Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (5): 573-584.doi: 10.17521/cjpe.2018.0041

• Research Articles • Previous Articles     Next Articles

Effects of leaf nutrient concentration and resorption on leaf falling time of dominant broadleaved species in a montane region of eastern Liaoning Province, China

SHEN Ao1,2,3,ZHU Jiao-Jun1,2,*(),YAN Tao1,2,3,LU De-Liang1,2,3,YANG Kai1,2   

  1. 1 Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    2 Qingyuan Forest Chinese Ecosystem Research Network, Chinese Academy of Sciences, Shenyang 110016, China
    3 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-02-12 Revised:2018-05-09 Online:2018-07-20 Published:2018-05-20
  • Contact: Jiao-Jun ZHU E-mail:jiaojunzhu@iae.ac.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China.(31330016);Supported by the National Natural Science Foundation of China.(31570600)

Abstract:

Aims Litter is an important source of nutrient in forest ecosystems, and its decomposition rate has a significant impact on soil nutrient supply. Previous observations indicated that different leaf falling time resulted in different litter decomposition rates. We found that the leaf falling time of Quercus mongolica was later than that of other tree species, especially in the barren soil. However, it is not yet clear why the leaves of Q. mongolica fall later. We hypothesized that the leaves of Q. mongolica had higher nutrient concentration, and longer time for resorption, which could lead to the later time of leaf falling.

Methods We continuously measured N, P, K, Ca, Mg, Cu, Fe, Mn and Zn concentrations in leaves of three tree species (Q. mongolica, the leaf falling time is the last; Juglans mandshurica, the leaf falling time is the earliest, Acer mono, the leaf falling time is in between Q. mongolica and J. mandshurica) from leaf maturity (August) to litter fall (October) in a montane region of eastern Liaoning Province. We analyzed leaf nutrient concentrations and resorption efficiencies of each species.

Important findings The nutrient concentrations in mature leaves of Q. mongolica are similar to those of other tree species. N, P and K concentrations in the litter of Q. mongolica were significantly lower than those of other species (p < 0.05), and the resorption efficiencies were generally consistent with the leaf falling time. These findings did not support the hypothesis that leaves of Q. mongolica have higher nutrient concentrations than other species. The resorption efficiencies of N, P and K did not influence leaf nutrient concentrations, but were directly related to the biological characteristics of tree species. The leaves of Q. mongolica fall later, which might be due to the high adaptability of Q. mongolica to the barren soil. Although the mature leaves could not accumulate more nutrients from barren soil, they increased the nutrient use efficiency by prolonging the nutrient resorption time. We inferred that leaves with higher nutrient resorption efficiency would fall later, because of greater nutrient storage such as Q. mongolica, which is better adapted to barren soil than other tree species. On the contrary, trees with lower nutrient resorption efficiency generally grow better in the fertile soil, such as J. mandshurica.

Key words: nutrient concentration in leaf, nutrient resorption efficiency, leaf falling time, broadleaved species

Table 1

Site characteristics"

林型 Forest type 密度 Stem density (tree·hm-2) 胸径 DBH (cm) 坡向 Aspect (°) 坡度 Slope (°) 坡位 Slope position
次生林1 Secondary forest 1 (SF1) 1425 23.0 ± 4.4 274 42 中坡 Middle slope
次生林2 Secondary forest 2 (SF2) 2050 21.4 ± 2.4 200 40 中坡 Middle slope
次生林3 Secondary forest 3 (SF3) 1500 22.6 ± 2.8 349 35 中坡 Middle slope
次生林4 Secondary forest 4 (SF4) 1700 25.3 ± 2.2 213 45 中坡 Middle slope

Table 2

Sampling time"

蒙古栎
Querus mongolica
色木槭
Acer mono
胡桃楸 Juglans mandshurica
2016 2017 2016 2017 2016 2017
采样时间
Sampling time
(Month-day)
8-15 7-25 8-15 7-25 8-15 7-25
9-20 8-15 9-20 8-15 9-20 8-15
10-01 9-05 10-01 9-05 9-05
10-10 9-25 9-25 9-25
10-20 10-15 10-15
10-25

