植物生态学报 ›› 2024, Vol. 48 ›› Issue (9): 1192-1201.DOI: 10.17521/cjpe.2023.0110 cstr: 32100.14.cjpe.2023.0110
欧阳艺蕾1,2, 龚雪伟1,3, 段春旸1,2,4, 张驰1,2,4, 马尘扬4, 韩鹏4, 张元明4, 郝广友1,3,*()
收稿日期:
2023-04-21
接受日期:
2023-12-21
出版日期:
2024-09-20
发布日期:
2024-04-29
通讯作者:
郝广友(基金资助:
OUYANG Yi-Lei1,2, GONG Xue-Wei1,3, DUAN Chun-Yang1,2,4, ZHANG Chi1,2,4, MA Chen-Yang4, HAN Peng4, ZHANG Yuan-Ming4, HAO Guang-You1,3,*()
Received:
2023-04-21
Accepted:
2023-12-21
Online:
2024-09-20
Published:
2024-04-29
Contact:
HAO Guang-You (Supported by:
摘要:
新疆野杏(Prunus armeniaca var. ansu)是世界杏的起源种之一, 具有重要的经济和生态价值, 近年来新疆野杏林出现了严重的衰退死亡现象, 开展相关衰退机制研究对其资源保育和恢复具有重要意义。该研究以新疆伊犁地区相对健康(枯枝率≤30%)和严重衰退(枯枝率≥70%)的野杏树为研究对象, 分析了碳失衡和木质部水力功能损伤在介导该树种衰退死亡过程中所起的作用。研究结果表明, 严重衰退野杏树枝条水平的叶面积显著减少, 但比叶质量、相对叶绿素含量和气孔导度在严重衰退和相对健康野杏树之间无显著差异。严重衰退野杏树的正午叶片水势、枝条水分传输效率和栓塞抵抗力均显著低于相对健康的野杏树, 发生了明显的木质部水分传输障碍。严重衰退野杏树的非结构性碳水化合物(NSC)总含量低于相对健康的野杏树, 但枝条木质部中可溶性糖与淀粉含量比例显著升高。水分传输效率的下降伴随着固碳能力和NSC库存的降低, 碳失衡进一步导致树木对病虫害的防御能力降低, 形成恶性循环最终导致树木衰退死亡。
欧阳艺蕾, 龚雪伟, 段春旸, 张驰, 马尘扬, 韩鹏, 张元明, 郝广友. 新疆伊犁地区野杏树衰退的水碳生理机制. 植物生态学报, 2024, 48(9): 1192-1201. DOI: 10.17521/cjpe.2023.0110
OUYANG Yi-Lei, GONG Xue-Wei, DUAN Chun-Yang, ZHANG Chi, MA Chen-Yang, HAN Peng, ZHANG Yuan-Ming, HAO Guang-You. Water- and carbon-related physiological mechanisms underlying the decline of wild apricot trees in Ili, Xinjiang, China. Chinese Journal of Plant Ecology, 2024, 48(9): 1192-1201. DOI: 10.17521/cjpe.2023.0110
图1 新疆西天山国家级自然保护区内相对健康(A)和严重衰退(B)的野杏种群。
Fig. 1 Relatively healthy (A) and severely declined (B) Prunus armeniaca var. ansu populations in the West Tianshan National Nature Reserve, Xinjiang.
图2 新疆西天山国家级自然保护区相对健康和严重衰退野杏树的边材比导率(Ks) (A)、最大边材比导率(Ks-max) (B)、叶片比导率(Kl) (C)和木质部导水率丧失百分比(PLC) (D)的差异(平均值±标准误)。不同小写字母代表两组树木间存在显著差异(p < 0.05, t检验)。
Fig. 2 Differences in sapwood-specific hydraulic conductivity (Ks) (A), maximum sapwood-specific hydraulic conductivity (Ks-max) (B), leaf-specific hydraulic conductivity (Kl) (C) and percentage loss of hydraulic conductivity (PLC) (D) between relatively healthy and severely declined Prunus armeniaca var. ansu trees in the West Tianshan National Nature Reserve, Xinjiang (mean ± SE). Different lowercase letters represent significant differences between the two types of trees (p < 0.05, t-test).
图3 新疆西天山国家级自然保护区相对健康和严重衰退野杏树导水率丧失百分比(PLC)随木质部压力的变化(平均值±标准误)。P50和P88分别表示导水率丧失50%和88%时所对应的木质部压力。
Fig. 3 Percentage loss of hydraulic conductivity (PLC) in response to stem xylem pressure for relatively healthy and severely declined Prunus armeniaca var. ansu trees in the West Tianshan National Nature Reserve, Xinjiang (mean ± SE). P50 and P88 represent xylem pressures leading to 50% and 88% loss of hydraulic conductivity, respectively.
