Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (2): 0-0.doi: 10.17521/cjpe.2018.0258


Changes of potential geographical distribution for Tsoongiodendron odorum since Last Glacial Maximum


  • Received:2018-10-17 Revised:2019-03-13 Online:2020-03-26 Published:2020-02-20
  • Contact: Wan HU

Abstract: Aims Tsoongiodendron odorum Chun is an ancient relic belonging to the family Magnoliaceae, but it is labelled endangered plant with extremely small populations and facing a serious threat of wild survival now. Using Ecological Niche Modelling (ENM) to project historical changes of species distribution pattern histories following the Last Glacial Maximum (LGM), this study aims to explore the impact of climate change on the distribution of T. odorum, and to evaluate the relationship between species distribution and determinant variables, so as to provide a framework for the conservation in the context of global warming. Methods Based on 96 modern geographical distribution records and 8 bioclimatic variables, we simulated the potential distribution of T. odorum during the LGM, Mid-Holocene, present and future (Period of 2061-2080 in the Representative Concentration Pathway 8.5 climate scenario) with MaxEnt model. The changes in distribution pattern were analyzed by SDM toolbox, while the importance of bioclimatic variables was evaluated by percent contribution, permutation importance and Jackknife test. Important findings (1) The highly suitable region of T. odorum was at Nanling region, and this area might be the glacial refugia that T. odorum survived in situ during the LGM because only slightly southward retreat was detected in LGM scenario. (2) In the two warming climate scenarios (Mid-Holocene and future), the area of the suitable region was reduced, while the decrease of future distribution is greater, which suggest that the warming climate might have a negative impact on the growth of T. odorum. (3) Overall the stability of geographical distribution range of T. odorum in each period indicates a certain extent climate adaptation. Human activity or self-breeding problem was likely the significant cause leading to endangered condition. Guangdong and Guangxi should be regarded as priority conservation areas by our results.

Key words: Tsoongiodendron odorum, ecological niche modelling, geographical distribution, Last Glacial Maximum, climate change

[1] HUANG Mei, WANG Na, WANG Zhao-Sheng, GONG He. Modeling phosphorus effects on the carbon cycle in terrestrial ecosystems [J]. Chin J Plant Ecol, 2019, 43(6): 471-479.
[2] ZHANG Fu-Guang, ZENG Biao, YANG Tai-Bao. Spatiotemporal distribution changes in alpine desert belt in Qilian Mountains under climate changes in past 30 years [J]. Chin J Plant Ecol, 2019, 43(4): 305-319.
[3] JIAO Liang, WANG Ling-Ling, LI Li, CHEN Xiao-Xia, YAN Xiang-Xiang. Divergent responses of radial growth of Larix sibirica to climate change in Altay Mountains of Xinjiang, China [J]. Chin J Plant Ecol, 2019, 43(4): 320-330.
[4] LIU Xiao-Tong, YUAN Quan, NI Jian. Research advances in modelling plant species distribution in China [J]. Chin J Plant Ecol, 2019, 43(4): 273-283.
[5] WANG Huan-Jiong,TAO Ze-Xing,GE Quan-Sheng. Effects of climate variation on the first leaf dates of 39 woody species and their thermal requirements in Xi’an, China [J]. Chin J Plant Ecol, 2019, 43(10): 877-888.
[6] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[7] ZHOU Tong,CAO Ru-Yin,WANG Shao-Peng,CHEN Jin,TANG Yan-Hong. Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis [J]. Chin J Plan Ecolo, 2018, 42(5): 526-538.
[8] Yuan-Feng SUN, Hong-Wei WAN, Yu-Jin ZHAO, Shi-Ping CHEN, Yong-Fei BAI. Spatial patterns and drivers of root turnover in grassland ecosystems in China [J]. Chin J Plan Ecolo, 2018, 42(3): 337-348.
[9] WU Qi-Qian, WANG Chuan-Kuan. Dynamics in foliar litter decomposition for Pinus koraiensis and Quercus mongolica in a snow-depth manipulation experiment [J]. Chin J Plan Ecolo, 2018, 42(2): 153-163.
[10] ZHANG Li, WANG Gen-Xu, RAN Fei, PENG A-Hui, XIAO Yao, YANG Yang, YANG Yan. Experimental warming changed plants’ phenological sequences of two dominant species in an alpine meadow, western of Sichuan [J]. Chin J Plan Ecolo, 2018, 42(1): 20-27.
[11] Dan-Dan LUO, Chuan-Kuan WANG, Ying JIN. Plant water-regulation strategies: Isohydric versus anisohydric behavior [J]. Chin J Plan Ecolo, 2017, 41(9): 1020-1032.
[12] Ya-Lin WANG, Rong GONG, Feng-Min WU, Wen-Wu FAN. Temporal and spatial variation characteristics of China shrubland net primary production and its response to climate change from 2001 to 2013 [J]. Chin J Plan Ecolo, 2017, 41(9): 925-937.
[13] Jun-Wei YE, Yang ZHANG, Xiao-Juan WANG. Phylogeographic breaks and the mechanisms of their formation in the Sino-Japanese floristic region [J]. Chin J Plan Ecolo, 2017, 41(9): 1003-1019.
[14] Ya-Lin XIE, Hai-Yan WANG, Xiang-Dong LEI. Effects of climate change on net primary productivity in Larix olgensis plantations based on process modeling [J]. Chin J Plan Ecolo, 2017, 41(8): 826-839.
[15] Xia-Li GUO, Bi-Yun YU, Han-Xue LIANG, Jian-Guo HUANG. Advancement in studies of tree growth and ecophysiology incorporating micro-sampling approach [J]. Chin J Plan Ecolo, 2017, 41(7): 795-804.
Full text



