Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (1): 44-55.doi: 10.17521/cjpe.2018.0258

• Research Articles • Previous Articles     Next Articles

Changes in potential geographical distribution of Tsoongiodendron odorum since the Last Glacial Maximum

HU Wan1,*(),ZHANG Zhi-Yong1,CHEN Lu-Dan1,PENG Yan-Song1,WANG Xu2   

  1. 1Lushan Botanical Garden, Chinese Academy of Sciences, Provincial Key Laboratory of Plant ex Situ Conservation and Utilization, Jiujiang, Jiangxi 332900, China
    2Forestry Industry Development Administration of Jiangxi Province, Nanchang 330006, China
  • Received:2018-10-17 Revised:2019-01-17 Online:2020-03-26 Published:2020-01-20
  • Contact: HU Wan E-mail:hwan603@163.com
  • Supported by:
    National Natural Science Foundation of China(41961009);Scientific Infrastructure and Capacity Building of Jiangxi Province(2017ZDD01002);Science and Technology Service Network Initiative(KFJ-3W-No1)

Abstract:

Aims Tsoongiodendron odorum is an ancient relic species belonging to the family Magnoliaceae, but it is labelled endangered plant with extremely small populations and facing serious threats to its wild survival now. Using Ecological Niche Modelling (ENM) to hindcast historical changes in its distribution during the Last Glacial Maximum (LGM), this study aims to explore the impact of climate change on the distribution of T. odorum, and to evaluate the relationship between species distribution and environmental variables. The results of this study could contribute to the conservation of T. odorum in the context of global warming.
Methods Based on 96 modern geographical distribution records and 8 bioclimatic variables, we simulated the potential distribution of T. odorum during the LGM, Mid-Holocene, present and future (period of 2061-2080 in the Representative Concentration Pathway 8.5 climate scenario) with MaxEnt model. The changes in species distribution through time were analyzed by SDM toolbox, while the importance of bioclimatic variables was evaluated by percent contribution, permutation importance and Jackknife test.
Important findings (1) The highly suitable region for T. odorum was Nanling region, and this area might be the refuge where T. odorum survived in situ during the LGM because only slightly southward retreat in distribution was detected in this region during the LGM. (2) In the two warming climate scenarios (Mid-Holocene and future), the area of the suitable region was reduced, and the decrease of future distribution is greater than that during the Mid-Holocene, which suggests that warming climate might have a negative impact on the distribution of T. odorum. (3) Overall the stability of distribution range of T. odorum in each period indicates the climate adaptation of this species. Human activity or self-breeding problem was likely the significant cause leading to endangered condition. Guangdong and Guangxi should be regarded as priority conservation areas as shown by our results.

Key words: Tsoongiodendron odorum, ecological niche modelling, geographical distribution, Last Glacial Maximum, climate change

Fig. 1

Occurrence points (black dots) and potential distribution of Tsoongiodendron odorum simulated by MaxEnt in different periods."

Table 1

Environmental variables and their importance parameters used in distribution predicting of Tsoongiodendron odorum"

气候变量 Variable 描述 Description PC (%) PI (%) RTGW RTGO TGW TGO AUCW AUCO
bio01 年平均气温 Annual mean temperature 7.3 17.2 2.051 3 1.788 7 2.117 3 1.900 8 0.956 3 0.945 7
bio02 昼夜温差月均值 Mean diurnal range 0.3 0.3 2.075 3 1.358 2 2.129 2 1.445 2 0.956 6 0.899 9
bio03 等温性 Isothermality 7.7 9.7 2.003 0 0.176 0 2.098 3 0.173 3 0.955 0 0.660 6
bio07 年平均气温变化范围 Temperature annual range 2.8 25.7 2.054 8 1.409 5 2.105 1 1.503 7 0.955 4 0.904 9
bio10 最暖季平均气温 Mean temperature of warmest quarter 1.2 2.7 2.072 1 1.046 4 2.131 3 1.128 5 0.956 8 0.876 8
bio12 年降水量 Annual precipitation 55.2 40.2 2.041 5 1.744 2 2.103 7 1.852 4 0.955 5 0.942 2
bio17 最干季降水量 Precipitation of driest quarter 25 2.4 2.065 4 1.452 0 2.109 3 1.512 8 0.955 8 0.911 2
bio18 最暖季降水量 Precipitation of warmest quarter 0.7 1.9 2.061 3 1.463 5 2.128 3 1.590 2 0.957 0 0.922 9