Table 3

Macroelement concentrations of mature (middle August) and senescent leaves of different tree species (mg·g-1) (mean ± SE)"

树种
Tree
species


Year

N P K Ca Mg
成熟叶
Mature leaves
凋落叶
Senescent leaves
成熟叶
Mature
leaves
凋落叶
Senescent leaves
成熟叶
Mature leaves
凋落叶
Senescent leaves
成熟叶
Mature
leaves
凋落叶
Senescent leaves
成熟叶
Mature
leaves
凋落叶
Senescent leaves
蒙古栎
Quercus mongolica
2016 25.01 ± 1.42a 10.40 ± 0.42a 1.55 ± 0.05a 0.83 ± 0.07a 9.63 ± 0.78a 4.83 ± 0.16a 9.61 ± 0.68a 32.08 ± 1.34a 2.04 ± 0.04a 2.14 ± 0.13a
2017 23.50 ± 0.70A 10.19 ± 0.32A 1.15 ± 0.03A 0.37 ± 0.03A 7.27 ± 0.30A 2.87 ± 0.33A 10.99 ± 0.62A 15.45 ± 0.68A 1.57 ± 0.09A 1.53 ± 0.08A
色木槭
Acer mono
2016 22.67 ± 0.38a 16.16 ± 0.78b 1.11 ± 0.05b 0.56 ± 0.07b 9.02 ± 1.16b 6.82 ± 0.37b 16.94 ± 1.76b 21.00 ± 1.77b 3.09 ± 0.32b 3.10 ± 0.23b
2017 22.31 ± 0.38A 14.71 ± 1.17B 1.10 ± 0.06A 0.66 ± 0.06B 8.54 ± 0.34B 5.71 ± 0.40B 17.56 ± 0.58B 24.07 ± 0.59B 2.93 ± 0.10B 4.13 ± 0.04B
胡桃楸
Juglans mandshurica
2016 26.32 ± 1.27a 21.18 ± 1.60c 1.54 ± 0.02a 0.86 ± 0.03a 14.94 ± 0.98b 12.89 ± 0.88c 17.63 ± 1.10b 18.50 ± 0.89b 2.66 ± 0.17a 2.11 ± 0.23a
2017 27.34 ± 0.72B 23.64 ± 1.47C 1.49 ± 0.07B 1.19 ± 0.09C 14.89 ± 0.37C 12.87 ± 0.68C 19.21 ± 1.11C 21.45 ± 0.79B 2.58 ± 0.18B 2.53 ± 0.18C

Table 4

Microelement concentrations of mature (middle August) and senescent leaves of different tree species(μg·g-1) (mean ± SE)"

树种
Tree
species


Year
Fe Mn Cu Zn
成熟叶
Mature leaves
凋落叶
Senescent leaves
成熟叶
Mature leaves
凋落叶
Senescent leaves
成熟叶
Mature leaves
凋落叶
Senescent leaves
成熟叶
Mature leaves
凋落叶
Senescent leaves
蒙古栎
Querus mongolica
2016 128.60 ± 27.98a 319.23 ± 16.72a 247.51 ± 9.76a 426.81 ± 36.44a 6.64 ± 0.36a 5.95 ± 0.11a 46.20 ± 5.73a 27.41 ± 2.93a
2017 189.16 ± 14.65A 240.12 ± 12.84A 382.69 ± 33.60A 409.22 ± 29.70A 7.25 ± 0.22A 5.27 ± 0.18A 63.09 ± 4.47A 58.76 ± 7.88A
色木槭
Acer mono
2016 105.75 ± 28.32a 195.57 ± 8.93b 164.50 ± 32.73b 205.60 ± 35.10b 7.18 ± 0.32a 4.90 ± 0.43a 71.21 ± 21.53a 33.81 ± 6.08a
2017 208.29 ± 12.93A 237.51 ± 12.49A 205.24 ± 19.54B 230.44 ± 23.07B 5.88 ± 0.18B 3.88 ± 0.19B 63.15 ± 6.53A 60.87 ± 7.15A
胡桃楸
Juglans mandshurica
2016 75.33 ± 11.49a 228.88 ± 32.49b 135.91 ± 5.26b 165.59 ± 14.71b 9.01 ± 0.49b 7.70 ± 0.30b 29.91 ± 5.75a 52.74 ± 2.84b
2017 204.29 ± 28.80A 166.45 ± 6.46B 170.05 ± 12.11B 217.08 ± 15.67B 9.51 ± 0.55C 8.21 ± 0.30C 44.67 ± 5.18A 49.65 ± 4.29A

Fig. 1

Dynamic of leaf macroelement concentrations of different tree species (mean ± SE). Different letters indicate significant differences of the same tree species at different times (p < 0.05; 2016: n = 3; 2017: n = 4)."

