Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (5): 562-572.DOI: 10.17521/cjpe.2017.0270

• Research Articles • Previous Articles     Next Articles

Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China

ZHONG Qiao-Lian1,2,3,LIU Li-Bin1,2,4,XU Xin1,2,3,YANG Yong1,2,3,GUO Yin-Ming1,2,3,XU Hai-Yang1,2,3,CAI Xian-Li1,2,3,NI Jian1,2,4,*()   

  1. 1 State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
    2 Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding, Guizhou 562100, China
    3 University of Chinese Academy of Sciences, Beijing 100049, China
    4 College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
  • Received:2017-10-29 Revised:2018-03-27 Online:2018-05-20 Published:2018-07-20
  • Contact: Jian NI
  • Supported by:
    Supported by the National Natural Science Foundation(41471049);the National Key Basic Research Program for Global Change(2013CB956704)


Aims The aims are to characterize key plant functional traits and their interactions of woody species growing in special and harsh karst habitats, and to explore their potential ways in adapting harsh karst habitats.

Methods A comprehensive survey of nine plant functional traits (including above- and below-ground ones) was conducted in a 100 m × 30 m permanent plot in the Tianlongshan Mountain of Puding County, central Guizhou Province, southwestern China in the summer 2016. Five dominant tree species (Carpinus pubescens, Machilus cavaleriei, Itea yunnanensis, Platycarya strobilacea, Lithocarpus confinis), three shrubs (Zanthoxylum ovalifolium, Stachyurus obovatus, Rhamnus heterophylla) and two vines (Rosa cymosa and Dalbergia hancei) in an evergreen and deciduous broadleaved mixed forest were chosen as target species. Nine traits of leaf, stem, branch and root were investigated and measured. Key features of these nine functional traits of ten woody species were numerically characterized. Traits variations among plant species, life form and leaf phenology group were further investigated. Relationships among key functional traits and between above- and below-ground traits were statistically analyzed.

Important findings (1) Nine traits varied in varying degrees. The maximum and minimum coefficient of interspecific variation were the fine root tissue density (FRTD) and twig dry-matter content (TDMC), 96.47% and 11.67%, respectively. Similarly, the largest and smallest coefficients of intraspecific variation were also FRTD and TDMC, 51.44% and 6.83%, respectively; (2) At the interspecific level, among different species FRTD had no significant difference, but other traits including specific root length (SRL), leaf thickness (LT), leaf area (LA), specific leaf area (SLA), leaf dry-matter content (LDMC), leaf tissue density (LTD), TDMC and twig tissue density (TTD) showed significant differences (p < 0.01). At the intraspecific level, however, SLA showed significant difference, and differences of other traits were not significant. (3) There was a significant correlation between most leaf and branch traits, and SRL vs. SLA were negatively correlated. However, there was no significant correlation among other root traits and leaf and twig traits. In a word, compared to the functional traits in tree species of non-karst evergreen broad-leaved forests in the same latitude, karst woody plants in Puding had a series of functional traits, such as smaller LA, SLA and larger LDMC and LTD and so on, which are beneficial to reducing transpiration and storing nutrient. This may be its main ecological strategy for adapting to arid and poor karst environments.

Key words: karst forest, life form, growth form, trait combination, intraspecific variation, interspecific variation