Fig. 2

Major distribution changes of Tsoongiodendron odorum between different periods simulated by MaxEnt. A, Distribution changes from the Last Glacial Maximum to Mid-Holocene. B, Distribution changes from the Mid-Holocene to Current. C, Distribution changes from the current to the future. D, Summed distributions and micro-endemism during the four periods (Last Glacial Maximum, Mid-Holocene, current and future). E, Core range shifts and the line densities, white dots represent the Last Glacial Maximum centroid, black dots represent Mid-Holocene centroid, red dots represent current centroid, blue dots represent future centroid, black arrow represent centroid change."

Table 2

Statistics of the eight environmental variables in each of the current suitable areas for Tsoongiodendron odorum"

气候
变量Variable
不适生 Unsuitable 低度适生 Marginally suitable 中度适生 Moderately suitable 高度适生 Highly suitable 单位 Unit
范围
Range
平均值 Mean 标准偏
SD
范围
Range
平均值 Mean 标准偏
SD
范围
Range
平均值 Mean 标准偏
SD
范围
Range
平均值 Mean 标准偏
SD
bio01 -4.32-1.97 4.01 7.14 4.51-4.58 16.32 2.02 11.13-25.73 19.14 2.40 16.26-24.65 20.46 1.50
bio02 2.82-0.03 12.68 2.27 4.77-3.82 8.07 0.99 4.07-11.91 7.90 0.78 4.10-9.83 8.22 0.63
bio03 10.70-0.88 30.45 5.67 20.57-52.24 30.75 7.60 21.91-48.50 31.91 4.36 25.93-39.94 32.81 2.31 %
bio07 14.27-5.81 42.49 8.77 12.24-34.58 27.10 4.35 12.50-33.57 25.16 4.11 11.07-31.08 25.14 2.51
bio10 -2.36-1.62 16.87 7.85 10.26-28.62 24.38 2.67 15.56-29.28 26.32 1.90 20.89-29.28 27.52 0.97
bio12 11.00-434.00 398.05 310.96 735.00-4 242.19 1 350.65 297.42 1 017.00-3 501.00 1 589.85 238.43 1 255.00-3 440.00 1 680.38 241.75 mm
bio17 0.00-15.00 16.00 23.36 14.00-352.00 95.89 53.68 26.00-723.00 121.32 44.74 41.00-764.00 137.18 56.30 mm
bio18 7.00-379.00 227.01 157.58 327.00-2 661.00 593.69 178.19 341.00-1 778.00 660.68 174.06 410.00-1 191.00 650.07 126.15 mm

Table 3

Characteristics of potential distribution in different periods for Tsoongiodendron odorum"

时期 Period 年平均气温
Annual mean
temperature
(℃)
年降水量
Annual
precipitation
(mm)
各适生区面积(现代相比面积变化的百分比%)
Area of each suitable region (the percentage change in area compared with current, %)
低度适生区
Marginally suitable region
中度适生区
Moderately suitable region
高度适生区
Highly suitable region
总适生区
Total suitable region
LGM 16.7 1 589.7 64.01 (-14.84) 52.21 (-7.87) 16.16 (-4.57) 132.38 (-11.02)
Mid 20.1 1 741.3 66.93 (-10.96) 51.38 (-9.33) 14.32 (-15.40) 132.64 (-10.85)
Future 23.1 1 831.7 54.73 (-27.19) 50.43 (-11.01) 13.74 (-18.84) 118.91 (-20.07)
Current 20.5 1 680.4 75.17 (0.00) 56.67 (0.00) 16.93 (0.00) 148.77 (0.00)
[1] Ahmed SE, Mcinerny G, O’Hara K, Harper R, Salido L, Emmott S, Joppa LN (2015). Scientists and software-surveying the species distribution modelling community. Diversity and Distributions, 21, 258-267.
[2] Barbosa FG, Schneck F (2015). Characteristics of the top-cited papers in species distribution predictive models. Ecological Modelling, 313, 77-83.
[3] Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365-377.
[4] Brown JL (2014). SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5, 694-700.
[5] Brown JL, Yoder AD (2015). Shifting ranges and conservation challenges for lemurs in the face of climate change. Ecology and Evolution, 5, 1131-1142.
[6] Chapin III FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000). Consequences of changing biodiversity. Nature, 405, 234-242.
[7] Chen XM, Lei YC, Zhang XQ, Jia HY (2012). Effects of sample sizes on accuracy and stability of maximum entropy model in predicting species distribution. Scientia Silvae Sinicae, 48(1), 53-59.
[ 陈新美, 雷渊才, 张雄清, 贾宏炎 (2012). 样本量对MaxEnt模型预测物种分布精度和稳定性的影响. 林业科学, 48(1), 53-59.]
[8] Chen Y, Ni J (2008). Quantitative palaeovegetation reconstruction at lager scale based on the pollen records. Journal of Plant Ecology (Chinese Version), 32, 1201-1212.
[ 陈瑜, 倪健 (2008). 利用孢粉记录定量重建大尺度古植被格局. 植物生态学报, 32, 1201-1212.]
[9] Deng XL, Wu Y, Lai MY, Xu B, Long WW (2012). Studies on the characteristics of Michelia odora population and its community in south-central Jiangxi. Guihaia, 32, 179-184.
[ 邓贤兰, 吴杨, 赖弥源, 许斌, 龙婉婉 (2012). 江西中南部观光木种群及所在群落特征研究. 广西植物, 32, 179-184.]
[10] Department of Wildlife Conservation and Nature Reserve Management, the National Forestry Bureau (2013). Rare and Endangered Plants in China. China Forestry Publishing House, Beijing.
[ 国家林业局野生动植物保护与自然保护区管理司 (2013). 中国珍稀濒危植物图鉴. 中国林业出版社, 北京.]
[11] Diez JM, DʼAntonio CM, Dukes JS, Grosholz ED, Olden JD, Sorte CJB, Blumenthal DM, Bradley BA, Early R, Ibáñez I, Jones SJ, Lawler JJ, Miller LP (2012). Will extreme climatic events facilitate biological invasions? Frontiers in Ecology and the Environment, 10, 249-257.
[12] Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006). Novel methods improve prediction of speciesʼ distributions from occurrence data. Ecography, 29, 129-151.
[13] Elith J, Kearney M, Phillips S (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1, 330-342.
[14] Fang JY, Zhu JL, Shi Y (2018). The responses of ecosystems to global warming. Chinese Science Bulletin, 63, 136-140.
[ 方精云, 朱江玲, 石岳 (2018). 生态系统对全球变暖的响应. 科学通报, 63, 136-140.]
[15] Fu LG, Jin JM (1992). Chinese Red Data Book of Rare and Endangered Plants. Science Press, Beijing. 454-455.
[ 傅立国, 金鉴明 (1992). 中国植物红皮书——稀有濒危植物. 科学出版社, 北京. 454-455.]
[16] Grimm NB, Chapin III FS, Bierwagen B, Gonzalez P, Groffman PM, Luo Y, Melton F, Nadelhoffer K, Pairis A, Raymond PA, Schimel J, Williamson CE (2013). The impacts of climate change on ecosystem structure and function. Frontiers in Ecology and the Environment, 11, 474-482.
[17] Hamann A, Wang T (2009). Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology, 39, 2773-2786.
[18] Hanley JA, McNeil BJ (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29-36.
[19] Harrison SP, Yu G, Takahara H, Prentice IC (2001). Palaeovegetation (Communications arising): Diversity of temperate plants in east Asia. Nature, 413, 129-130.
[20] Heller NE, Zavaleta ES (2009). Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biological Conservation, 142, 14-32.
[21] Hewitt GM (2004). Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359, 183-195.
doi: 10.1098/rstb.2003.1388
[22] Kumar S, Stohlgren TJ (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and the Natural Environment, 1, 94-98.
[23] Lavergne S, Thompson JD, Garnier E, Debussche M (2004). The biology and ecology of narrow endemic and widespread plants, a comparative study of trait variation in 20 congeneric pairs. Oikos, 107, 505-518.
[24] Lenoir J, Gégout JC, Marquet PA, De Ruffray P, Brisse H (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320, 1768-1771.
[25] Lü Y (2014). Discussion of Ancient Vegetation and Climate at 10-40 ka BP in the Subtropical Mountains of Southern China. Master degree dissertation, Nanjing Normal University, Nanjing.
[ 吕燕 (2014). 中国南方亚热带山地10-40 ka BP古植被与古气候特征探讨. 硕士学位论文, 南京师范大学, 南京.]
[26] Members of China Quaternary Pollen Data Base (2000). Pollen-‌based biome reconstruction at Middle Holocene (6 ka BP) and last glacial maximum (18 ka BP) in China. Acta Botanica Sinica, 42, 1201-1209.
[ 中国第四纪孢粉数据库小组 (2000). 中国中全新世(6 ka BP)和末次盛冰期(18 ka BP)生物群区的重建. 植物学报, 42, 1201-1209.]
[27] Ni J, Yu G, Harrison SP, Prentice IC (2010). Palaeovegetation in China during the late Quaternary, biome reconstructions based on a global scheme of plant functional types. Palaeogeography Palaeoclimatology Palaeoecology, 289, 44-61.
[28] Nogués-Bravo D (2009). Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 18, 521-531.
[29] Phillips SJ, Anderson RP, Schapire RE (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
[30] Phillips SJ, Dudík M (2008). Modeling of species distributions with Maxent, new extensions and a comprehensive evaluation. Ecography, 31, 161-175.
[31] Provan J, Bennett KD (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution, 23, 564-571.
[32] Qiao H, Lin C, Ji L, Jiang Z (2012). mMWeb—An online platform for employing multiple ecological niche modeling algorithms. PLOS ONE, 7, e43327. DOI: 10.1371/‌journal.‌pone.0043327.
[33] Qiu YX, Fu CX, Comes HP (2011). Plant molecular phylogeography in China and adjacent regions, tracing the genetic imprints of Quaternary climate and environmental change in the worldʼs most diverse temperate flora. Molecular Phylogenetics & Evolution, 59, 225-244.
[34] Qu H, Wang CJ, Zhang ZX (2018). Planning priority conservation areas under climate change for six plant species with extremely small populations in China. Nature Conservation, 25, 89-106.
[35] Sekercioglu CH, Schneider SH, Fay JP, Loarie SR (2008). Climate change, elevational range shifts, and bird extinctions. Conservation Biology, 22, 140-150.
doi: 10.1111/j.1523-1739.2007.00852.x
[36] Song WJ, Wu SH, Tao ZX, Dai JH (2016). Distribution change of plants over mid-eastern China during last 30 years. Geographical Research, 35, 1420-1432.
[ 宋文静, 吴绍洪, 陶泽兴, 戴君虎 (2016). 近30年中国中东部地区植物分布变化. 地理研究, 35, 1420-1432.]
[37] Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2014). Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK.
[38] Swets JA (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
doi: 10.1126/science.3287615
[39] Thomas E, van Zonneveld M, Loo J, Hodgkin T, Galluzzi G, van Etten J (2012). Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in pleistocene refugia followed by human-‌influenced dispersal. PLOS ONE, 7, e47676. DOI: 10.1371/‌‌journal.pone.0047676.
[40] Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 102, 8245-8250.
[41] Vaz UL, Cunha HF, Nabout JC (2015). Trends and biases in global scientific literature about ecological niche models. Brazilian Journal of Biology, 75, 17-24.
[42] Waltari E, Hijmans RJ, Peterson AT, Nyári ÁS, Perkins SL, Guralnick RP (2007). Locating pleistocene refugia: Comparing phylogeographic and ecological niche model predictions. PLOS ONE, 2, e563. DOI: 10.1371/journal.‌pone.0000563.
[43] Wang J, Ni J (2006). Review of modelling the distribution of plant species. Journal of Plant Ecology (Chinese Version), 30, 1040-1053.
[ 王娟, 倪健 (2006). 植物种分布的模拟研究进展. 植物生态学报, 30, 1040-1053.]
[44] Wang X, Wang J, Jiang JH, Kang M (2012). Genetic diversity and the mating system in a fragmented population of Tsoongiodendron odorum. Biodiversity Science, 20, 676-684.
doi: 10.3724/SP.J.1003.2012.09083
[ 王霞, 王静, 蒋敬虎, 康明 (2012). 观光木片断化居群的遗传多样性和交配系统. 生物多样性, 20, 676-684.]
doi: 10.3724/SP.J.1003.2012.09083
[45] Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY (2007). Application of ROC curve analysis in evaluating the performance of alien species potential distribution models. Biodiversity Science, 15, 365-372.
[ 王运生, 谢丙炎, 万方浩, 肖启明, 戴良英 (2007). ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 15, 365-372.]
[46] Warren R, Vanderwal J, Price J (2013). Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Climate Change, 3, 678-682.
doi: 10.1038/nclimate1887
[47] Watson JEM, Iwamura T, Butt N (2013). Mapping vulnerability and conservation adaptation strategies under climate change. Nature Climate Change, 3, 989-994.
[48] Worthington TA, Zhang T, Logue DR, Mittelstet AR, Brewer SK (2016). Landscape and flow metrics affecting the distribution of a federally-threatened fish, improving management, model fit, and model transferability. Ecological Modelling, 342, 1-18.
[49] Wu JG, Lv JJ, Ai L (2009). The impacts of climate change on the biodiversity: Vulnerability and adaptation. Ecology and Environmental Sciences, 18, 693-703.
[ 吴建国, 吕佳佳, 艾丽 (2009). 气候变化对生物多样性的影响, 脆弱性和适应. 生态环境学报, 18, 693-703.]
[50] Wu XQ, Xu GB, Liang Y, Sheng XB (2013). Genetic diversity of natural and planted populations of Tsoongiodendron odorum from the Nanling Mountains. Biodiversity Science, 21, 71-79.
doi: 10.3724/SP.J.1003.2013.09138
[ 吴雪琴, 徐刚标, 梁艳, 申响保 (2013). 南岭地区观光木自然和人工迁地保护种群的遗传多样性. 生物多样性, 21, 71-79.]
doi: 10.3724/SP.J.1003.2013.09138
[51] Xiao RG, Zhang YM, Wu LF, Shu ZF, Song XJ (2017). Research status and prospect of the endangered plant species Tsoongiodendron odorum Chun. Journal of Green Science and Technology, (21), 106-107.
[ 肖荣高, 张应明, 吴林芳, 束祖飞, 宋相金 (2017). 濒危植物观光木的研究现状及展望. 绿色科技, (21), 106-107.]
[52] Xing DL, Hao ZQ (2011). The principle of maximum entropy and its applications in ecology. Biodiversity Science, 19, 295-302.
[ 邢丁亮, 郝占庆 (2011). 最大熵原理及其在生态学研究中的应用. 生物多样性, 19, 295-302.]
[53] Xu GB, Wu XQ, Jiang GX, Hu SL, Liu XS, Xiao YF, Hao BB (2014). Genetic diversity and population structure of an endangered species: Tsoongiodendron odorum Chun. Journal of Plant Genetic Resources, 15, 255-261.
[ 徐刚标, 吴雪琴, 蒋桂雄, 胡尚力, 刘雄盛, 肖玉菲, 郝博搏 (2014). 濒危植物观光木遗传多样性及遗传结构分析. 植物遗传资源学报, 15, 255-261.]
[54] Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS (2013). Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51, 83-87.
doi: 10.1016/j.ecoleng.2012.12.004
[55] Yang YS, Chen GS, Guo JF, Lin P (2004). Decomposition dynamic of fine roots in a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum in mid-subtropics. Annals of Forest Science, 61, 65-72.
[56] Ye JW, Zhang Y, Wang XJ (2017). Phylogeographic history of broad-leaved forest plants in subtropical China. Acta Ecologica Sinica, 37, 5894-5904.
[ 叶俊伟, 张阳, 王晓娟 (2017). 中国亚热带地区阔叶林植物的谱系地理历史. 生态学报, 37, 5894-5904.]
[57] Ying JS (2001). Species diversity and distribution pattern of seed plants in China. Biodiversity Science, 9, 393-398.
[ 应俊生 (2001). 中国种子植物物种多样性及其分布格局. 生物多样性, 9, 393-398.]
[58] Zhang L (2015). Applications of maximum entropy (MAXENT) model in prediction of species potential distribution ranges. Bulletin of Biology, 50, 9-12.
[ 张路 (2015). MAXENT最大熵模型在预测物种潜在分布范围方面的应用. 生物学通报, 50, 9-12.]
[59] Zhang XQ, Peng LL, Lin CH (2008). Progress on the projections of future climate change with variable emission scenarios. Advances in Earth Science, 23, 174-185.
[ 张雪芹, 彭莉莉, 林朝晖 (2008). 未来不同排放情景下气候变化预估研究进展. 地球科学进展, 23, 174-185.]
[60] Zheng YQ, Yu G, Xue B, Wang SM (2004). Simulations of east Asian climate at 6 ka B.P. Quaternary Sciences, 24, 28-38.
[ 郑益群, 于革, 薛滨, 王苏民 (2004). 6 ka B.P.东亚区域气候模拟及其变化机制探讨. 第四纪研究, 24, 28-38.]
[61] Zhu GP, Liu GQ, Bu WJ, Gao YB (2013). Ecological niche modeling and its applications in biodiversity conservation. Biodiversity Science, 21, 90-98.
[ 朱耿平, 刘国卿, 卜文俊, 高玉葆 (2013). 生态位模型的基本原理及其在生物多样性保护中的应用. 生物多样性, 21, 90-98.]
[62] Zhu GP, Liu Q, Gao YB (2014). Improving ecological niche model transferability to predict the potential distribution of invasive exotic species. Biodiversity Science, 22, 223-230.
doi: 10.3724/SP.J.1003.2014.08178
[ 朱耿平, 刘强, 高玉葆 (2014). 提高生态位模型转移能力来模拟入侵物种的潜在分布. 生物多样性, 22, 223-230.]
doi: 10.3724/SP.J.1003.2014.08178
[63] Zhu T, Meng T, Zhang J, Yin Y, Cai Z, Yang W, Zhong W (2013). Nitrogen mineralization, immobilization turnover, heterotrophic nitrification, and microbial groups in acid forest soils of subtropical China. Biology and Fertility of Soils, 49, 323-331.
doi: 10.1007/s00374-012-0725-y
[1] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[2] Yao LI, Xing-Wang ZHANG, Yan-Ming FANG. Responses of the distribution pattern of Quercus chenii to climate change following the Last Glacial Maximum [J]. Chin J Plan Ecolo, 2016, 40(11): 1164-1178.
[3] Xueqin Wu,Gangbiao Xu,Yan Liang,Xiangbao Shen. Genetic diversity of natural and planted populations of Tsoongiodendron odorum from the Nanling Mountains [J]. Biodiv Sci, 2013, 21(1): 71-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[2] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .
[3] Wang Bao-shan;Zou Qi and Zhao Ke-fu. Advances in Mechanism of Crop Salt Tolerance and Strategies for Raising Crop Salt Tolerance[J]. Chin Bull Bot, 1997, 14(增刊): 25 -30 .
[4] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[5] JIA Hu-Sen LI De-QuanHAN Ya-Qin. Cytochrome b-559 in Chloroplasts[J]. Chin Bull Bot, 2001, 18(02): 158 -162 .
[6] Wei Sun;Chonghui Li;Liangsheng Wang;Silan Dai*. Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum[J]. Chin Bull Bot, 2010, 45(03): 327 -336 .
[7] . Phosphate_Stress Protein and Iron_Stress Protein in Plants[J]. Chin Bull Bot, 2001, 18(05): 571 -576 .
[8] ZHANG Da-Yong, JIANG Xin-Hua. An Ecological Perspective on Crop Prduction[J]. Chin J Plan Ecolo, 2000, 24(3): 383 -384 .
[9] Gui Ji-xun, Zhu Ting-cheng. Study of Energy Flow Between Litter and Decomposers in Aneurolepidium chinese Grassland[J]. Chin J Plan Ecolo, 1992, 16(2): 143 -148 .
[10] YAN Xiu-Feng. Ecology of Plant secondary Metabolism[J]. Chin J Plan Ecolo, 2001, 25(5): 639 -640 .