生理生态参数 Ecophysiological characteristics | 相对健康 Relatively healthy | 严重衰退 Severely declined |
---|---|---|
相对叶绿素含量 (SPAD值) Relative chlorophyll content (SPAD value) | 41.7 ± 0.95a | 35.55 ± 3.28a |
气孔导度 Stomatal conductance (mmol·m-2·s-1) | 239.45 ± 15.82a | 210.73 ± 33.06a |
比叶质量 Leaf mass per area (g·m-2) | 65.78 ± 3.61a | 64.06 ± 3.17a |
木材密度 Wood density (g·cm-3) | 0.67 ± 0.02a | 0.58 ± 0.01b |
胡伯尔值 Huber value (×10-6) | 85.86 ± 7.96b | 125.71 ± 12.95a |
凌晨水势 Predawn water potential (MPa) | -0.26 ± 0.04a | -0.28 ± 0.02a |
正午水势 Midday water potential (MPa) | -1.69 ± 0.22a | -2.35 ± 0.16b |
表1 新疆西天山国家级自然保护区不同健康状况(相对健康和严重衰退)野杏树的生理生态特性差异(平均值±标准误)
Table 1 Differences in ecophysiological characteristics of Prunus armeniaca var. ansu trees with different states of health in the West Tianshan National Nature Reserve, Xinjiang (mean ± SE)
生理生态参数 Ecophysiological characteristics | 相对健康 Relatively healthy | 严重衰退 Severely declined |
---|---|---|
相对叶绿素含量 (SPAD值) Relative chlorophyll content (SPAD value) | 41.7 ± 0.95a | 35.55 ± 3.28a |
气孔导度 Stomatal conductance (mmol·m-2·s-1) | 239.45 ± 15.82a | 210.73 ± 33.06a |
比叶质量 Leaf mass per area (g·m-2) | 65.78 ± 3.61a | 64.06 ± 3.17a |
木材密度 Wood density (g·cm-3) | 0.67 ± 0.02a | 0.58 ± 0.01b |
胡伯尔值 Huber value (×10-6) | 85.86 ± 7.96b | 125.71 ± 12.95a |
凌晨水势 Predawn water potential (MPa) | -0.26 ± 0.04a | -0.28 ± 0.02a |
正午水势 Midday water potential (MPa) | -1.69 ± 0.22a | -2.35 ± 0.16b |
图4 新疆西天山国家级自然保护区相对健康和严重衰退野杏树的枝条导管直径频度分布。
Fig. 4 Frequency distribution of stem vessel diameter for relatively healthy and severely declined Prunus armeniaca var. ansu trees in the West Tianshan National Nature Reserve, Xinjiang.
图5 新疆西天山国家级自然保护区相对健康和严重衰退野杏树的淀粉、可溶性糖、总非结构性碳水化合物含量和可溶性糖与淀粉比例差异(平均值±标准误)。不同小写字母代表两组树木间存在显著差异(p < 0.05, t检验)。
Fig. 5 Differences in the contents of starch, soluble sugar, total non-structural carbohydrate (TNSC) and the soluble sugar-to-starch content ratio in relatively healthy and severely declined Prunus armeniaca var. ansu trees in the West Tianshan National Nature Reserve, Xinjiang (mean ± SE). Different lowercase letters represent significant differences between the two types of trees (p < 0.05, t-test).
图6 新疆西天山国家级自然保护区野杏树枝条木质部中可溶性糖与淀粉含量的回归关系
Fig. 6 Regression between the soluble sugar and starch contents in xylem of branches of Prunus armeniaca var. ansu trees in the West Tianshan National Nature Reserve, Xinjiang.
[1] | Abrantes J, Campelo F, García-González I, Nabais C (2013). Environmental control of vessel traits in Quercus ilex under Mediterranean climate: relating xylem anatomy to function. Trees, 27, 655-662. |
[2] | Alder NN, Pockman WT, Sperry JS, Nuismer S (1997). Use of centrifugal force in the study of xylem cavitation. Journal of Experimental Botany, 48, 665-674. |
[3] |
Anderegg WRL, Berry JA, Smith DD, Sperry JS, Anderegg LDL, Field CB (2012). The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences of the United States of America, 109, 233-237.
DOI PMID |
[4] | Cai J, Tyree MT (2010). The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant, Cell & Environment, 33, 1059-1069. |
[5] | Cardoso AA, Batz TA, McAdam SAM (2020). Xylem embolism resistance determines leaf mortality during drought in Persea americana. Plant Physiology, 182, 547-554. |
[6] |
Chen ZC, Zhu SD, Zhang YT, Luan JW, Li S, Sun PS, Wan XC, Liu SR (2020). Tradeoff between storage capacity and embolism resistance in the xylem of temperate broadleaf tree species. Tree Physiology, 40, 1029-1042.