Fig. 2

Dynamic of leaf microelement concentrations of different tree species (mean ± SE). Different letters indicate significant differences of the same tree species at different times (p < 0.05; 2016: n = 3; 2017: n = 4)."

Fig. 3

Leaf macroelement resorption efficiencies of different tree species (mean ± SE). Different letters indicate significant differences among the tree species for the same nutrient (p < 0.05; 2016: n = 3; 2017: n = 4)."

Fig. 4

Leaf microelement resorption efficiencies of different tree species (mean ± SE). Different letters indicate significant differences among the tree species for the same nutrient (p < 0.05; 2016: n = 3; 2017: n = 4)."

[6] Corte GN, Macchiaverni P, Fabbro IMD, Haddad CRB ( 2009). Nitrogen availability, leaf life span and nitrogen conservation mechanisms in leaves of tropical trees. Scientia Agricola, 66, 812-818.
doi: 10.1590/S0103-90162009000600014
[7] Del Arco JM, Escudero A, Garrido MV ( 1991). Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology, 72, 701-708.
doi: 10.2307/2937209
[8] Drenovsky RE, Koehler CE, Skelly K, Richards JH ( 2013). Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees. Oecologia, 171, 39-50.
doi: 10.1007/s00442-012-2396-7
[9] Fan CN, Guo ZL, Zheng JP, Li B, Yang BG, Yue L, Yu HB ( 2014). The amount and dynamics of litterfall in the natural secondary forest in Mopan Mountain. Acta Ecologica Sinica, 34, 633-641.
doi: 10.5846/stxb201211021523
[ 范春楠, 郭忠玲, 郑金萍, 李兵, 杨保国, 岳龙, 于洪波 ( 2014). 磨盘山天然次生林凋落物数量及动态. 生态学报, 34, 633-641.]
doi: 10.5846/stxb201211021523
[10] Hagen-Thorn A, Varnagiryte I, Nihlgård B, Armolaitis K ( 2006). Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecology & Management, 228, 33-39.
doi: 10.1016/j.foreco.2006.02.021
[11] Hu LL, Mao ZH, Zhu JJ, Liu ZG, Chen GH, Zhang LJ ( 2005). Classification and ordination of secondary forests in montane zone of eastern Liaoning Province. Acta Ecologica Sinica, 25, 2848-2854.
doi: 10.3321/j.issn:1000-0933.2005.11.008
[ 胡理乐, 毛志宏, 朱教君, 刘足根, 陈广华, 张立君 ( 2005). 辽东山区天然次生林的数量分类. 生态学报, 25, 2848-2854.]
doi: 10.3321/j.issn:1000-0933.2005.11.008
[12] Huo XM, Zhang JS ( 2002). Characteristics of Quercus mongolica. Journal of Inner Mongolia Forestry, ( 11), 35.
[ 霍锡敏, 张劲松 ( 2002). 柞树的特性. 内蒙古林业, ( 11), 35.]
[13] Jiang TH, Zhan XH, Xu YC, Zhou LX, Zong LG ( 2005). Roles of calcium in stress-tolerance of plants and its ecological significance. Chinese Journal of Applied Ecology, 16, 971-976.
[ 蒋廷惠, 占新华, 徐阳春, 周立祥, 宗良纲 ( 2005). 钙对植物抗逆能力的影响及其生态学意义. 应用生态学报, 16, 971-976.]
[14] Killingbeck KT ( 1986). The terminological jungle revisited: Making a case for use of the term resorption. Oikos, 46, 263-264.
doi: 10.2307/3565477
[15] Killingbeck KT ( 1996). Nutrients in senescing leaves: Keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727.
doi: 10.2307/2265777
