Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (4): 475-486.doi: 10.17521/cjpe.2017.0300

• Research Articles • Previous Articles     Next Articles

Vertical distribution pattern of mixed root systems of desert plants Reaumuria soongarica and Salsola passerina under different environmental gradients

Li-Shan SHAN*,Ming SU,Zheng-Zhong ZHANG,Yang WANG,Shan WANG,Yi LI   

  1. College of Forestry Sciences, Gansu Agricultural University, Lanzhou 730070, China
  • Online:2018-03-21 Published:2018-04-20

Abstract:

Aims How plant species interaction changes along environmental gradients has remained a hot issue in studies of species coexistence and biodiversity maintenance. This study was conducted to determine the responses of root systems to drought stress in desert Reaumuria soongarica-Salsola passerina communities, in order to better understand the interspecific relationships of plant communities in response to environmental stresses.

Methods Monocultural and mixed R. soongarica and S. passerina communities were selected in Lingwu, Zhangye and Jiuquan, representing a drought stress gradient varying from desert steppe habitat to extreme desert habitat. Measurements were made on the vertical structures of root traits including specific root length (SRL) and specific root surface area (SRA). Root samples were collected by trench method by layers.

Important findings Both SRL and SRA had greater values in mixed R. soongarica-S. passerina communities than in monocultural communities of either species within given habitat, suggesting a mutually beneficial relationship between the two species and the enhanced ability of roots to absorb soil nutrients and water when in mixture. Reaumuria soongarica had deeper roots and a greater root extinction coefficient in vertical distribution than S. passerina in either monocultural or mixed communities, indicating the belowground niche segregation between the two species. We also found that greater the environmental stress, the higher values of SRL and SRA in both R. soongarica and S. passerina. The root extinction coefficient was about the same between the monocultural and mixed communities for R. soongarica, but changed a little for S. passerina. With increasing drought stress, the belowground niche segregation became more apparent, conforming to the stress gradient hypothesis. The observed patterns of aggregation aboveground and segregation belowground between R. soongarica and S. passerina in the mixed communities might be an adaptive strategy to drought environment of these two desert plant species.

Key words: vertical root system, root extinction coefficient, interspecific relationship, stress gradient hypothesis, Reaumuria soongarica, Salsola passerina

Table 1

Comparison of hydrothermal conditions in the study areas"

采样点
Sample
site
平均海拔
Mean
elevation (m)
年平均气温
Mean annual
temperature (°C)
年降水量
Mean annual
precipitation (mm)
年蒸发量
Mean annual
evaporation (mm)
年日照时间
Mean annual sunshine
times (h)
灵武 Lingwu 1 278 8.9 213 1 762 3 011
张掖 Zhangye 1 590 6.0 110 2 003 3 075
酒泉 Jiuquan 1 500 7.5 58 2 038 3 228

Fig. 1

The vertical distributions of specific root length (SRL) in monocultural and mixed communities of Reaumuria soongarica and Salsola passerina in different habitats (mean ± SE). A, R. soongarica in Lingwu. B, R. soongarica in Zhangye. C, R. soongarica in Jiuquan. D, S. passerina in Lingwu. E, S. passerina in Zhangye. F, S. passerina in Jiuquan. * indicates the significant difference between monocultural and mixed communities of R. soongarica and S. passerina within the same habitat (p < 0.05)."

Table 2

Two-way ANOVA (F-values) of the effects of environmental stress gradient and community type on specific root length (SRL), specific root surface area (SRA), root biomass (RB) and root extinction coefficients (β) in Reaumuria soongarica and Salsola passerina"

变异来源
Source of variation
红砂 R. soongarica 珍珠猪毛菜 S. passerina
SRL SRA RB β SRL SRA RB β
环境梯度 Environment gradient 0.444 1.237 121.887** 2.104 1.554 1.363 28.556** 0.844
生长方式 Community type 0.224 1.212 84.367** 2.194 0.284 1.083 106.824** 3.265
环境梯度×生长方式 Environment gradient × community type 2.797 0.080 14.944** 2.303 1.978 0.088 18.258** 1.398

Fig. 2

The vertical distributions of specific root surface area (SRA) in monocultural and mixed communities of Reaumuria soongarica and Salsola passerina in different habitats (mean ± SE)."