DOI PMID |
[7] | Davis SD, Ewers FW, Sperry JS, Portwood KA, Crocker MC, Adams GC (2002). Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae) chaparral of California: a possible case of hydraulic failure. American Journal of Botany, 89, 820-828. |
[8] | Franklin JF, Shugart HH, Harmon ME (1987). Tree death as an ecological process. BioScience, 37, 550-556. |
[9] | Hacke UG, Spicer R, Schreiber SG, Plavcová L (2017) An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environment, 40, 831-845. |
[10] | Richter H (1997). Water relations of plants in the field: some comments on the measurement of selected parameters. Journal of Experimental Botany, 48, 1-7. |
[11] |
Hartmann H, Trumbore S (2016) Understanding the roles of nonstructural carbohydrates in forest trees-from what we can measure to what we want to know. New Phytologist, 211, 386-403.
DOI PMID |
[12] |
Hoch G, Körner C (2003). The carbon charging of pines at the climatic treeline: a global comparison. Oecologia, 135, 10-21.
PMID |
[13] |
Huang JB, Kautz M, Trowbridge AM, Hammerbacher A, Raffa KF, Adams HD, Goodsman DW, Xu CG, Meddens AJH, Kandasamy D, Gershenzon J, Seidl R, Hartmann H (2020) Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytologist, 225, 26-36.
DOI PMID |
[14] | Jacquet JS, Bosc A, O’Grady A, Jactel H (2014). Combined effects of defoliation and water stress on pine growth and non-structural carbohydrates. Tree Physiology, 34, 367-376. |
[15] |
Jansen S, Choat B, Pletsers A (2009). Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. American Journal of Botany, 96, 409-419.
DOI PMID |
[16] | Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011). Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190, 709-723. |
[17] |
Lens F, Tixier A, Cochard H, Sperry JS, Jansen S, Herbette S (2013). Embolism resistance as a key mechanism to understand adaptive plant strategies. Current Opinion in Plant Biology, 16, 287-292.
DOI PMID |
[18] | Li LP, Hai Y, Anwar M, Tang ZY, Fang JY (2011). Community structure and conservation of wild fruit forests in the Ili valley, Xinjiang. Arid Zone Research, 28, 60-66. |
[李利平, 海鹰, 安尼瓦尔·买买提, 唐志尧, 方精云(2011). 新疆伊犁地区野果林的群落特征及保护. 干旱区研究, 28, 60-66.] | |
[19] | Li M, Hoch G, Körner C (2002). Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline. Trees, 16, 331-337. |
[20] | Machado RAR, Arce CCM, Ferrieri AP, Baldwin IT, Erb M (2015). Jasmonate-dependent depletion of soluble sugars compromises plant resistance to Manduca sexta. New Phytologist, 207, 91-105. |
[21] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
DOI PMID |
[22] |
McDowell NG (2011). Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 155, 1051-1059.
DOI PMID |
[23] |
McDowell NG, Fisher RA, Xu CG, Domec JC, Hölttä T, MacKay DS, Sperry JS, Boutz A, Dickman L, Gehres N, Limousin JM, Macalady A, Martínez-Vilalta J, Mencuccini M, Plaut JA, et al.(2013). Evaluating theories of drought- induced vegetation mortality using a multimodel-experiment framework. New Phytologist, 200, 304-321.
DOI PMID |
[24] |
Mediene S, Jordan MO, Pagès L, Lebot J, Adamowicz S (2002). The influence of severe shoot pruning on growth, carbon and nitrogen status in young peach trees (Prunus persica). Tree Physiology, 22, 1289-1296.
PMID |
[25] | O’Brien MJ, Leuzinger S, Philipson CD, Tay J, Hector A (2014). Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nature Climate Change, 4, 710-714. |
[26] |
Roth M, Hussain A, Cale JA, Erbilgin N (2018). Successful colonization of lodgepole pine trees by mountain pine beetle increased monoterpene production and exhausted carbohydrate reserves. Journal of Chemical Ecology, 44, 209-214.
DOI PMID |
[27] | Šimpraga M, Takabayashi J, Holopainen JK (2016). Language of plants: Where is the word. Journal of Integrative Plant Biology, 58, 343-349. |
[28] | Singh V, Mandhania S, Pal A, Kaur T, Banakar P, Sankaranarayanan K, Arya SS, Malik K, Datten R (2022). Morpho-physiological and biochemical responses of cotton (Gossypium hirsutum L.) genotypes upon sucking insect-pest infestations. Physiology and Molecular Biology of Plants, 28, 2023-2039. |
[29] | Sobrado MA (2003). Hydraulic characteristics and leaf water use efficiency in trees from tropical montane habitats. Trees, 17, 400-406. |
[30] |
Sperry JS, Wang YJ, Wolfe BT, Mackay DS, Anderegg WRL, McDowell NG, Pockman WT (2016). Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytologist, 212, 577-589.