[16] Killingbeck KT, Hammen-Winn SL, Vecchio PG, Goguen ME ( 2002). Nutrient resorption efficiency and proficiency in fronds and trophopods of a winter-deciduous fern, Dennstaedtia punctilobula. International Journal of Plant Sciences, 163, 99-105.
doi: 10.1086/324181
[17] Li RH, Deng Q, Zhou GY, Zhang DQ ( 2011). Effect of incubation starting time on litter decomposition rate in a subtropical forest in China. Chinese Journal of Plant Ecology, 35, 699-706.
doi: 10.3724/SP.J.1258.2011.00699
[ 李荣华, 邓琦, 周国逸, 张德强 ( 2011). 起始时间对亚热带森林凋落物分解速率的影响. 植物生态学报, 35, 699-706.]
doi: 10.3724/SP.J.1258.2011.00699
[18] Li YK ( 1989). Methods of Conventional Analysis of Soil Agricultural Chemistry. Science Press, Beijing .
[ 李酉开 ( 1989). 土壤农业化学常规分析方法. 科学出版社,北京.]
[19] Li YN, Zhou XM, Zhang NL, Ma KP ( 2016). The research of mixed litter effects on litter decomposition in terrestrial ecosystems. Acta Ecologica Sinica, 36, 4977-4987.
doi: 10.5846/stxb201501200165
[ 李宜浓, 周晓梅, 张乃莉, 马克平 ( 2016). 陆地生态系统混合凋落物分解研究进展. 生态学报, 36, 4977-4987.]
doi: 10.5846/stxb201501200165
[20] Li YX, Cha ZZ, Luo W, Lin ZM, Bei MR ( 2009). Dynamics and transfer of nutrients in the seeding leaves of three Eucalyptus varieties. Scientia Silvae Sinicae, 45(1), 152-157.
[ 理永霞, 茶正早, 罗微, 林钊沐, 贝美容 ( 2009). 3种桉树幼苗叶片养分变化及其转移特性. 林业科学, 45(1), 152-157.]
[21] Liang QX, Cao GQ, Su MJ, Qin GY ( 2006). Research progress on plant leaf senescence. Chinese Agricultural Science Bulletin, 22, 282-285.
doi: 10.3969/j.issn.1000-6850.2006.08.072
[ 梁秋霞, 曹刚强, 苏明杰, 秦广雍 ( 2006). 植物叶片衰老研究进展. 中国农学通报, 22, 282-285.]
doi: 10.3969/j.issn.1000-6850.2006.08.072
[22] Liu HW ( 2014). The Comparative Study on Leaf Functional Traits and Nutrient Resorption in Two Different Ecosystems of Chongqing. Master degree dissertation, Southwest University, Chongqing.
[ 刘宏伟 ( 2014). 两种不同生态系统中植物叶片功能性状及养分再吸收比较研究. 硕士学位论文, 西南大学, 重庆.]
[23] Liu JQ, Wang XY, Guo Y, Wang SL, Zhou L, Dai LM, Yu DP ( 2015). Seasonal dynamics and resorption efficiencies of foliar nutrients in three dominant woody plants that grow at the treeline on Changbai Mountain. Acta Ecologica Sinica, 35, 165-171.
doi: 10.5846/stxb201407291531
[ 刘佳庆, 王晓雨, 郭焱, 王守乐, 周莉, 代力民, 于大炮 ( 2015). 长白山林线主要木本植物叶片养分的季节动态及回收效率. 生态学报, 35, 165-171.]
doi: 10.5846/stxb201407291531
[24] Liu MM, Zeng YR, Jiang JB, Han J, Yu WW ( 2014). Mineral elements in leaves and seeds of Torreya grandis ‘Merrillii’ during seed development. Journal of Zhejiang A & F University, 31, 724-729.
doi: 10.11833/j.issn.2095-0756.2014.05.010
[ 刘萌萌, 曾燕如, 江建斌, 韩炯, 喻卫武 ( 2014). 香榧生长期叶片和种子中矿质元素动态变化研究. 浙江农林大学学报, 31, 724-729.]
doi: 10.11833/j.issn.2095-0756.2014.05.010
[25] May JD, Killingbeck KT ( 1992). Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics. Ecology, 73, 1868-1878.
doi: 10.2307/1940038
[26] Mi L, Su R, Zhang JZ, Ao T ( 1999). Quercus mongolica Fisch nutrient composition and deprivation of its poison. Journal of Inner Mongolia Forestry College, 21(1), 73-76.
