Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (4): 466-474.DOI: 10.17521/cjpe.2017.0249
• Research Articles • Previous Articles Next Articles
Qiu-Yue HE1,2,Mei-Jie YAN2,3,Jian-Guo ZHANG4,Sheng DU2,3,*()
Online:
2018-04-20
Published:
2018-03-08
Contact:
Sheng DU
Supported by:
Qiu-Yue HE, Mei-Jie YAN, Jian-Guo ZHANG, Sheng DU. Sap flow of Robinia pseudoacacia in response to rainfall exclusion treatment and environment factors in a sub-humid area in Loess Plateau[J]. Chin J Plant Ecol, 2018, 42(4): 466-474.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0249
年份 Year | 样树号 Sample tree No. | 树高 Tree height (m) | 胸径 Diameter at breast height (cm) | 边材厚度 Sap wood thinkness (cm) |
---|---|---|---|---|
2014 | 1 | 14.1 | 13.8 | 3.6 |
2 | 17.7 | 19.5 | 4.6 | |
3 | 10.7 | 10.3 | 2.9 | |
4 | 10.4 | 10.4 | 2.9 | |
5 | 10.6 | 10.4 | 2.9 | |
6 | 18.7 | 20.0 | 4.7 | |
2015 | 1 | 16.5 | 14.1 | 3.6 |
2 | 19.9 | 20.0 | 4.7 | |
3 | 10.7 | 10.3 | 2.9 | |
4 | 11.3 | 10.8 | 3.0 | |
5 | 11.3 | 10.5 | 2.9 | |
6 | 18.8 | 20.3 | 4.7 |
Table 1 Basic parameters of sample trees
年份 Year | 样树号 Sample tree No. | 树高 Tree height (m) | 胸径 Diameter at breast height (cm) | 边材厚度 Sap wood thinkness (cm) |
---|---|---|---|---|
2014 | 1 | 14.1 | 13.8 | 3.6 |
2 | 17.7 | 19.5 | 4.6 | |
3 | 10.7 | 10.3 | 2.9 | |
4 | 10.4 | 10.4 | 2.9 | |
5 | 10.6 | 10.4 | 2.9 | |
6 | 18.7 | 20.0 | 4.7 | |
2015 | 1 | 16.5 | 14.1 | 3.6 |
2 | 19.9 | 20.0 | 4.7 | |
3 | 10.7 | 10.3 | 2.9 | |
4 | 11.3 | 10.8 | 3.0 | |
5 | 11.3 | 10.5 | 2.9 | |
6 | 18.8 | 20.3 | 4.7 |
Fig. 2 Diurnal courses of sap flux density of sample trees and meteorology factors during two study periods (14 July 2015 was excluded from analyses due to overcast).
测定时段 Study period | 平均日总太阳辐射 Mean daily solar radiation (MJ·m-2·d-1) | 平均空气水汽压亏缺 Mean vapor pressure deficit (kPa) | 样树1-3平均液流通量密度 Mean sap flux density of sample tree 1-3 (mL·m-2·s-1) | 样树4-6平均液流通量密度 Mean sap flux density of sample tree 4-6 (mL·m-2·s-1) |
---|---|---|---|---|
处理前 | 20.62 ± 1.69 | 0.65 ± 0.03 | 3.53 ± 2.67 | 2.42 ± 1.84 |
处理期 | 21.96 ± 1.51 | 0.53 ± 0.0201 | 3.38 ± 2.93 | 1.64 ± 1.39 |
处理期/处理前Treatment/Before treatment | 1.07 | 0.81 | 0.96 | 0.68 |
Table 2 Solar radiation, vapor pressure deficit and sap flux densities (Fd) in the two study periods and their ratios (mean ± SE, n = 6)
测定时段 Study period | 平均日总太阳辐射 Mean daily solar radiation (MJ·m-2·d-1) | 平均空气水汽压亏缺 Mean vapor pressure deficit (kPa) | 样树1-3平均液流通量密度 Mean sap flux density of sample tree 1-3 (mL·m-2·s-1) | 样树4-6平均液流通量密度 Mean sap flux density of sample tree 4-6 (mL·m-2·s-1) |
---|---|---|---|---|
处理前 | 20.62 ± 1.69 | 0.65 ± 0.03 | 3.53 ± 2.67 | 2.42 ± 1.84 |
处理期 | 21.96 ± 1.51 | 0.53 ± 0.0201 | 3.38 ± 2.93 | 1.64 ± 1.39 |
处理期/处理前Treatment/Before treatment | 1.07 | 0.81 | 0.96 | 0.68 |
年份 Year | 样树1-3 Sample tree 1-3 | 样树4-6 Sample tree 4-6 | 斜率差异检验 Difference between slopes |
---|---|---|---|
2014 | a = 8.41 | a = 6.78 | NS |