Fig. 3

The vertical distributions of biomass between in monocultural and mixed communities of Reaumuria soongarica and Salsola passerina in different habitats (mean ± SE)."

Table 3

The root extinction coefficients (β) and coefficient of determination (R2) in Reaumuria soongarica and Salsola passerina of monocultural and mixed communities in different habitats (mean ± SE)"

物种
Species
生长方式
Interspecific
relationship
灵武 Lingwu 张掖 Zhangye 酒泉 Jiuquan
β R2 β R2 β R2
红砂
R. soongarica
单生 Monocultural 0.934β9 ± 0.002β4 0.981β8 0.941β2 ± 0.007β8 0.929β1 0.942β4 ± 0.011β2 0.936β7
混生 Mixed 0.934β9 ± 0.011β2 0.962β0 0.942β1 ± 0.025β6 0.897β1 0.943β7 ± 0.004β5 0.968β6
珍珠猪毛菜
S. passerina
单生 Monocultural 0.875β8 ± 0.007β8a 0.949β9 0.921β7 ± 0.026β1 0.947β6 0.896β5 ± 0.004β9 0.902β3
混生 Mixed 0.925β3 ± 0.006β0b 0.986β1 0.919β3 ± 0.025β1 0.870β8 0.918β1 ± 0.003β9 0.923β4
1 Ban ZH , Wang Q ( 2015). Responses of the competition between Alternanthera philoxeroides and Sambucus chinensis to simulated warming. Chinese Journal of Plant Ecology, 39, 43- 51.
[ 班芷桦, 王琼 ( 2015). 喜旱莲子草和接骨草竞争对模拟增温的响应. 植物生态学报, 39, 43- 51.]
2 Bauhus J , Khanna PK , Menden N ( 2000). Aboveground and belowground interactions in mixed plantations of Eucalyptus globules and Acacia mearnsii. Canadian Journal of Forest Research, 30, 1886- 1894.
doi: 10.1139/cjfr-30-12-1886
3 Bertness MD , Callaway RM ( 1994). Positive interactions in communities. Trends in Ecology and Evolution, 9, 191- 193.
doi: 10.1016/0169-5347(94)90088-4
4 Beyer F , Hertel D , Leuschner C ( 2013). Fine root morphological and functional traits in Fagus sylvatica and Fraxinus excelsior saplings as dependent on species, root order and competition. Plant and Soil, 373, 143- 156.
doi: 10.1007/s11104-013-1752-7
5 Bolte A , Villanueva I ( 2006). Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). European Journal of Forest Research, 125, 15- 26.
doi: 10.1007/s10342-005-0075-5
6 Cahill C ( 2010). The multifunctionality of agriculture. Eurochoices, 1, 36- 41.
doi: 10.1111/j.1746-692X.2001.tb00073.x
7 Callaway RM ( 2007). Positive Interactions and Interdependence in Plant Communities. Springer-Verlag, Dordrecht, The Netherlands.
8 Callaway RM , Brooker RW , Choler P , Kikvidze Z , Lortiek CJ , Michalet R , Paolini L , Pugnaireq FI , Newingham B , Aschehoug ET , Armasq C , Kikodze D , Cook BJ ( 2002). Positive interactions among alpine plants increase with stress. Nature, 417, 844- 848.
doi: 10.1038/nature00812
9 Chen B , Liu MS , Huang Z , Zhang MJ , Xu C ( 2017). Root distribution and interaction in a Nitraria tangutorum- Achnatherum splendens (shrubgrass) community in arid Northwest China. Chinese Journal of Ecology, 36, 2692- 2698.
doi: 10.13292/j.1000-4890.201710.014
[ 陈斌, 刘茂松, 黄峥, 张明娟, 徐驰 ( 2017). 西北干旱区灌草型白刺——芨芨草群落根系分布与互作. 生态学杂志, 36, 2692- 2698.]
doi: 10.13292/j.1000-4890.201710.014
10 Chen W , Xue L ( 2004). Root interactions: Competition and facilitation. Acta Ecologica Sinica, 24, 1243- 1251.
doi: 10.3321/j.issn:1000-0933.2004.06.023
[ 陈伟, 薛立 ( 2004). 根系间的相互作用——竞争与互利. 生态学报, 24, 1243- 1251.]
doi: 10.3321/j.issn:1000-0933.2004.06.023
11 Chesson P ( 2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343- 366.
doi: 10.1146/annurev.ecolsys.31.1.343
12 Copley J ( 2000). Ecology goes underground. Nature, 406, 452- 454.
doi: 10.1038/35020131
13 Curt T , Prévosto B ( 2003). Rooting strategy of naturally regenerated beech in silver birch and scots pine woodlands. Plant and Soil, 255, 265- 279.
doi: 10.1023/A:1026132021506
14 Daneshgar P , Jose S ( 2009). Role of species identity in plant invasions: Experimental test using Imperata cylindrical. Biological Invasions, 11, 1431- 1440.
doi: 10.1007/s10530-008-9351-x
15 Dawson LA , Duff EI , Campbell CD , Hirst DJ ( 2001). Depth distribution of cherry (Prunus avium L.) tree roots as influenced by grass root competition. Plant and Soil, 231, 11- 19.
doi: 10.1023/A:1010383506446
16 Debra ZD , Bernhard S , Jana P , Varuna Y , Gerlinde DD , Dan FBF ( 2014). Selection for niche differentiation in plant communities increases biodiversity effects. Nature, 515, 108- 111.
doi: 10.1038/nature13869 pmid: 25317555
17 Fargione J , Tilman D ( 2005). Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia, 143, 598- 606.
doi: 10.1007/s00442-005-0010-y pmid: 15791430
18 February EC , Allsopp N , Shabane T , Hattas D ( 2011). Coexistence of a C4 grass and a leaf succulent shrub in an arid ecosystem. The relationship between rooting depth, water and nitrogen. Plant and Soil, 349, 253- 260.
doi: 10.1007/s11104-011-0867-y
19 Fujii S , Kasuya N ( 2008). Fine root biomass and morphology of Pinus densiflora under competitive stress by Chamaecyparis obtusa. Journal of Forest Research, 13, 185- 189.
doi: 10.1007/s10310-008-0063-y
20 Gale MR , Grigal DF ( 1987). Vertical root distributions of northern tree species in relation to successional status. Canadian Journal of Forest Research, 17, 829- 834.
doi: 10.1139/x87-131
21 Gao J ( 2014). Spatial Heterogeneity of Soil Respiration in a Subtropical Evergreen Broad-leaved Forest on Tiantong, Zhejiang. PhD dissertation, Fudan University, Shanghai.
[ 高杰 ( 2014). 浙江天童亚热带常绿阔叶林土壤呼吸空间异质性研究. 博士学位论文, 复旦大学, 上海.]
22 Gao XF , Wang JX , Zhang B , Ma HF , Zhong N ( 2010). Effects of drought stress on dry matter partitioning of young Robinia pseudoacacia at its different growth stages. Chinese Journal of Ecology, 29, 1103- 1108.
[ 高小锋, 王进鑫, 张波, 马惠芳, 钟楠 ( 2010). 不同生长期干旱胁迫对刺槐幼树干物质分配的影响. 生态学杂志, 29, 1103- 1108.]
23 Gao Y , Duan A , Qiu X , Liu Z , Sun J , Zhang J , Wang H ( 2010). Distribution of roots and root length density in a maize/soybean strip intercropping system. Agricultural Water Management, 98, 199- 212.
doi: 10.1016/j.agwat.2010.08.021
24 Grime JP ( 1979). Plant Strategies and Vegetation Processes. Wiley, Chichester, UK.
25 Hajek P , Hertel D , Leuschner C ( 2014). Root order- and root age-dependent response of two poplar species to belowground competition. Plant and Soil, 377, 337- 355.
doi: 10.1007/s11104-013-2007-3
26 He Q , Bertness MD ( 2014). Extreme stresses, niches, and positive species interactions along stress gradients. Ecology, 95, 1437- 1443.
doi: 10.1890/13-2226.1 pmid: 25039207
27 He Q , Cui B , Bertness MD , An Y ( 2012). Testing the importance of plant strategies on facilitation using congeners in a coastal community. Ecology, 93, 2023.
doi: 10.1890/12-0241.1 pmid: 23094374
28 Hodge A ( 2004). The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9- 24.
doi: 10.1111/j.1469-8137.2004.01015.x
29 Holdo RM , Timberlake J ( 2008). Rooting depth and above- ground community composition in Kalahari sand woodlands in western Zimbabwe. Journal of Tropical Ecology, 24, 169- 176.
doi: 10.1017/S0266467408004835
30 Leuschner C , Hertel D , Coners H , Büttner V ( 2001). Root competition between beech and oak: A hypothesis. Oecologia, 126, 276- 284.
doi: 10.1007/s004420000507 pmid: 28547627
31 Li P , Zhao Z , Li ZB , Zhan TZ ( 2005). Characters of root biomass spatial distribution of Robinia pseudoacacia in Weibei loess areas. Ecology and Environment, 14, 405- 409.
[ 李鹏, 赵忠, 李占斌, 澹台湛 ( 2005). 渭北黄土区刺槐根系空间分布特征研究. 生态环境, 14, 405- 409.]
32 Luo WC , Zeng FJ , Liu B , Zhang LG , Song C , Peng SL , Stefan KA ( 2012). Response of root systems to soil heterogeneity and interspecific competition in Alhagi sparsifolia. Chinese Journal of Plant Ecology, 36, 1015- 1023.
doi: 10.3724/SP.J.1258.2012.01015
[ 罗维成, 曾凡江, 刘波, 张利刚, 宋聪, 彭守兰, Stefan K , ARNDT ( 2012). 疏叶骆驼刺根系对土壤异质性和种间竞争的响应. 植物生态学报, 36, 1015- 1023.]
doi: 10.3724/SP.J.1258.2012.01015
33 Ma XD , Zhu CG , Li WH ( 2012). Response of root morphology and biomass of Tamarix ramosissima seedlings to different water irrigations. Chinese Journal of Plant Ecology, 36, 1024- 1032.
doi: 10.3724/SP.J.1258.2012.01024
[ 马晓东, 朱成刚, 李卫红 ( 2012). 多枝柽柳幼苗根系形态及生物量对不同灌溉处理的响应. 植物生态学报, 36, 1024- 1032.]
doi: 10.3724/SP.J.1258.2012.01024
34 Meyer KM , Ward D , Wiegand K , Moustakas A ( 2007). Multi-proxy evidence for competition between savanna woody species. Perspectives in Plant Ecology, Evolution and Systematics, 10, 63- 72.
35 Mommer L , Visser EJW , van Ruijven J , de Caluwe H , Pierik R , de Kroon H ( 2011). Contrasting root behaviour in two grass species: A test of functionality in dynamic heterogeneous conditions. Plant and Soil, 344, 347- 360.
doi: 10.1007/s11104-011-0752-8
36 O’Connor TG , Roux PW ( 1995). Vegetation changes in a semi-arid, grassy dwarf shrub land in the Karoo, South Africa: Influence of rainfall variability and grazing by sheep. Journal of Applied Ecology, 32, 612- 626.
doi: 10.2307/2404657
37 Padilla FM , Pugnaire FI ( 2007). Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Functional Ecology, 21, 489- 495.
doi: 10.1109/TAES.2005.1413768
38 Schenk HJ , Jackson RB ( 2002). Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 90, 480- 494.
doi: 10.1046/j.1365-2745.2002.00682.x
39 Schmid C , Bauer S , Bartelheimer M ( 2015). Should I stay or should I go? Roots segregate in response to competition intensity. Plant and Soil, 391, 283- 291.
doi: 10.1007/s11104-015-2419-3
40 Shan LS , Li Y , Dong QL , Geng DM ( 2012). Ecological adaptation of Reaumuria soongorica root system architecture to arid environment. Journal of Desert Research, 32, 1283- 1290.
[ 单立山, 李毅, 董秋莲, 耿东梅 ( 2012). 红砂根系构型对干旱的生态适应. 中国沙漠, 32, 1283- 1290.]
41 Su PX , Yan Q , Xie T , Zhou Z , Gao S ( 2012). Associated growth of C3 and C4 desert plants helps the C3 species at the cost of the C4 species. Acta Physiologiae Plantarum, 34, 2057- 2068.
doi: 10.1007/s11738-012-1003-1
42 Tilman D ( 1988). Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton.
43 Uriankhai TL , Liu MS , Huang Z , Chen B , Zhang MJ , Xu C ( 2009). Distribution pattern of root biomass and interspecific relationship in Achnatherum splendens-? Sophora alopecuroides community in Northwest China. Chinese Journal of Plant Ecology, 33, 748- 754.
[ 晨乐木格, 刘茂松, 黄峥, 陈斌, 张明娟, 徐驰 ( 2009). 我国西北地区芨芨草-苦豆子群落根系分布与种间关系. 植物生态学报, 33, 748- 754.]
44 Walter H ( 1939). Grasland: Savanne und Busch der arideren Teile Afrikas in ihrer ?kologischen Bedingtheit. Jahrbücher für Wissenschaftliche Botanik, 87, 750- 860.
45 Wang P , Mou P , Li YB ( 2012). Review of root nutrient foraging plasticity and root competition of plants. Chinese Journal of Plant Ecology, 36, 1184- 1196.
doi: 10.3724/SP.J.1258.2012.01184
[ 王鹏, 牟溥, 李云斌 ( 2012). 植物根系养分捕获塑性与根竞争. 植物生态学报, 36, 1184- 1196.]
doi: 10.3724/SP.J.1258.2012.01184
46 Wang ZQ , Wang JB , Sun ZH , Fan ZQ , Han YZ ( 2003). Quantitative study of below- and above-ground competitions in Fraxinus mandshurica seedlings. Acta Ecologica Sinica, 23, 1512- 1518.
doi: 10.3321/j.issn:1000-0933.2003.08.007
[ 王政权, 王军邦, 孙志虎, 范志强, 韩有志 ( 2003). 水曲柳苗木地下竞争与地上竞争的定量研究. 生态学报, 23, 1512- 1518.]
doi: 10.3321/j.issn:1000-0933.2003.08.007
47 Wang ZQ , Zhang YD ( 2000). Study on the root interactions between Fraxinus mandshurica and Larix gmelinii. Acta Phytoecologica Sinica, 24, 346- 350.
doi: 10.1007/s11769-000-0028-3
[ 王政权, 张彦东 ( 2000). 水曲柳落叶松根系之间的相互作用研究. 植物生态学报, 24, 346- 350.]
doi: 10.1007/s11769-000-0028-3
48 Xu H , Li Y ( 2005). Water use strategies and corresponding leaf physiological performance of three desert shrubs. Acta Botanica Boreali-Occidentalia Sinica, 25, 1309- 1316.
doi: 10.3321/j.issn:1000-4025.2005.07.005
[ 许皓, 李彦 ( 2005). 3种荒漠灌木的用水策略及相关的叶片生理表现. 西北植物学报, 25, 1309- 1316.]
doi: 10.3321/j.issn:1000-4025.2005.07.005
49 Xue WY , Yang B , Zhang WH , Yu SC ( 2017). Spatial pattern and spatial association of Quercus acutissima at different developmental stages in the Qiaoshan Mountains. Acta Ecologica Sinica, 37, 3375- 3384.
doi: 10.5846/stxb201603130447
50 Yan QD , Su PX , Gao S ( 2012). Response of photosynthetic characteristics of C3 desert plant Reaumuria soongorica and C4 desert plant Salsola passerina to different drought degrees. Journal of Desert Research, 32, 364- 371.
