe under different grazing intensities and water treatments
不同放牧强度和水分处理下荒漠草原土壤呼吸与群落地下生物量的关系
DOI:10.11733/j.issn.1007-0435.2019.04.022
[本文引用: 2]
为比较短花针茅(Stipa breviflora)荒漠草原不同放牧强度下不同水分处理对土壤呼吸、根系现存量和根系净生长量的影响,揭示土壤呼吸与地下生物量之间的关系,本研究在内蒙古荒漠草原不同放牧强度试验区进行对比性试验。放牧强度试验采用完全随机区组设计,将50 hm<sup>2</sup>试验样地分为不放牧、轻度放牧、中度放牧和重度放牧4个梯度,3次重复。每个放牧强度下设有4个不同水分处理(减水50%、自然降水、增水50%和增水100%)。在不同水分处理小区内,采用开路式土壤碳通量测量系统LI-8100测定土壤呼吸速率,用根钻法测定根系现存量,根袋法测定根系净生长量。结果表明:不同放牧强度对土壤呼吸和群落地下生物量没有产生显著性影响(P>0.05);土壤呼吸速率随着降水的增多显著增加(PPPP<0.05)。因此,在干旱的荒漠草原,水分是影响土壤呼吸和群落生长发育的主要因素。
Spatiotemporal variations of precipitation in China using surface gauge observations from 1961 to 2016
Long-term precipitation trend is a good indicator of climate and hydrological change. The data from 635 ground stations are used to quantify the temporal trends of precipitation with different intensity in China from 1961 to 2016. These sites are roughly uniformly distributed in the east or west regions of China, while fewer sites exist in the western region. The result shows that precipitation with a rate of <10 mm/day dominates in China, with a fraction of >70%. With a 95% confidence level, there is no significant temporal change of annually averaged precipitation in the whole of China. Seasonally, there are no significant temporal changes except for a robust decreasing trend in autumn. Spatially, significant differences in the temporal trends of precipitation are found among various regions. The increasing trend is the largest in Northwest China, and the decreasing trend is the largest in North China. The annually averaged number of precipitation days shows a decreasing trend in all regions except for Northwest China. Regarding precipitation type, the number of light precipitation days shows a robust decreasing trend for almost all regions, while other types show no significant change. Considering the high frequency, the temporal trends of light precipitation could highly explain the temporal variation of the total precipitation amount in China.
Change characteristics of precipitation in northwest China from 1961 to 2018
1961-2018年西北地区降水的变化特征
Relationship between plant communities, characters, soil physical and chemical properties, and soil microbiology in alpine meadows
高寒草甸群落地表植被特征与土壤理化性状、土壤微生物之间的相关性研究
以青藏高原高寒草甸4种主要草地类型为研究对象,分析了不同植被类型土壤的理化性质、土壤微生物数量、土壤酶活性与生态系统功能间的相互关系。结果表明,不同植被类型群落的土壤特性存在明显差异。藏嵩草沼泽化草甸0~40cm土层土壤容重、土壤含水量、土壤有机质、土壤全氮和土壤速效氮含量明显不同于矮嵩草草甸、小嵩草草甸和金露梅灌丛草甸,土壤物理特性的改变(土壤养分、土壤容重、土壤湿度等)会引起植被组成、物种多样性变化;细菌数量和真菌数量与植物群落地上生物量之间存在显著正相关关系(P<0.05)、放线菌数量与生物量之间的相关性不显著,不同植被类型的群落生物量影响着土壤微生物数量和组成;不同草地类型植物群落地上生物量与土壤酶活性(磷酸酶、过氧化氢酶、蛋白酶、脲酶等)之间存在显著的正相关关系(P<0.05),土壤酶活性对土壤有机质、腐殖质等的合成起到了积极作用。土壤酶活性的高低不仅影响了群落生物量,同时也影响群落物种多样性(物种丰富度),土壤酶活性的高低通过影响土壤微生物种类和数量、土壤养分含量,从而间接影响群落物种多样性。
Spatial variation in the direct and indirect effects of plant diversity on soil respiration in an arid region
Increased precipitation enhances soil respiration in a semi-arid grassland on the Loess Plateau, China
Precipitation influences the vulnerability of grassland ecosystems, especially upland grasslands, and soil respiration is critical for carbon cycling in arid grassland ecosystems which typically experience more droughty conditions.
Effects of simulated precipitation on soil respiration of Stipa breviflora desert steppe
模拟降水对短花针茅荒漠草原土壤呼吸的影响
Effects of precipitation pulse on soil carbon released by microbes in different grasslands
脉冲式降水对不同类型草地土壤微生物呼吸碳释放量的影响
Plant functional diversity modulates global environmental change effects on grassland productivity
DOI:10.1111/jec.2018.106.issue-5 URL [本文引用: 1]
Main factors driving changes in soil respiration under altering precipitation regimes and the controlling processes
DOI:10.17521/cjpe.2017.0208 URL [本文引用: 7]
降水格局改变背景下土壤呼吸变化的主要影响因素及其调控过程
DOI:10.17521/cjpe.2017.0208
[本文引用: 7]
全球气候变化带来降水格局的改变。土壤呼吸是土壤碳库向大气释放CO<sub>2</sub>的重要途径, 其对降水变化的响应对陆地生态系统碳循环和全球气候变化进程有着重要的意义。该研究收集了来自全球各地土壤呼吸对降水变化响应的控制试验结果进行分析, 以揭示降水格局变化对土壤呼吸影响的普遍规律和控制机制。结果显示: 增加降水促进土壤呼吸2%-135%, 减少降水抑制土壤呼吸19%-24%, 当降水改变量标准化到所有处理的平均值(当年当地降水量的41%)时, 增加降水促进的土壤呼吸量(49%)显著大于减少降雨抑制的土壤呼吸量(21%)。土壤湿度是降水变化下驱动土壤呼吸改变的主要因子, 其一方面直接影响土壤呼吸, 另一方面通过影响土壤微生物碳库、地上/地下净初级生产力来影响土壤呼吸, 总解释度高达98%。同时土壤呼吸对降水变化的响应程度随着环境温度和降水量发生变化。土壤呼吸对降水增加的敏感性随环境温度的升高没有显著变化, 但对降水减少的敏感性随着环境温度的升高逐渐增强。随着环境降水量的逐渐增加, 土壤呼吸对降水增加和减少的敏感性均呈现下降趋势。说明在未来全球降水格局的改变下, 土壤呼吸对降水变化的响应有很大的区域差异, 受当地气候条件的影响。
Spatio-temporal change of precipitation in arid region of the northwest China
中国西北干旱区降水时空分布特征
Relationship between restoration of plant diversity and soil habitat in desert steppe
荒漠草原植物多样性恢复与土壤生境的关系
Seasonal and regional variations of soil temperature in China
中国土壤温度的季节性变化及其区域分异研究
Copula-based spatio- temporal patterns of precipitation extremes in China
DOI:10.1002/joc.v33.5 URL [本文引用: 1]
Effect of manipulated precipitation during the growing season on soil respiration in the desert- grasslands in Inner Mongolia, China
DOI:10.1016/j.catena.2019.01.010
[本文引用: 2]
The dynamics of soil respiration are crucial in understanding carbon cycling and its feedback to climate change. However, little information exists regarding the response of soil respiration to precipitation variation. To examine the response of soil respiration to precipitation variation through biogeochemical regulation, a manipulative field experiment was conducted along a precipitation gradient (-60%, -40%, -20%, CK = natural precipitation, + 20%, +40% and +60%) in a native desert grassland ecosystem in Inner Mongolia. Plant biomass, total soil carbon and soil respiration were determined across the precipitation treatments during the growing season (from late May to early October) in 2017. Above-ground biomass tended to increase but total soil carbon varied little with an increase in precipitation. Soil respiration exhibited a unimodal curve diurnally in all precipitation treatments, peaking between 09:00 and 13:00, but showed irregular patterns seasonally. Both the daily and seasonal average soil respirations increased with an increase in precipitation (diurnal Rs ranged from 0.37 mu mol m(-2)S(-1 )to 0.75 mu mol m(-2)S(-1); seasonal Rs ranged from 0.43 mu mol m(-2)S(-1) to 0.66 mu mol m(-2)S(-1)). Soil respiration was correlated positively with precipitation-induced change in above-ground plant biomass, but was correlated negatively with precipitation-induced change in total soil carbon. It was concluded that carbon released from the soil increases with an increase in precipitation.