[ 米拉, 苏日娜, 张建中, 敖特根 ( 1999). 柞树叶营养成分及脱毒处理的研究. 内蒙古林学院学报(自然科学版), 21(1), 73-76.]
[27] Pornon A, Lamaze T ( 2007). Nitrogen resorption and photosynthetic activity over leaf life span in an evergreen shrub,Rhododendron ferrugineum, in a subalpine environment.New Phytologist, 175, 301-310.
doi: 10.1111/j.1469-8137.2007.02101.x pmid: 17587378
[28] Qiang XC, Yuan HL, Gao WS ( 2004). Effect of crop-residue incorporation on soil CO2 emission and soil microbial biomass. Chinese Journal of Applied Ecology, 15, 469-472.
[1] Aerts R ( 1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 84, 597-608.
doi: 10.2307/2261481
[2] Arneth A, Kelliher FM, Bauer G, Hollinger DY, Byers JN, Hunt JE, McSeveny TM, Ziegler W, Vygodskaya NN, Milukova I, Sogachov A, Varlagin A, Schulze ED ( 1996). Environmental regulation of xylem sap flow and total conductance of Larix gmelinii trees in eastern Siberia. Tree Physiology, 16, 247-255.
doi: 10.1093/treephys/16.1-2.247 pmid: 14871769
[28] [ 强学彩, 袁红莉, 高旺盛 ( 2004). 秸秆还田量对土壤CO2释放和土壤微生物量的影响. 应用生态学报, 15, 469-472.]
[29] Ratnam J, Sankaran M, Hanan NP, Grant RC, Zambatis N ( 2008). Nutrient resorption patterns of plant functional groups in a tropical savanna: Variation and functional significance. Oecologia, 157, 141-151.
doi: 10.1007/s00442-008-1047-5 pmid: 18488252
[3] Chapin III FS, Moilanen L ( 1991). Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology, 72, 709-715.
doi: 10.2307/2937210
[4] Chen GS, Zeng DH, Chen FS ( 2004). Concentrations of foliar and surface soil in nutrients Pinus spp. plantations in relation to species and stand age in Zhanggutai Sandy Land, northeast China. Journal of Forestry Research, 15, 11-18.
doi: 10.1007/BF02858003
[30] Sauter JJ, van Cleve B, Apel K ( 1988). Protein bodies in ray cells of Populus × canadensis Moench ‘robusta’. Planta, 173, 31-34.
[31] Sun SC, Chen LZ ( 2001). Leaf nutrient dynamics and resorption efficiency of Quercus liaotungensis in the Dongling Mountain region. Acta Phytoecologica Sinica, 25, 76-82.
doi: 10.1088/0256-307X/18/11/313
[ 孙书存, 陈灵芝 ( 2001). 东灵山地区辽东栎叶养分的季节动态与回收效率. 植物生态学报, 25, 76-82.]
doi: 10.1088/0256-307X/18/11/313
[32] Vitousek PM ( 1982). Nutrient cycling and nutrient use efficiency. The American Naturalist, 119, 553-572.
doi: 10.1086/283931
[33] Vitousek PM, Aplet G, Turner D, Lockwood JJ ( 1992). The Mauna Loa environment matrix: Foliar and soil nutrients. Oecologia, 89, 372-382.
doi: 10.1007/BF00317415 pmid: 28313086
[34] Walters MB, Gerlach JP ( 2013). Intraspecific growth and functional leaf trait responses to natural soil resource gradients for conifer species with contrasting leaf habit. Tree Physiology, 33, 297-310.
doi: 10.1093/treephys/tps134 pmid: 23370548
[5] Chen YT, Xu ZZ ( 2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153.
doi: 10.3724/SP.J.1258.2014.00108
[ 陈莹婷, 许振柱 ( 2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