[ 严巧娣, 苏培玺, 高松 ( 2012). 干旱程度对C3植物红砂和C4植物珍珠光合生理参数的影响. 中国沙漠, 32, 364- 371.]
51 Yang HT , Li XR , Liu LC , Jia RL , Wang ZR , Li XJ , Li G ( 2013). Biomass allocation patterns of four shrubs in desert grassland. Journal of Desert Research, 33, 1340- 1348.
doi: 10.7522/j.issn.1000-694X.2013.00197
[ 杨昊天, 李新荣, 刘立超, 贾荣亮, 王增如, 李小军, 李刚 ( 2013). 荒漠草地4种灌木生物量分配特征. 中国沙漠, 33, 1340- 1348.]
doi: 10.7522/j.issn.1000-694X.2013.00197
52 Zhang C , Chen L , Jiang J ( 2014a). Vertical root distribution and root cohesion of typical tree species on the Loess Plateau, China. Journal of Arid Land, 6, 601- 611.
doi: 10.1007/s40333-014-0004-x
53 Zhang GG , Zhang CY , Yang ZB , Dong ST ( 2013). Root distribution and N acquisition in an Alfalfa and corn intercropping system. Journal of Agricultural Science, 5, 1916- 9752.
doi: 10.5539/jas.v5n9p128
54 Zhang HN , Su PX , Li SJ , Zhou ZJ , Xie TT ( 2014b). Response of root traits of Reaumuria soongarica and Salsola passerina to facilitation. Journal of Arid Land, 6, 628- 636.
doi: 10.1007/s40333-014-0024-6
55 Zhang WP , Pan S , Jia X , Chu CJ , Xiao S , Lin Y , Bai YY , Wang GX ( 2013). Effects of positive plant interactions on population dynamics and community structures: A review based on individual-based simulation models. Chinese Journal of Plant Ecology, 37, 571- 582.
doi: 10.3724/SP.J.1258.2013.00059
[ 张炜平, 潘莎, 贾昕, 储诚进, 肖洒, 林玥, 白燕远, 王根轩 ( 2013). 植物间正相互作用对种群动态和群落结构的影响: 基于个体模型的研究进展. 植物生态学报, 37, 571- 582.]
doi: 10.3724/SP.J.1258.2013.00059
56 Zhou HY , Tan HJ , Zhang ZS , Jiang XH , Zhang JG , Fan HW ( 2012). Physiological response and adjustment mechanism of Reaumuria soongarica and Salsola passerina to extreme environment. Journal of Desert Research, 32, 24- 32.
[ 周海燕, 谭会娟, 张志山, 贾晓红, 张景光, 樊恒文 ( 2012). 红砂和珍珠对极端环境的生理响应与调节机制. 中国沙漠, 32, 24- 32.]
[1] Chengqiang Dang, Huimin Huang, Rong Dong, Miao Chen, Ting Gao, Jianping Tao. Spatial Distribution Pattern of Epilithic Moss Homomallium simlaense Patches in Rocky Desertification Habitats in Zhongliang Mountain, Chongqing, Southwest China [J]. Chin Bull Bot, 2017, 52(5): 598-607.
[2] Chun-Feng GU, Xiao-Qi YE, Ming WU, Xue-Xin SHAO, Sheng-Wu JIAO. Effects of glyphosate on interspecific competition between Solidago canadensis and Imperata cylindrica [J]. Chin J Plan Ecolo, 2017, 41(4): 439-449.
[3] ZHOU Liu-Li, ZHANG Qing-Qing, ZHAO Yan-Tao, XU Ming-Shan, CHENG Jun-Yang, ZHU Dan-Ni, SONG Yan-Jun, HUANG Hai-Xia, SHI Qing-Ru, YAN En-Rong. Species association and correlation between vertical layers in the Liquidambar formosana community in Tiantong region, Zhejiang Province [J]. Chin J Plan Ecolo, 2015, 39(12): 1136-1145.
[4] YU Guo-Lei. Effects of waterlogging on intraspecific interactions of the clonal herb Alternanthera philoxeroides [J]. Chin J Plan Ecolo, 2011, 35(9): 973-980.
[5] Zhongping Tian, Li Zhuang, Jiangui Li, Moxiang Cheng. Interspecific and environmental relationships of woody plant species in wild fruit-tree forests on the north slope of Ili Valley [J]. Biodiv Sci, 2011, 19(3): 335-342.
[6] HUANG Bao-Qiang, LUO Yi-Bo, YU Fei-Hai, TANG Si-Yuan, DONG Li, AN De-Jun. INTERSPECIFIC RELATIONSHIPS OF DOMINANT SPECIES IN ORCHID COMMUNITIES OF FOREST VEGETATION IN HUANGLONG VALLEY, SICHUAN, CHINA [J]. Chin J Plan Ecolo, 2007, 31(5): 865-872.
[7] ZHANG Kai-Mei, SHI Lei, LI Zhen-Yu. Fern allelopathy and its impact on biodiversity [J]. Biodiv Sci, 2004, 12(4): 466-471.
[8] ZHANC Feng, ZHANC Jin-Tun, HAN Guang-Ye. INTERSPECIFIC RELATIONSHIPS AND ENVIRONMENTAL INTERPRETATION OF THE MAIN TREE SPECIES IN THE FOREST COMMUNITIES OF ZHUWEIGOU IN LISHAN MOUNTAIN NATURE RESERVE [J]. Chin J Plan Ecolo, 2002, 26(增刊): 52-56.
[9] ZHANG Feng, SHANGGUAN Tie-Liang. Numerical Analysis of Interspecific Relationships in an Elaeagnus mollis Community in Shanxi [J]. Chin J Plan Ecolo, 2000, 24(3): 351-355.
[10] Chen Zhongyi, Chen Jiakuan. The spatial pattern of Ranalisma rostratum Population and Interspecific Association in the Community [J]. Chin J Plan Ecolo, 1999, 23(1): 56-61.
[11] Tan Shaoman, Ding Hai, Luo Renshen, Su Yong. The Evaluation and Analysis of Pinus massoniana and Castanopsis hystrix Mixed Forest [J]. Chin J Plan Ecolo, 1997, 21(6): 571-578.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Rui Xue, Shuxia Zheng, Yongfei Bai. Impacts of grazing intensity and management regimes on aboveground primary productivity and compensatory growth of grassland ecosystems in Inner Mongolia[J]. Biodiv Sci, 2010, 18(3): 300 -311 .
[2] Piyapong YUPPARACH. Elettariopsis chayaniana ( Zingiberaceae) , a New Species from Eastern Thailand[J]. Plant Diversity, 2008, 30(05): 525 -527 .
[3] . Ficus—a keystone plant species in the tropical rain forest ecosystem of south Yunnan[J]. Biodiv Sci, 1994, 02(1): 21 -23 .
[4] ZOU Yu-Ping, CAI Mei-Lin, WANG Zi-Ping. Systematic studies on Paeonia sect. Moutan DC. based on RAPD analysis[J]. J Syst Evol, 1999, 37(3): 220 -227 .
[5] Jia Ding, Qian Wu, Hui Yan, Shouren Zhang. Effects of topographic variations and soil characteristics on plant functional traits in a subtropical evergreen broad-leaved forest[J]. Biodiv Sci, 2011, 19(2): 158 -167 .
[6] SA Ren, CHEN Chia-Jui, LI Pei-Chun. The phytogeographical studies of Thermopsis (Fabaceae)[J]. J Syst Evol, 2000, 38(2): 148 -166 .
[7] LUO Yan ZHOU Zhe-Kun. Phytogeography of Quercus subg.Cyclobalanopsis[J]. Plant Diversity, 2001, 23(01): 1 -3 .
[8] . Retraction[J]. J Integr Plant Biol, 2008, 50(5): 638 .
[9] Guang-Zuo Luo, Yong-Jun Wang, Zong-Ming Xie, Jun-Yi Gai, Jin-Song Zhang and Shou-Yi Chen. The Putative Ser/Thr Protein Kinase Gene GmAAPK from Soybean is Regulated by Abiotic Stress[J]. J Integr Plant Biol, 2006, 48(3): .
[10] Plant Ecology and Geobotany Committee, Chinese Society of Botany. Review on Chinese Plant Ecology and Geobotany During Last Three Decades and the Future Prospects[J]. Chin J Plan Ecolo, 1983, 7(3): 169 -185 .