R2 = 0.64 | R2 = 0.63 | ||
p < 0.000 1 | p < 0.000 1 | ||
2015 | a = 12.33 | a = 5.34 | p < 0.001 |
R2 = 0.59 | R2 = 0.69 | ||
p < 0.000 1 | p < 0.000 1 |
Table 3 Difference analyses on regression parameters for sap flux density vs. vapor pressure deficit
年份 Year | 样树1-3 Sample tree 1-3 | 样树4-6 Sample tree 4-6 | 斜率差异检验 Difference between slopes |
---|---|---|---|
2014 | a = 8.41 | a = 6.78 | NS |
R2 = 0.64 | R2 = 0.63 | ||
p < 0.000 1 | p < 0.000 1 | ||
2015 | a = 12.33 | a = 5.34 | p < 0.001 |
R2 = 0.59 | R2 = 0.69 | ||
p < 0.000 1 | p < 0.000 1 |
1 | Alberti G, Inglima I, Arriga N, Piermatteo D, Pecchiari M, Zaldei A, Papale D, Peressotti A, Valentini R, Cotrufo M, Magnani F, Miglietta F ( 2007). Cambiamenti nel regime pluviometrico in ecosistemi mediterranei: II progetto MIND. Forest@, 4, 460-468. |
2 |
Besson CK, Lobo-do-Vale R, Rodrigues ML, Almeida P, Herd A, Grant OM, David TS, Schmidt M, Otieno D, Keenan TF, Gouveia C, Meriaux C, Chaves MM, Pereira JS ( 2014). Cork oak physiological responses to manipulated water availability in a Mediterranean woodland. Agricultural and Forest Meteorology, 184, 230-242.
DOI URL |
3 | Campbell GS, Norman JM ( 1998). An Introduction to Environmental Biophysics. Springer-Verlag, New York. |
4 |
Cermak J, Cienciala E, Kucera J, Lindroth A, Bednarova E ( 1995). Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: A pilot-study at the central NOPEX site. Journal of Hydrology, 168, 17-27.
DOI URL |
5 | Editorial Board of Silva of China ( 1978). Technology for Chief Tree Species Afforestation in China (Volume One). Agriculture Press, Beijing. |
[ 中国树木志编委会 ( 1978). 中国主要树种造林技术(上册). 农业出版社, 北京.] | |
6 | Du S, Liu GB ( 2015). Ecological Function of Vegetation Restoration in Loess Plateau. Science Press, Beijing. |
[ 杜盛, 刘国彬 ( 2015). 黄土高原植被恢复的生态功能. 科学出版社, 北京.] | |
7 |
Du S, Wang YL, Kume T, Zhang JG, Otsuki K, Yamanaka N, Liu GB ( 2011). Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China. Agricultural and Forest Meteorology, 151, 1-10.
DOI URL |
8 |
Fisher RA, Williams M, Da Costa AL, Malhi Y, Da Costa RF, Almeida S, Meir P ( 2007). The response of an Eastern Amazonian rain forest to drought stress: Results and modelling analyses from a throughfall exclusion experiment. Global Change Biology, 13, 2361-2378.
DOI URL |
9 |
Granier A ( 1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320.
DOI URL PMID |
10 |
Green SR ( 1993). Radiation balance, transpiration and photosynthesis of an isolated tree. Agricultural and Forest Meteorology, 64, 201-221.
DOI URL |
11 | Han RL, Liang ZS, Hou QC, Zou HY ( 1994). Water consumption properties of adaptable nuisery stocks on Loess Plateau. Chinese Journal of Applied Ecology, 5, 210-213. |
[ 韩蕊莲, 梁宗锁, 侯庆春, 邹厚远 ( 1994). 黄土高原适生树种苗木的耗水特性. 应用生态学报, 5, 210-213.] | |
12 |
James SA, Clearwater MJ, Meinzer FC, Goldstein G ( 2002). Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood. Tree Physiology, 22, 277-283.