DOI PMID |
[31] | Tomasella M, Häberle KH, Nardini A, Hesse B, Machlet A, Matyssek R (2017). Post-drought hydraulic recovery is accompanied by non-structural carbohydrate depletion in the stem wood of Norway spruce saplings. Scientific Reports. 7, 14308. DOI: 10.1038/s41598-017-14645-w. |
[32] |
Tomasella M, Nardini A, Hesse BD, Machlet A, Matyssek R, Häberle KH (2019). Close to the edge: effects of repeated severe drought on stem hydraulics and non-structural carbohydrates in European beech saplings. Tree Physiology, 39, 717-728.
DOI PMID |
[33] | Tyree MT, Sperry JS (1989). Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 19-36. |
[34] |
Vandegehuchte MW, Bloemen J, Vergeynst LL, Steppe K (2015). Woody tissue photosynthesis in trees: salve on the wounds of drought. New Phytologist, 208, 998-1002.
DOI PMID |
[35] |
Venturas MD, Sperry JS, Hacke UG (2017). Plant xylem hydraulics: What we understand, current research, and future challenges. Journal of Integrative Plant Biology, 59, 356-389.
DOI |
[36] | Wang YL, Lyu ZZ, Linghu W, Gao GZ (2021). Sphaerolecanium prunastri (Hemiptera: Coccoidea: Coccidae), a new pest in wild fruit forests, Xinjiang. Forest Research, 34, 152-158. |
[王玉丽, 吕昭智, 令狐伟, 高桂珍 (2021). 新疆野果林的新害虫——杏树鬃球蚧(半翅目: 蚧总科: 蚧科). 林业科学研究, 34, 152-158.] | |
[37] | Wang YL, Lyu ZZ, Linghu W, Wang Q, Gao GZ (2022). Occurrence and harm of Sphaerolecanium prunastri in wild fruit forests in Xinjiang. Xinjiang Agricultural Sciences, 59, 1741-1747. |
[王玉丽, 吕昭智, 令狐伟, 王强, 高桂珍 (2022). 新疆野果林杏树鬃球蚧的发生及危害. 新疆农业科学, 59, 1741-1747.]
DOI |
|
[38] |
Wiley E, Rogers BJ, Hodgkinson R, Landhäusser SM (2016). Nonstructural carbohydrate dynamics of lodgepole pine dying from mountain pine beetle attack. New Phytologist, 209, 550-562.
DOI PMID |
[39] | Yang QX, Liu LQ, Qin W, Diao YQ, Zhao ZJ, Wu RQMG, Zhang B (2022). Population structure characteristics and health evaluation of Prunus armeniaca Lam. Chinese Journal of Ecology, 41, 9-17. |
[杨其享, 刘立强, 秦伟, 刁永强, 赵忠晶, 乌仁其米格, 张博 (2022). 新疆野杏种群结构特征与健康评价. 生态学杂志, 41, 9-17.] | |
[40] | Zhang JL, Cao KF (2009). Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species. Functional Ecology, 23, 658-667. |
[41] | Zhang YM, He TM, Feng JR, Chen MX, Yuan ZH, Sun JZ, Zhang DH, Wu Y, Zhang LJ, Chen XS (2009). New advances of the apricot resources evaluation, germplasm enhancement and utilization. Acta Horticulturae Sinica, 36, 755-762. |
[张艳敏, 何天明, 冯建荣, 陈美霞, 苑兆和, 孙家正, 张大海, 吴燕, 张立杰, 陈学森 (2009). 杏种质资源评价、创新与利用研究新进展. 园艺学报, 36, 755-762.] | |
[42] | Zhao F, Liu WS, Liu N, Yu XH, Sun M, Zhang YP, Zhou YQ (2005). Reviews of the apricot germplasm resources and genetic breeding in China. Journal of Fruit Science, 22, 687-690. |
[赵锋, 刘威生, 刘宁, 郁香荷, 孙猛, 张玉萍, 周晏起 (2005). 我国杏种质资源及遗传育种研究新进展. 果树学报, 22, 687-690.] |
[1] | 石荡, 郭传超, 蒋南林, 唐莹莹, 郑凤, 王瑾, 廖康, 刘立强. 新疆野杏天然更新幼株的个体特征及空间分布格局[J]. 植物生态学报, 2023, 47(4): 515-529. |
[2] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[3] | 罗丹丹, 王传宽, 金鹰. 木本植物水力系统对干旱胁迫的响应机制[J]. 植物生态学报, 2021, 45(9): 925-941. |
[4] | 陈志成, 万贤崇. 虫害叶损失造成的树木非结构性碳减少与树木生长、死亡的关系研究进展[J]. 植物生态学报, 2016, 40(9): 958-968. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19