doi: 10.3724/SP.J.1258.2014.00108
[35] Wang WQ, Lin P ( 1999). Studies on the nutrient retranslocation efficiencies during leaf senescence. Journal of Wuhan Botanical Research, 17, 117-122.
doi: 10.3969/j.issn.2095-0837.1999.z1.018
[ 王文卿, 林鹏 ( 1999). 树木叶片衰老过程中养分元素内吸收研究. 武汉植物学研究, 17, 117-122.]
doi: 10.3969/j.issn.2095-0837.1999.z1.018
[36] Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender BJ, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R ( 2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
doi: 10.1038/nature02403
[37] Wright IJ, Westoby M ( 2003). Nutrient concentration, resorption and lifespan: Leaf traits of Australian sclerophyll species. Functional Ecology, 17, 10-19.
doi: 10.1046/j.1365-2435.2003.00694.x
[38] Xing XR, Han XG, Chen LZ ( 2000). A review on research of plant nutrient use efficiency. Chinese Journal of Applied Ecology, 11, 785-790.
[ 邢雪荣, 韩兴国, 陈灵芝 ( 2000). 植物养分利用效率研究综述. 应用生态学报, 11, 785-790.]
[39] Xue L, Xu Y, Wu M, Li Y ( 2005). Seasonal patterns in nitrogen and phosphorus and resorption in leaves of four tree species. Acta Ecologica Sinica, 25, 520-526.
[ 薛立, 徐燕, 吴敏, 李燕 ( 2005). 4种阔叶树种叶中氮和磷的季节动态及其转移. 生态学报, 25, 520-526.]
[40] Yan T, Lü XT, Yang K, Zhu JJ ( 2016). Leaf nutrient dynamics and nutrient resorption: A comparison between larch plantations and adjacent secondary forests in northeast, China. Journal of Plant Ecology, 9, 165-173.
doi: 10.1093/jpe/rtv034
[41] Yan T, Yang K, Zhu JJ ( 2014 a). Leaf N, P and K resorption of major tree species in a montane region of eastern Liaoning Province, China. Chinese Journal of Ecology, 33, 2005-2011.
[ 闫涛, 杨凯, 朱教君 ( 2014 a). 辽东山区主要树种叶片氮、磷、钾再吸收. 生态学杂志, 33, 2005-2011.]
[42] Yan T, Zhu JJ, Yang K, Yu LZ ( 2014 b). Aboveground biomass and nutrient distribution patterns of larch plantation in a montane region of eastern Liaoning Province, China. Chinese Journal of Applied Ecology, 25, 2772-2778.
[ 闫涛, 朱教君, 杨凯, 于立忠 ( 2014 b). 辽东山区落叶松人工林地上生物量和养分元素分配格局. 应用生态学报, 25, 2772-2778.]
[43] Yin LM, Wang LH, Liu B ( 2009). Dynamic variation and resorption of nutrient elements in the leaves of Xanthoceras sorbifolia Bunge. Bulletin of Botanica Research, 29, 685-691.
[ 阴黎明, 王力华, 刘波 ( 2009). 文冠果叶片养分元素含量的动态变化及再吸收特性. 植物研究, 29, 685-691.]
[44] Yu SL, Ma KP ( 2000). Preliminary discussion on the origin of Quercus mongolica forest in north China. Guihaia, 20(2), 131-137.
doi: 10.3969/j.issn.1000-3142.2000.02.005
[ 于顺利, 马克平 ( 2000). 中国北方蒙古栎林起源和发展的初步探讨. 广西植物, 20(2), 131-137.]
doi: 10.3969/j.issn.1000-3142.2000.02.005
[45] Yuan YX ( 1996). The roles of microelements in plant life. Bulletin of Biology, ( 4), 4-8.
[ 袁玉信 ( 1996). 微量元素在植物生活中的作用. 生物学通报, ( 4), 4-8.]
[46] Yuan Z, Chen HYH ( 2009). Global trends in senesced-leaf nitrogen and phosphorus. Global Ecology & Biogeography, 18, 532-542.
doi: 10.1111/j.1466-8238.2009.00474.x