DOI URL PMID |
13 |
Knapp AK, Briggs JM, Collins SL, Archer SR, Bret-Harte MS, Ewers BE, Peters DP, Young DR, Shaver GR, Pendall E, Cleary MB ( 2008). Shrub encroachment in North American grasslands: Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14, 615-623.
DOI URL |
14 |
Li GQ, Xu GH, Zhang XQ, Huang JH, Wen ZM, Du S ( 2018). Afforestation and climate niche dynamics of black locust (Robinia pseudoacacia). Forest Ecology and Management, 407, 184-190
DOI URL |
15 |
Limousin JM, Rambal S, Ourcival JM, Rocheteau A, Joffre R, Rodriguez-Cortina R ( 2009). Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Global Change Biology, 15, 2163-2175.
DOI URL |
16 |
Llorens P, Poyatos R, Latron J, Delgado J, Oliveras I, Gallart F ( 2010). A multi-year study of rainfall and soil water controls on Scots pine transpiration under Mediterranean mountain conditions. Hydrological Processes, 24, 3053-3064.
DOI URL |
17 |
Oren R, Zimmermann R, Terborgh J ( 1996). Transpiration in upper Amazonia floodplain and upland forests in response to drought-breaking rains. Ecology, 77, 968-973.
DOI URL |
18 |
Otieno DO, Schmidt MWT, Kinyamario JI, Tenhunen J ( 2005). Responses of Acacia tortilis and Acacia xanthophloea to seasonal change in soil water availability in the savanna region of Kenya. Journal of Arid Environments, 62, 377-400.
DOI URL |
19 |
Pataki DE, Oren R ( 2003). Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest. Advances in Water Resources, 26, 1267-1278.
DOI URL |
20 |
Ru TQ, Li JY, Kong LS, Zhu YL ( 2005). Review on the research of water consumption characteristic of Robinia psedudoacia. Research of Soil and Water Conservation, 12, 135-140.
DOI URL |
[ 茹桃勤, 李吉跃, 孔令省, 朱延林 ( 2005). 刺槐耗水研究进展. 水土保持研究, 12, 135-140.]
DOI URL |
|
21 |
Tsunekawa A, Liu GB, Yamanaka N, Du S ( 2014). Restoration and Development of the Degraded Loess Plateau, China. Springer Japan, Tokyo.
DOI URL |
22 | Wang JX, Huang BL, Wang MC, Wang DH ( 2005). Transpiration water consumption of young Platycladus orientalis and Robinia pseudoacacia trees and their correction functions under different water supply. Chinese Journal of Applied Ecology, 16, 419-425. |
[ 王进鑫, 黄宝龙, 王明春, 王迪海 ( 2005). 不同供水条件下侧柏和刺槐幼树的蒸腾耗水与土壤水分应力订正. 应用生态学报, 16, 419-425.] | |
23 |
Wang YL, Liu GB, Kume T, Otsuki K, Yamanaka N, Du S ( 2010). Estimating water use of a black locust plantation by the thermal dissipation probe method in the semiarid region of Loess Plateau, China. Journal of Forest Research, 15, 241-251.
DOI URL |
24 |
Wang ZH, Miao YF, Li SX ( 2015). Effect of ammonium and nitrate nitrogen fertilizers on wheat yield in relation to accumulated nitrate at different depths of soil in drylands of China. Field Crops Research, 183, 221-224.
DOI URL |
25 |
Wightman MG, Martin TA, Gonzalez-Benecke CA, Jokela EJ, Cropper Jr WP, Ward EJ ( 2016). Loblolly pine productivity and water relations in response to throughfall reduction and fertilizer application on a poorly drained site in northern Florida. Forests, 7, 1-19.
DOI URL |
26 |
Wullschleger SD, Hanson PJ ( 2006). Sensitivity of canopy transpiration to altered precipitation in an upland oak forest: Evidence from a long-term field manipulation study. Global Change Biology, 12, 97-109.
DOI URL |
27 | Yuan Y, Hui YY, Wu YL, Wang YM, Zhao HP ( 1996). Study of influence factors locust growing in the Loess hilly region. Research of Soil and Water Conservation, 3, 146-154. |
[ 袁瀛, 惠养瑜, 吴永麟, 王郁民, 赵惠萍 ( 1996). 黄土丘陵区刺槐生长的影响因子研究. 水土保持研究, 3, 146-154.] | |
28 |
Zhang HP, Simmonds LP, Morison JIL, Payne D ( 1997). Estimation of transpiration by single trees: Comparison of sap flow measurements with a combination equation. Agricultural and Forest Meteorology, 87, 155-169.