[1] Yu Feng-lan;Wang Jing-ping;Li Jing-min and Shan Xue-qin. The Isolation and Identification of Sterols and Other Constituents from Seed Fat of Sapium sebiferum[J]. Chin Bull Bot, 1989, 6(02): 121 -123 .
[2] LI Al-Fen;CHEN Min amd ZHOU Bai-Cheng. Advances and Problems in Studies of Photosynthetic Pigment-Protein Complexes of Brown Algae[J]. Chin Bull Bot, 1999, 16(04): 365 -371 .
[3] CHEN Xiao-Mei and GUO Shun-Xing. Research Advances in Plant Disease Resistive Material[J]. Chin Bull Bot, 1999, 16(06): 658 -664 .
[4] LI Ji-Quan JIN You-Ju SHEN Ying-Bai HONG Rong. The Effect of Environmental Factors on Emission of Volatile Organic Compounds from Plants[J]. Chin Bull Bot, 2001, 18(06): 649 -656 .
[5] . [J]. Chin Bull Bot, 2005, 22(增刊): 157 .
[6] Jianxia Li, Chulan Zhang, Xiaofei Xia, Liangcheng Zhao. Cryo-sectioning Conditions and Histochemistry Comparison with Paraffin Sectioning[J]. Chin Bull Bot, 2013, 48(6): 643 -650 .
[7] JIANG Yang-Ming, CUI Wei-Hong, and DONG Qian-Lin. Comprehensive evaluation and analysis of tobacco planting environment based on space technology[J]. Chin J Plan Ecolo, 2012, 36(1): 47 -54 .
[8] Hu Cheng-biao, Zhu Hong-guang, Wei Yuan-lian. A Study on Microorganism and Biochemical Activity of Chinese-fir Plantation on Different Ecological Area in Guangxi[J]. Chin J Plan Ecolo, 1991, 15(4): 303 -311 .
[9] Hong-Xin SU Fan BAI Guang-Qi LI. Seasonal dynamics in leaf area index in three typical temperate montane forests of China: a comparison of multi-observation methods[J]. Chin J Plan Ecolo, 2012, 36(3): 231 -242 .
[10] AN Ran, GONG Ji-Rui, YOU Xin, GE Zhi-Wei, DUAN Qing-Wei, YAN Xin. Seasonal dynamics of soil microorganisms and soil nutrients in fast-growing Populus plantation forests of different ages in Yili, Xinjiang, China[J]. Chin J Plan Ecolo, 2011, 35(4): 389 -401 .