[47] Zeng DH, Chen GS, Chen FS, Zhao Q, Ji XY ( 2005). Foliar nutrients and resorption efficiencies in four Pinus sylvestris var. mongolica plantations of different ages on sandy soil. Scientia Silvae Sinicae, 41(5), 21-27.
doi: 10.11707/j.1001-7488.20050504
[ 曾德慧, 陈广生, 陈伏生, 赵琼, 冀小燕 ( 2005). 不同林龄樟子松叶片养分含量及其再吸收效率. 林业科学, 41(5), 21-27.]
doi: 10.11707/j.1001-7488.20050504
[48] Zhou DC ( 1983). The main physiological roles and absorption of N, P and K in plants. Bulletin of Biology, ( 5), 9-10.
[ 周德超 ( 1983). 氮、磷、钾在植物体中的主要生理作用及植物对养分的吸收. 生物学通报, ( 5), 9-10.]
[49] Zhu JJ, Mao ZH, Hu LL, Zhang JX ( 2007). Plant diversity of secondary forests in response to anthropogenic disturbance levels in montane regions of northeastern China. Journal of Forest Research, 12, 403-416.
doi: 10.1007/s10310-007-0033-9
[50] Zhu JJ, Tan H, Li FQ, Chen M, Hu LL ( 2009). Comparison of near-ground air temperature and soil temperature of summer within three gaps of different sizes at secondary forest in eastern montane region of Liaoning Province. Scientia Silvae Sinicae, 45(8), 161-165.
doi: 10.11707/j.1001-7488.20090828
[ 朱教君, 谭辉, 李凤芹, 陈梅, 胡理乐 ( 2009). 辽东山区次生林3种大小林窗夏季近地面气温及土壤温度比较. 林业科学, 45(8), 161-165.]
doi: 10.11707/j.1001-7488.20090828
[1] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
[2] AN Zhuo, NIU De-Cao, WEN Hai-Yan, YANG Yi, ZHANG Hong-Rong, and FU Hua. Effects of N addition on nutrient resorption efficiency and C:N:P stoichiometric characteristics in Stipa bungeana of steppe grasslands in the Loess Plateau, China [J]. Chin J Plan Ecolo, 2011, 35(8): 801-807.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Min Zhang*. Advances in Vegetative Storage Proteins and Their Biological Functions[J]. Chin Bull Bot, 2008, 25(05): 624 -630 .
[2] Du Zhan-chi Yang Zong-gui. [J]. Chin Bull Bot, 1993, 10(增刊1): 12 -22 .
[3] Wang Ya-fu Liu Zhi-xue Xu qing. The Studies of DNA Me and Non-embryonic Cell Line of Onobrychis Vici Aefolia[J]. Chin Bull Bot, 1991, 8(增刊): 37 -39 .
[4] Chunhua Zhang Xuanchun Piao Meilan Lian Shouming Wang. Application of Bioreactors in Rapid Propagation of Gypsophila paniculata[J]. Chin Bull Bot, 2007, 24(04): 526 -531 .
[5] Ying Liu, Baozhang Chen,Jing Chen,Guang Xu . Applicability of Evapotranspiration Simulation Models for Forest Ecosystems in Qianyanzhou[J]. Chin Bull Bot, 2016, 51(2): 226 -234 .
[6] I Mei Chang;Haisheng Li;Guizhu Chen*;Chuangxing Ye;Chung Sze Wong;Chiu Wang Wong . Floristic Composition and Quantitative Classification in Tai Lam Country Park, Hong Kong[J]. Chin Bull Bot, 2008, 25(01): 50 -58 .
[7] ZHAN Ru-Lin ZAN Li-Mei. The Effects of Adenine on Pineapple Macropropagation[J]. Chin Bull Bot, 2004, 21(03): 342 -345 .
[8] . [J]. Chin Bull Bot, 2000, 17(专辑): 7 -07 .
[9] Yang Guang-xiao. Effects of EMS on Anther Culture of Rice in Vitro[J]. Chin Bull Bot, 1990, 7(02): 41 -45 .
[10] . [J]. Chin Bull Bot, 1992, 9(增刊): 51 -63 .