Chin J Plan Ecolo ›› 2007, Vol. 31 ›› Issue (1): 40-49.doi: 10.17521/cjpe.2007.0006

• Research Articles • Previous Articles     Next Articles

RELATIONSHIP BETWEEN PLANT COMMUNITY AND SOIL ON THE INTER_DUNE LOWLAND IN THE MIDDLE OF OTINGDAG SAND LAND

SONG Chuang_Ye1,2; GUO Ke1*   

  1. 1 Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; 2 Graduate University of Chinese Academy of Sciences, Beiing 100049, China
  • Online:2007-01-30 Published:2007-01-30
  • Contact: GUO Ke

Abstract:

Aims Vegetation and soil surveys were conducted in the summer of 2004 to study the relationship between vegetation types and soil of inter-dune lowland of Otindag sand land. Of 102 vegetation samples collected, 99 were herb-dominated, the others shrub-dominated. We analyzed soils for total nitrogen, soil organic matter, soluble sodium, soluble potassium and pH. Vegetation samples were classified based on species composition and species functional groups. We used detrended canonica l correspondence analysis (DCCA) to determine the main environmental factors related to the distribution of plant communities.
Methods The 102 samples were classified into twenty-eight groups dominated by Artemisi aannua, A. intramongolica, Bromus ircutensis, Chenopodium acuminatum, A. sieversiana, Oxytropis gracilima, Setaria viridis, A. scoparia, A. frigida, Carex duriuscula, Cleistogenes squarrosa, Agropyron cristatum, Stipa krylovii, Leymus chinensis, L. secalinus, Bromus inermis, Saussurea amara, Potentilla tanacetifolia, Achnatherum splendens, Iris lactea, Salix microstachya, Phragmites australis, Calamagrostis epigejos, Potentilla anserine, Halerpestes ruthenica, Puccinellia tenuiflora, Scirpus tabernaemontani and Suaeda glauca.
Importunt findings The Artemisia annua, A. intramongolica, Bromus ircutensis, Chenopodium acuminatum, A. sieversiana, Oxytropis gracilima, Setaria viridis and A. scoparia associations are mostly distributed on sites often covered by quicksand. The level of the groundwater is low, the lixivium of the soil is neutral and the average soluble K+, Na+, total nitrogen and organic matter are low. Artemisia frigida, Cleistogenes squarrosa, Agropyron cristatum, Stipa krylovii , Potentilla tanacetifolia, Leymus secalinus, Carex duriuscula and L. chinensisassociations are rooted mostly in stable sand, where soil water, organic matter and total nitrogen are high. Bromus inermis, Saussurea amara, Puccinellia tenuiflora, Phragmites australis and Potentilla anserineassociations grow in wet sites, where organic matter and total nitrogen are relatively high. Achnatherum splendens, Iris lacteal, Calamagrostis epigejos, Salix microstachya and Halerpes tesruthenica associations are on saline sites that have high groundwater and alkalinity. TheSuaeda glaucaassociation occurs in a highly saline lake, where water and salinity levels are very high. The Scirpus tabernaemontaniassociation occur s in a marsh. The first DCCA axis denoted gradients in ground water level (GWL) and factors related to ground water level such as pH, soluble sodium and soluble potassium. The second axis reflected gradients of total nitrogen and soil organic matter. The third axis reflected a pH gradient. Ground water level, pH, soluble sodium, soluble potassium, total nitrogen and soil organic matter significantly correlated with the distribution of plant communities.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Kang Le. The Chemical Defenses of plants to phytophagous Insects[J]. Chin Bull Bot, 1995, 12(04): 22 -27 .
[2] HUANG Kai-Yao;GUO Hou-Liang and YI Ping. Effects of Salt Stress on Cell Structure and N2 Fixation in Blue-Green Alga Anabaena cylindrica[J]. Chin Bull Bot, 1998, 15(03): 54 -56 .
[3] Zhang Jing-tan. Abbreviations for Some Commonly Used Term[J]. Chin Bull Bot, 1985, 3(01): 57 -58 .
[4] TIAN Xin-Zhi. On Plant Illustration and Artistic Drawing and Painting[J]. Chin Bull Bot, 1999, 16(04): 470 -476 .
[5] LI Xiu-Lan WU Cheng DENG Xiao-Jian YANG Zhi-Rong. Plant Height Genes and Their Progress of Molecular Biology Research in Rice[J]. Chin Bull Bot, 2003, 20(03): 264 -269 .
[6] LIU Hong-Tao LI Bing ZHOU Ren-Gang. Calcium_calmodulin Signal Transduction Pathway and Environment Stimulation[J]. Chin Bull Bot, 2001, 18(05): 554 -559 .
[7] Renyi Gui;Yadi Liu;Xiaoqin Guo;Haibao Ji;Yue Jia;Mingzeng Yu;Wei Fang*. Effects of Dose of 137Cs-γ Irradiation on Chlorophyll Fluorescence Parameters for Leaves of Seedlings of Phyllostachys heterocycla ‘Pubescens’[J]. Chin Bull Bot, 2010, 45(01): 66 -72 .
[8] Sanxiong Fu;Cunkou Qi*. Identification of Genes Differentially Expressed in Seeds of Brassica napus Planted in Nanjing and Lhasa by Arabidopsis Microarray[J]. Chin Bull Bot, 2009, 44(02): 178 -184 .
[9] Li Yunxiang, Liu Yucheng, Zhong Zhangcheng. Quantitative Structure and Dynamics of Leaf Populations of Gordonia acuminata on Jinyun Mountain[J]. Chin J Plan Ecolo, 1997, 21(1): 67 -76 .
[10] TANG Meng-Ping, ZHOU Guo-Mo, SHI Yong-Jun, CHEN Yong-Gang, WU Ya-Qi, ZHAO Min-Shui. STUDY OF DOMINANT PLANT POPULATIONS AND THEIR SPATIAL PATTERNS IN EVERGREEN BROADLEAVED FOREST IN TIANMU MOUNTAIN, CHINA[J]. Chin J Plan Ecolo, 2006, 30(5): 743 -752 .