DOI URL |
29 | Zhang JG, Kume T, Otsuke K, Yamanaka N, Du S ( 2011). Sap flow dynamics of dominant trees of Quercus liaotungensis forest in the semiarid Loess Plateau region. Scientia Silvae Sinicae, 47(4), 64-69. |
[ 张建国, 久米朋宣, 大规恭一, 山中典和, 杜盛 ( 2011). 黄土高原半干旱区辽东栎的树干液流动态. 林业科学, 47(4), 64-69.] |
[1] | YANG Shang-Jin, FAN Yun-Xiang, ZHANG Yu-Wen, HAN Qiao-Ling, ZHAO Yue, DUAN Jie, DI Nan, XI Ben-Ye. Comparison of methods for dividing nighttime sap flow components in Populus tomentosa trees [J]. Chin J Plant Ecol, 2024, 48(4): 496-507. |
[2] | WANG Xiu-Ying, CHEN Qi, DU Hua-Li, ZHANG Rui, MA Hong-Lu. Evapotranspiration interpolation in alpine marshes wetland on the Qingzang Plateau based on machine learning [J]. Chin J Plant Ecol, 2023, 47(7): 912-921. |
[3] | ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants [J]. Chin J Plant Ecol, 2023, 47(7): 1010-1019. |
[4] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[5] | HE Fei, LI Chuan, Faisal SHAH, LU Xie-Min, WANG Ying, WANG Meng, RUAN Jia, WEI Meng-Lin, MA Xing-Guang, WANG Zhuo, JIANG Hao. Carbon transport and phosphorus uptake in an intercropping system of Robinia pseudoacacia and Amorphophallus konjac mediated by arbuscular mycorrhizal hyphal networks [J]. Chin J Plant Ecol, 2023, 47(6): 782-791. |
[6] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[7] | ZHAO Xiao-Ning, TIAN Xiao-Nan, LI Xin, LI Guang-De, GUO You-Zheng, JIA Li-Ming, DUAN Jie, XI Ben-Ye. Analysis of applicability of Granier’s original equation for calculating the stem sap flux density—Take Populus tomentosa as an example [J]. Chin J Plant Ecol, 2023, 47(3): 404-417. |
[8] | LIU Mei-Jun, CHEN Qiu-Wen, LÜ Jin-Lin, LI Guo-Qing, DU Sheng. Seasonal dynamics of radial growth and micro-variation in stems of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in loess hilly region [J]. Chin J Plant Ecol, 2023, 47(2): 227-237. |
[9] | FAN Yun-Xiang, DI Nan, LIU Yang, ZHANG Yu-Wen, DUAN Jie, LI Xin, WANG Hai-Hong, XI Ben-Ye. Spatiotemporal dynamics of nocturnal sap flow of Populus tomentosa and environmental impact factors [J]. Chin J Plant Ecol, 2023, 47(2): 262-274. |
[10] | ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis [J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599. |
[11] | LIU Yang, MA Xu, DI Nan, ZENG Zi-Hang, FU Hai-Man, LI Xin, XI Ben-Ye. Root sap flow and hydraulic redistribution of Populus tomentosa [J]. Chin J Plant Ecol, 2023, 47(1): 123-133. |
[12] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[13] | FENG Yin-Cheng, WANG Yun-Qi, WANG Yu-Jie, WANG Kai, WANG Song-Nian, WANG Jie-Shuai. Water vapor fluxes and their relationship with environmental factors in a conifer-broadleaf mixed forest ecosystem in Jinyun Mountain, Chongqing, China [J]. Chin J Plant Ecol, 2022, 46(8): 890-903. |
[14] | XIONG Bo-Wen, LI Tong, HUANG Ying, YAN Chun-Hua, QIU Guo-Yu. Effects of different reference temperature values on the accuracy of vegetation transpiration estimation by three-temperature model [J]. Chin J Plant Ecol, 2022, 46(4): 383-393. |
[15] | HUANG Ying, CHEN Zhi, SHI Zhe, XIONG Bo-Wen, YAN Chun-Hua, QIU Guo-Yu. Temporal and spatial variation characteristics and different calculation methods for the key parameter αe in the generalized complementary principle of evapotranspiration [J]. Chin J Plant Ecol, 2022, 46(3): 300-310. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn