Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (11): 1113-1119.doi: 10.17521/cjpe.2018.0145

• Research Articles • Previous Articles     Next Articles

Comparison of methods for detecting vulnerability of xylem embolism in Robinia pseudoacacia

AN Rui1,MENG Feng1,YIN Peng-Xian2,DU Guang-Yuan1,*()   

  1. 1College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China;
    2College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China;
  • Received:2018-06-19 Accepted:2018-10-19 Online:2019-03-13 Published:2018-11-20
  • Contact: Guang-Yuan DU
  • Supported by:
    Supported by the National Natural Science Foundation of China(31201122);Supported by the National Natural Science Foundation of China(31570588)


Aims The vulnerability of xylem embolism is one of the key physiological factors that are related to plant mortality. Vulnerability curves are typically used for determining the vulnerability of xylem embolism. However, the shapes of vulnerability curves vary with the methods of assessment, especially in plant species with long xylem vessels. This study aims to investigate the feasibility of using different methods for establishment of vulnerability curves.
Methods Robinia pseudoacacia branches, with long xylem vessels, were used as plant materials for comparison of three different methods in establishing vulnerability curves, including bench top dehydration, Cochard Cavitron centrifugation and Sperry centrifugation. In the Sperry centrifugation method, rotors of two different sizes were used to test the ‘open vessel artifact’ hypothesis.
Important findings The vulnerability curve established by the bench top dehydration method displayed an “s” shape, while both the Cochard Cavitron centrifugation and Sperry centrifugation methods produced “r” shape curves. Vulnerability curves derived from the bench top dehydration method and the centrifugation methods were significantly different. Using the Sperry centrifugation method, the R. pseudoacacia branch samples in the 14.4 cm rotor had a higher proportion of open vessels, while the embolic vulnerability curves established on the 27.4 cm and 14.4 cm long stem segments were similar, indicating that the Sperry centrifugation method does not produce “open vessel artifact”.

Key words: embolism vulnerability, vulnerability curve, bench top dehydration, Cochard Cavitron centrifugation, Sperry centrifugation

Fig. 1

The probability that the xylem conduit is within the length x interval (Px) and stem length (x) derived from the xylem conduit length distribution of Robinia pseudoacacia (mean ± SD)."

Table 1

Tension at 50% hydraulic conductivity loss (P50) in branches of Robinia pseudoacacia calculated based on different methods"

Methods in establishing embolism vulnerability curves
P50 (MPa) 样品数
Number of
Stem length (cm)
Sperry centrifugation method
-0.93 ± 0.021a 6 27.4
-0.92 ± 0.058a 6 14.4
Bench top dehydration method
-2.91b 31
Cochard Cavitron
Cochard Cavitron centrifugation method
-0.38 ± 0.044c 6 27.4
-0.46 ± 0.030d 6 27.4 Dang et
., 2017
-0.22 ± 0.026e 6 27.4 Li et al., 2016

Fig. 2

Vulnerability curves of Robinia pseudoacacia established by different methods (mean ± SD)."

Fig. 3

Vulnerability to cavitation as determined using a centrifuge-based method for Robinia pseudoacacia of different sample lengths."

Fig. 4

Specific hydraulic conductivity (Ks) of Robinia pseudoacacia before centrifugation, after centrifugation, and after flushing (mean ± SD)."

Fig. 5

Three fields of view for cross section of Robinia pseudoacacia stem under Fluorescence Microscopy."

[1] Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, Bugmann H, Cobb RC, Collins AD, Dickman LT, Duan H, Ewers BE, Galiano L, Galvez DA, Garcia-Forner N, Gaylord ML, Germino MJ, Gessler A, Hacke UG, Hakamada R, Hector A, Jenkins MW, Kane JM, Kolb TE, Law DJ, Lewis JD, Limousin JM, Love DM, Macalady AK, Martínez-Vilalta J, Mencuccini M, Mitchell PJ, Muss JD, O’Brien MJ, O’Grady AP, Pangle RE, Pinkard EA, Piper FI, Plaut JA, Pockman WT, Quirk J, Reinhardt K, Ripullone F, Ryan MG, Sala A, Sevanto S, Sperry JS, Vargas R, Vennetier M, Way DA, Xu C, Yepez EA, McDowell NG ( 2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution, 1, 1285-1291.
doi: 10.1038/s41559-017-0248-x pmid: 29046541
[2] Allen CD, Macalady AK, Chenchouni H, Bachelet D, Dowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg HH, Gonzalez P, Fensham R, Zhen Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Cobb N ( 2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology & Management, 259, 660-684.
[3] Choat B, Drayton WM, Brodersen C, Matthews MA, Shackel KA, Wada H, McElrone AJ ( 2010). Measurement of vulnerability to water stress-induced cavitation in grapevine: A comparison of four techniques applied to long-vesseled species. Plant, Cell & Environment, 33, 1502-1512.
doi: 10.1111/j.1365-3040.2010.02160.x pmid: 20444217
[4] Choat B, Lahr E, Melcher PJ, Zwieniecki MA, Holbrook NM ( 2005). The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant, Cell & Environment, 28, 1082-1089.
doi: 10.1111/j.1365-3040.2005.01336.x
[5] Cochard H ( 2002). A technique for measuring xylem hydraulic conductance under high negative pressures. Plant, Cell & Environment, 25, 815-819.
doi: 10.1046/j.1365-3040.2002.00863.x
[6] Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S ( 2013). Methods for measuring plant vulnerability to cavitation: A critical review. Experimental Botany, 64, 4779-4791.
doi: 10.1093/jxb/ert193 pmid: 23888067
[7] Cochard H, Damour G, Bodet C, Tharwat I, Poirier M, Améglio T ( 2005). Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiologia Plantarum, 124, 410-418.
doi: 10.1111/j.1399-3054.2005.00526.x
[8] Cochard H, Herbette S, Barigah T, Badel E, Ennajeh M, Vilagrosa A ( 2010). Does sample length influence the shape of xylem embolism vulnerability curves? A test with the Cavitron spinning technique. Plant, Cell & Environment, 33, 1543-1552.
doi: 10.1111/j.1365-3040.2010.02163.x pmid: 20444214
[9] Cohen S, Benink J, Tyree M ( 2003). Air method measurements of apple vessel length distributions with improved apparatus and theory. Journal of Experimental Botany, 54, 1889-1897.
doi: 10.1093/jxb/erg202 pmid: 12815034
[10] Dai YX, Wang L, Wan XC ( 2015). Progress on researches of drought-induced tree mortality mechanisms. Chinese Journal of Ecology, 34, 3228-3236.
[ 代永欣, 王林, 万贤崇 ( 2015). 干旱导致树木死亡机制研究进展. 生态学杂志, 34, 3228-3236.]
[11] Dang W, Jiang ZM, Li R, Zhang SX, Cai J ( 2017). Relationship between hydraulic traits and refilling of embolism in the xylem of one-year-old twigs of six tree species. Scientia Silvae Sinicae, 53(3), 49-59.
doi: 10.11707/j.1001-7488.20170306
[ 党维, 姜在民, 李荣, 张硕新, 蔡靖 ( 2017). 6个树种1年生枝木质部的水力特征及与栓塞修复能力的关系. 林业科学, 53(3), 49-59.]
doi: 10.11707/j.1001-7488.20170306
[12] Dixon HH, Joly J ( 1895). On the ascent of sap. Philosophical Transactions of the Royal Society of London B, 186, 563-576.
doi: 10.1098/rstb.1895.0012
[13] Domec JC, Gartner BL ( 2001). Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees, 15, 204-214.
doi: 10.1007/s004680100095
[14] Dong L, Li JY ( 2013). Relationship among drought, hydraulic metabolic, carbon starvation and vegetation mortality. Acta Ecologica Sinica, 33, 5477-5483.
doi: 10.5846/stxb201304270839
[ 董蕾, 李吉跃 ( 2013). 植物干旱胁迫下水分代谢、碳饥饿与死亡机理. 生态学报, 33, 5477-5483.]
doi: 10.5846/stxb201304270839
[15] Hacke UG, Venturas MD, MacKinnon ED, Jacobsen AL, Sperry JS, Pratt RB ( 2015). The standard centrifuge method accurately measures vulnerability curves of long- vesselled olive stems. New Phytologist, 205, 116-127.
doi: 10.1111/nph.13017 pmid: 25229841
[16] Jacobsen AL, Pratt RB ( 2012). No evidence for an open vessel effect in centrifuge-based vulnerability curves of a long-vesselled liana (Vitisvinifera). New Phytologist, 194, 982-990.
doi: 10.1111/j.1469-8137.2012.04118.x pmid: 22448870
[17] Jacobsen AL, Pratt RB, Davis SD, Tobin MF ( 2014). Geographic and seasonal variation in chaparral vulnerability to cavitation. Madrono, 61, 317-327.
doi: 10.3120/0024-9637-61.4.317
[18] Li R, Dang W, Cai J, Zhang SX, Jiang ZM ( 2016). Relationships between xylem structure and embolism vulnerability in six drought tolerance trees. Chinese Journal of Plant Ecology, 40, 255-263.
doi: 10.17521/cjpe.2015.0260
[ 李荣, 党维, 蔡靖, 张硕新, 姜在民 ( 2016). 6个耐旱树种木质部结构与栓塞脆弱性的关系. 植物生态学报, 40, 255-263.]
doi: 10.17521/cjpe.2015.0260
[19] Li R, Jiang ZM, Zhang SX, Cai J ( 2015). A review of new esearch progress on the vulnerability of xylem embolism of woody plants. Chinese Journal of Plant Ecology, 39, 838-848.
doi: 10.17521/cjpe.2015.0080
[ 李荣, 姜在民, 张硕新, 蔡靖 ( 2015), 本木植物木质部栓塞脆弱性研究新进展. 植物生态学报, 39, 838-848.]
doi: 10.17521/cjpe.2015.0080
[20] Maherali H, Pockman WT, Jackson RB ( 2004). Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85, 2184-2199.
doi: 10.1890/02-0538
[21] Melcher PJ, Zwieniecki MA, Holbrook NM ( 2003). Vulnerability of xylem vessels to cavitation in sugar maple. Scaling from individual vessels to whole branches. Plant Physiology, 131, 1775-1780.
doi: 10.1104/pp.102.012856
[22] Rockwell FE, Wheeler JK, Holbrook NM ( 2014). Cavitation and its discontents: Opportunities for resolving current controversies. Plant Physiology, 164, 1649-1660.
doi: 10.1104/pp.113.233817 pmid: 24501002
[23] Sperry JS, Christman MA, Torrez-Ruiz JM, Taneda H, Smith DD ( 2012). Vulnerability curves by centrifugation: Is there an open vessel artifact, and are “r” shaped curves necessarily invalid? Plant, Cell & Environment, 35, 601-610.
[24] Sperry JS, Donnelly JR, Tyree MT ( 1988). A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell & Environment, 11, 35-40.
doi: 10.1111/j.1365-3040.1988.tb01774.x
[25] Sperry JS, Tyree MT ( 1988). Mechanism of water stress-induced xylem embolism. Plant Physiology, 88, 581-587.
doi: 10.1104/pp.88.3.581 pmid: 16666352
[26] Tyree MT, Alexander J, Machado JL ( 1992). Loss of hydraulic conductivity due to water stress in intact juveniles of Quercus rubra and Populus deltoides. Tree Physiology, 10, 411-415.
[27] Torres-Ruiz JM, Jansen S, Choat B, McElrone AJ, Cochard H, Brodribb TJ, Badel E, Burlett R, Bouche PS, Brodersen CR, Li S, Morris H, Delzon S ( 2015). Direct micro-CT observation confirms the induction of embolism upon xylem cutting under tension. Plant Physiology, 167, 40-43.
doi: 10.1104/pp.114.249706 pmid: 25378693
[28] Trifilò P, Nardini A, Gullo MAL, Barbera PM, Tadeja S ( 2015). Diurnal changes in embolism rate in nine dry forest trees: Relationships with species-specific xylem vulnerability, hydraulic strategy and wood traits. Tree Physiology, 57, 192-197.
doi: 10.1093/treephys/tpv049 pmid: 26116926
[29] Van den Honert TH ( 1948). Water transport in plants as a catenary process. Discussions of the Faraday Society, 3, 146-153.
doi: 10.1039/df9480300146
[30] Venturas MD, Sperry JS, Hacke UG ( 2017). Plant xylem hydraulics: What we understand, current research, and future challenges. Journal of Integrative Plant Biology, 59, 356-389.
doi: 10.1111/jipb.12534
[31] Wang RQ, Zhang LL, Zhang SX, Cai J, Tyree MT ( 2014). Water relations of Robinia pseudoacacia L.: Do vessels cavitate and refill diurnally or are R-shaped curves invalid in Robinia? Plant, Cell & Environment, 37, 2667-2678.
[32] Zimmermann MH ( 1983). Xylem Structure and the Ascent of Sap. Springer, Berlin.
[1] CHENG Xiang-Fen, MA Jin, ZHAO Han , JIANG Zai-Min, CAI Jing . Vessel length as a key hydraulic structure in woody plants: A review [J]. Chin J Plan Ecolo, 2018, 42(6): 609-618.
[2] Rong LI, Wei DANG, Jing CAI, Shuo-Xin ZHANG, Zai-Min JIANG. Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees [J]. Chin J Plan Ecolo, 2016, 40(3): 255-263.
[3] LI Rong,JIANG Zai-Min,ZHANG Shuo-Xin,CAI Jing. A review of new research progress on the vulnerability of xylem embolism of woody plants [J]. Chin J Plan Ecolo, 2015, 39(8): 838-848.
Full text



[1] Cui Gao;Yuxia Chen;Ying Bao;Min Feng;Anming Lu. Studies on Sexual Organs and Embryological Development Morphology of Speirantha gardenii (Convallariaceae)[J]. Chin Bull Bot, 2010, 45(06): 705 -712 .
[2] Cheng Xue, Fang-Dong Geng, Xiao-Yan Zhang, Xiao-Peng Chang, Ju-Qing Kang, Lei Huang, Jian-Qiang Zhang, and Yi Ren. Morphological Variation Pattern of Aquilegia ecalcarata and its Relatives[J]. J Syst Evol, 0, (): 0 .
[3] Huang Zhao-xiang;Zheng Zhen-gui and Zhu Du. Ecological Effect of Taxodium ascendens-Oryza sativa Ecosystem(I) The Growing Characteristic of Taxodium Ascendens in the Ecosystem[J]. Chin Bull Bot, 1996, 13(02): 48 -51 .
[4] ZHOU Shuang-Xi, WU Dong-Xiu, ZHANG Lin, SHI Hui-Qiu. Effects of changing precipitation patterns on seedlings of Stipa grandis, a dominant plant of typical grassland of Inner Mongolia, China[J]. Chin J Plan Ecolo, 2010, 34(10): 1155 -1164 .
[5] Jiang Gao-ming. The Impact of Globae Increasing of CO2 on Plants[J]. Chin Bull Bot, 1995, 12(04): 1 -7 .
[6] Ximei Zhang, Zhichao Pu, Yuanheng Li, Xingguo Han. Stochastic processes play more important roles in driving the dynamics of rarer species[J]. J Plant Ecol, 2016, 9(3): 328 -332 .
[7] MIAO Yu, CHEN Yue-Lin, LI Xian-Wei, FAN Chuan, LIU Yun-Ke, YANG Zheng-Ju, ZHANG Jun, and CAI Xin-Li. Effects of fertilization on Alnus formosana fine root morphological characteristics, biomass and issue content of C, N under A. formosana-Hemarthria compressa compound mode[J]. Chin J Plan Ecolo, 2013, 37(7): 674 -683 .
[8] LIU Su-Xia, XING Bo, YUAN Guo-Fu, MO Xing-Guo, and LIN Zhong-Hui. Relationship analysis between soil moisture in root zone and top-most layer in China[J]. Chin J Plan Ecolo, 2013, 37(1): 1 -17 .
[9] Xingguang Dong, Yufen Cao, Kun Wang, Luming Tian, Ying Zhang, Dan Qi. Comparison of the Characters and Distribution of Vessel Elements in Xylem Among Three Main Pear Rootstocks in China[J]. Chin Bull Bot, 2015, 50(2): 227 -233 .
[10] . [J]. Chin J Plan Ecolo, 2007, 31(3): 548 .