The responses of soil respiration to changed precipitation and increased temperature in desert grassland in northern China
Effects of shrubs and precipitation on spatial-temporal variation of soil temperature at the microhabitats induced by desert shrubs
荒漠灌丛微生境土壤温度的时空变异特征——灌丛与降水的影响
DOI:10.7522/j.issn.1000-694X.2013.00073
[本文引用: 1]
对干旱区优势固沙灌木柠条群落不同微生境(灌丛外和灌丛下)的土壤温度(0 cm、5 cm、10 cm和20 cm剖面深度)进行了连续测定,对比分析了晴天、降水日与灌丛对其微生境土壤温度时空变异的影响。结果表明:降水和植被灌丛对土壤温度均具有显著影响。在无雨日,受灌丛遮阴影响,灌丛外土壤温度明显高于灌丛下相同深度的土壤温度;在降水日,土壤温度主要受降水影响,降水使土壤温度明显降低,灌丛的影响作用减弱,灌丛下和灌丛外同一剖面深度的土壤温度差异较小。无雨日土壤温度日变化呈单峰型正弦曲线,随剖面深度增加,土壤温度振幅逐渐减小,峰值出现时间滞后,土壤温度垂直分布变化呈现4种典型变化曲线。夜间(日落至日出)柠条灌丛下地表温度(0 cm土壤温度)比灌丛外地表温度略高。降水日土壤温度日变化随降水过程的持续呈逐渐递减趋势,土壤温度垂直分布变化表现为随深度增加而递增的趋势。
Diverse soil respiration responses to extreme precipitation patterns in arid and semiarid ecosystems
Effects of precipitation and N addition on soil C:N:P ecological stoichiometry and plant community composition in a desert steppe of Ningxia, northwestern China
DOI:10.11686/cyxb2019232
[本文引用: 2]
Change in precipitation pattern and increase in atmospheric nitrogen (N) deposition are two important consequences of global change. Soil carbon (C)∶N∶phosphorus (P) ecological stoichiometry could reflect soil organic C level and N and P supply and thus would be closely related to plant growth. Previous studies have reported that both of the changes in precipitation and N deposition may lead to the decoupling of soil C∶N∶P ecological stoichiometry. In order to better understand whether the changes in soil C∶N∶P ecological stoichiometry could affect plant community composition under changing precipitation regimes and increasing atmospheric N deposition, we conducted a field experiment in a desert steppe of Ningxia, northwestern China, involving five precipitation treatments (50% reduction in precipitation, 30% reduction in precipitation, natural precipitation, 30% increase in precipitation, and 50% increase in precipitation) and two N addition treatments (0 and 5 g·m<sup>-2</sup>·yr<sup>-1</sup>) in 2017, and primarily explored the changes in both soil C∶N∶P ecological stoichiometry and plant community composition and their relationships in August, 2018. It was found that increased precipitation led to decreases in soil organic C, total N, and N∶P, whereas N addition and its interaction with precipitation had little influences on soil C∶N∶P ecological stoichiometry; a moderate increase in precipitation stimulated the growth of most plants and thus increased community diversity. An excessive increase in precipitation resulted in a sharp increase of <em>Artemisia scoparia</em> biomass, combined with the positive effects of N addition, resulting in a reduction of community diversity. To a certain extent, soil water content, total N, organic C, and N∶P were closely related to plant population biomass, while soil water content, organic C, C∶P, and C∶N had closer relationships with diversity indices. Taken together, the results above indicate that precipitation could change N and P relationships between soil supply and plant demand through regulating soil water availability, thus changing plant growth strategy and community diversity; short-term N addition had little effect on soil nutrient availability, consequently, a long-term in situ experiment is needed to further explore mechanisms influencing soil C∶N∶P stoichiometric balance effects on plant community composition under N addition and the interaction between these effects and precipitation change.
降水量及N添加对宁夏荒漠草原土壤C:N:P生态化学计量特征和植被群落组成的影响
DOI:10.11686/cyxb2019232
[本文引用: 2]
为了解降水格局改变和大气氮(N)沉降增加背景下土壤碳(C)∶N∶磷(P)平衡关系的改变是否会影响到荒漠草原植被群落组成, 基于2017年在宁夏荒漠草原设立的降水量(降水量减少50%、降水量减少30%、自然降水量、降水量增加30%和降水量增加50%)、N添加(0和5 g·m<sup>-2</sup>·yr<sup>-1</sup>)及其交互作用的野外试验, 初步分析了土壤C∶N∶P生态化学计量特征和植物群落组成的变化趋势以及二者的关系。结果表明, 增加降水量降低了土壤有机C、全N和N∶P。N添加及其与降水量的交互作用对土壤C∶N∶P生态化学计量特征的影响较小; 适量增加降水量刺激了多数植物生长, 提高了群落多样性。过量增加降水量导致猪毛蒿种群生物量急增, 且N添加对降水量效应有促进作用, 从而降低了群落多样性; 土壤含水量、全N、有机C和N∶P与种群生物量关系较为密切, 土壤含水量、有机C、C∶P和C∶N与多样性指数存在较强的相关关系。以上结果意味着降水量会通过调控土壤水分有效性, 改变土壤与植物之间N和P的满足程度, 从而对植物生长策略和群落多样性产生影响; 短期N添加对土壤养分有效性影响较小。因此, 还需通过长期的原位试验, 对N添加及其与降水量交互作用下土壤C∶N∶P计量平衡与植物群落组成的关系进行深入探讨。
Plant functional diversity mediates the effects of vegetation and soil properties on community- level plant nitrogen use in the restoration of semiarid sandy grassland
DOI:10.1016/j.ecolind.2016.01.012 URL [本文引用: 1]
/
〈 |
|
〉 |
